
Water erosion estimate in Belem Stream Watershed in Minas Gerais state
5
Cad. Ciênc. Agrá., v. 12, p. 01–05, 2020. e-ISSN: 2447-6218 / ISSN: 1984-6738
Beskow, S.; Mello, C. R.; Norton, L. D.; Curi, N.; Viola, M. R.; Avanzi, J.
C. 2009. Soil erosion prediction in the Grande River Basin, Brazil using
distributed modeling. Catena, 79:49-59. https://doi.org/10.1016/j.
catena.2009.05.010.
Efthimiou, N.; Lykoudi, E.; Karavitis, C. 2017. Comparative analysis
of sediment yield estimations using different empirical soil erosion
models. Hydrological Sciences Journal, 62:2674–2694. h t t p s: //doi .
or g /10.10 8 0/026 26 6 67. 2017.140 4 06 8 .
Environmental Systems Research Institute – ESRI. 2015. ARCGIS
Professional GIS for the desktop version 10.3. Redlands, Califórnia,
EUA, Software.
Gavrilovic, S. 1962. A method for estimating the average annual
quantity of sediments according to the potency of erosion. Bulletin
of the Faculty of Forestry, 26:151-168.
Google. Google Earth. Version 7.3.2.5776. 2019. Available in: ht t p://
www.google.com.br/earth/download/gep/agree.html.
Haghizadeh, A.; Shui, L. T.; Godarzi, E. 2009. Forecasting Sediment
with Erosion Potential Method with Emphasis on Land Use Changes
at Basin. Electronic Journal of Geotechnical Engineering, 14: 1-12.
Instituto Nacional de Pesquisas Espaciais - INPE. 2019. SGI 2.5 Divisão
de Geração de Imagens (DIDGI). SGI. Imagem Geosistemas, São José
dos Campos: Instituto Nacional de Pesquisas Espaciais. Available in:
http://www.dgi.inpe.br/CDSR/.
Lense, G. H. E; Parreiras, T. C.; Moreira, R. S.; Avanzi, J. C.; Mincato,
R. L. 2019. Estimates of soil losses by the erosion potential method
in tropical latosols. Ciência e Agrotecnologia, 43:e012719. h t t p s: //
dx.doi.org/10.1590/1413-7054201943012719.
Miranda, E. E. 2005. Brasil em Relevo. Campinas: Embrapa
Monitoramento por Satélite. Available in: http://www.relevobr.cnpm.
embrapa.br.
Pandey, A.; Chowdary, V. M.; Mal, B. C. 2007. Identification of critical
erosion prone areas in the small agricultural watershed using USLE,
GIS and remote sensing. Water Resources Management, 21:729-746.
https://doi.org/10.1007/s11269-006-9061-z.
Sakuno, N. R. R.; Guiçardi, A. C. F.; Spalevic, V.; Avanzi, J. C.; Silva,
M. L. N.; Mincato, R. L. 2020 Adaptation and application of the erosion
potential method for tropical soils. Revista Ciência Agronômica,
51:e20186545. https://dx.doi.org/10.5935/1806-6690.20200004.
Scharrón, C. E. R.; Sánchez, Y. F. 2017. Plot-, farm-, and watershed-
scale effects of coffee cultivation in runoff and sediment production
in western Puerto Rico. Journal of Environmental Management,
202:126-136. https://doi.org/10.1016/j.jenvman.2017.07.020.
Tavares, A. S.; Spalevic, V.; Avanzi, J. C.; Nogueira, D. A.; Silva, M.
L. N.; Mincato, R. L. 2019. Modeling of water erosion by the erosion
potential method in a pilot subbasin in southern Minas Gerais.
Semin-Ciencias Agrárias, 40:555-572. https://doi.org/10.5433/1679-
0359.2019v40n2p555.
Universidade Federal de Viçosa - UFV. 2010. Mapa de solos de Minas
Gerais: legenda expandida. (1:650.000). Belo Horizonte: Fundação
Estadual do Meio Ambiente / UFV / CETEC / UFLA / FEAM. Available
in: http://w w w.dps.uf v.br/?page_id=742.
Zemljic, M. 1971. Calculation of sediment load. Evaluation of vegetation
as anti-erosive factor. In: Proceedings of the international symposium
Interpraevent, p.379-391.