Potential for using dehydrated banana peel as an additive in grass silage
Orlando Filipe Costa Marques
1
*, Eleuza Clarete Junqueira de Sales
2
, Flávio Pinto Monção
3
, Ariadne Freitas Silva
4
, João Paulo
Sampaio Rigueira
5
, Daniel Ananias de Assis Pires
6
, Leidy Darmony de Almeida Rufino
7
,
Hellén Felicidade Durães8
DOI: https://doi.org/10.35699/2447-6218.2021.32807
Abstract
Among the techniques for conserving forage for herbivore feeding, the production of grass silage has been widely used in
recent times in tropical regions, however, the low content of dry matter and carbohydrates in these forages can hamper the
fermentation of ensiled biomass. In this regard, the dehydrated banana peel presents itself as an al- ternative as an additive in
the production of grass silage. Given the above, the objective of this review was to present the main aspects of the use of
dehydrated banana peel as an additive in the production of grass silage. The review was developed through the search for
selected terms, such as: “grass silages”, “banana residues”, “additives”. The terms were searched in the Google Scholar,
Scielo, PubMed, Elsevier, Science Direct, Capes Periodical databases. The banana peel has bromatological characteristics that
make it a good alternative for use in the feeding of ruminants, with carbohydrate values of up to 32.4% of dry matter, as well
as a source of protein, ether extract, minerals, and essential amino acids. Because it presents good nutritional values
compared to citrus and cassava peel, the banana peel has been used in the feeding of ruminants by small producers in tropical
regions, where the use of by-products has the purpose of having lower feeding costs. The use of dehydrated banana peel is an
alternative to be used as an additive in the production of grass silage and ruminant feed due to its nutritional characteristics.
Keywords:
Alternative foods. Byproducts. Fermentation. Ruminants.
Potencial de uso da casca de banana desidratada como aditivo na silagem de capins
Resumo
Dentre as técnicas para conservação de forragem para alimentação de herbívoros, a produção de silagem de capins vem sendo
bastante utilizada nos últimos tempos em regiões tropicais, entretanto, o baixo teor de matéria seca e car- boidratos nessas
forrageiras podem dificultar a fermentação da biomassa ensilada. Neste aspecto, a casca de banana desidratada apresenta-se
como uma alternativa como aditivo na produção de silagem de capins. Diante do exposto,
1Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul State. Brazil.
https://orcid.org/0000-0002-3925-218X
2Universidade Estadual de Montes Claros, Janaúba, Minas Gerais State. Brazil.
https://orcid.org/0000-0002-6177-5278
3Universidade Estadual de Montes Claros, Janaúba, Minas Gerais State. Brazil.
https://orcid.org/0000-0002-9821-0107
4Universidade Estadual de Montes Claros, Janaúba, Minas Gerais State. Brazil.
https://orcid.org/0000-0003-4378-4733
5Universidade Estadual de Montes Claros, Janaúba, Minas Gerais State. Brazil.
https://orcid.org/0000-0001-8706-192X
6Universidade Estadual de Montes Claros, Janaúba, Minas Gerais State. Brazil.
https://orcid.org/0000-0001-8154-6774
7Empresa de Pesquisa Agropecuária do Estado de Minas Gerais, Montes Claros, Minas Gerais State. Brazil.
https://orcid.org/0000-0002-7847-8245
8Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul State. Brazil.
https://orcid.org/0000-0002-9326-0930
*Autor para correspondência: orlandozootec@gmail.com
Recebido para publicação em 30 de março de 2021. Aceito para publicação 30 de otubro de 2021
e-ISSN: 2447-6218 /
ISSN: 2447-6218. Atribuição CC BY.
2
Londero, R. et al.
objetivou-se com esta revisão, apresentar os principais aspectos do uso da casca de banana desidratada como aditivo na
produção de silagem de capins. O desenvolvimento da revisão foi através da busca de termos selecionados, tais como:
“capim-marandu”, “silagens”, “resíduos de banana”, “aditivos”. Os termos foram buscados nas bases de dados
Google Scholar,
Scielo, PubMed, Elsevier, Science Direct, Periódicos Capes. A casca de banana apresenta características
bromatológicas que a
torna uma boa alternativa para uso na alimentação de ruminantes, com valores de carboidra- tos de até 32,4% da matéria seca,
além de fonte de proteína, extrato etéreo, minerais e aminoácidos essenciais. Por apresentar bons valores nutricionais
comparados à casca de citros e mandioca, a casca de banana vem sendo utilizada na alimentação de ruminantes por pequenos
produtores de regiões tropicais, onde que o uso de subprodutos tem a finalidade de se ter menores custos com alimentação.
A utilização da casca de banana desidratada pode ser uma alternativa a ser utilizada como aditivo na produção de silagem de
capins e alimentação de ruminantes devido às características nutricionais.
Palavras-chave:
Alimentos alternativos. Fermentação. Subprodutos. Ruminantes.
Introduction
Forage production in Brazil is characterized by
great production in summer and seasonality in winter,
which can compromise animal production, in this scenario,
it is
necessary to make use of techniques that conserve forage
for supply to animals in the period of low avai- lability of
food. Among the various forage conservation
techniques for
feeding herbivores, the production of silage
is one of the most
used for allowing the conservation of forage plants for long
periods without major losses of nutritional value.
The banana peel has in its composition characte-
ristics that can correct the nutrient deficiency of tropical
grasses since they present in their composition good values
of carbohydrates (32.4% of DM) that are mostly soluble, in
addition to being a source of ethereal extract, minerals, and
essential amino acids (Emaga et al., 2011; Mohapatra et al.,
2010). Given the above, the objective of this review was to
present the main aspects of grass silage with dehydrated
banana peel.
Material and methods
For the production of silage, several forage plants
can
be used, however, corn and sorghum are the most
cultivated.
In recent years, interest in growing other gras-
ses that are
normally used for grazings, such as those of
the genus
Brachiaria and Panicum, has grown. The use of grass for silage
production mainly aims to take advantage of excess production
during the rainy season for use in the dry season. Despite the
high biomass production of tropical grasses, these at the time of
harvest have characteristics that are not ideal for obtaining silage
with a good fermentative
pattern, such as the high water
content and low soluble
carbohydrate content, this hinders the
production of lactic acid by acid lactic bacteria favoring secondary
fermentation,
in addition to increasing nutrient losses from
effluents, decreasing the nutritional value of silage.
This bibliographic review was carried out fol-
lowing the proposal of Dane (1990), where terms were
selected, such as: “marandu grass”, “silages”, “banana
residues”, “additives”. The terms were searched in the
following databases Google Scholar, Scielo, PubMed,
Elsevier, Science Direct, Capes Periodicals. It is worth
mentioning that restrictive measures were not adopted
during the search for scientific papers.
After analyzing the archives of the scientific da-
tabases, criteria for the exclusion of repeated articles that
did
not fit the theme were applied. After the relevance test for
use in the study, they were tabulated in an Excel
spreadsheet® with the information that is relevant, for
exploration in the literature review.
For the production of tropical grass silage so that
there are a good fermentation pattern and reduc- tion of
losses, it is necessary to use additives. The use of additives,
in addition to reducing losses in the silage production
process, can improve nutritional value, in- crease food
consumption and digestibility (Bernardes et al., 2005).
Among the various industrial residues that can be used as
an additive in the production of silage, the banana peel has
great potential. The banana is the most produced fruit
worldwide and its industrialization generates a large amount
of waste (pseudostem, leaves, and peels) (Mohapatra et al.,
2010), when this waste is incorrectly disposed of, it can
become a source of pollu-
tion, an alternative to dispose of the
banana peel residue
would be used in the feeding of
ruminants, where it can be supplied fresh or dehydrated to
the animals.
Results and discussion
Tropical grass silage
Animal production based on a pasture of tropical
grasses, has as an obstacle the seasonality of production in
the dry period, that to maintain a high productive standard
in the period of food deficit it is necessary to make use of
techniques/strategies that allow meeting the dietary
requirements of the animals. In this respect, silage is an
alternative for the conservation of roughage for use in the
period of food deficit (Faria et al., 2010).
Silage of tropical grasses is a recommended alter-
native to conserve surplus production in the rainy season
Cad. Ciênc. Ag., v. 12, p. 0108, https://doi.org/10.35699/2447-6218.2020.25450
3
Dependência espacial da fertilidade do solo sob plantio direto e suas relações com a produtividade da soja
and supplement animals in the dry season (Arruda et al.,
2010). Also, according to the authors, this strategy
allows to rationalize and intensify the management of
pastures in the rainy season.
Frame 1 Periodic portals used in the research.
The grasses present advantageous characteristics
for
silage production, such as flexibility of harvest, low risk of
losses, and high production of dry matter (Corrêa et al.,
2001). Tropical forage plants change and with maturity, dry
matter production increases, however, it loses nutritional
value, whereas, in young plants, the biomass of these
forages has a high moisture content,
high buffering capacity,
and low concentration of soluble carbohydrates (Randa et al.,
2017). These characteristics can harm the silage production
process (Bernardes et al.,
2018).
Different moisture-sequestering additives can be used
to improve the fermentative profile of tropical gras-
ses, such
as manioc bran (Pires et al., 2010), dehydrated
banana peel
(Brant et al., 2017), coffee peel (Bernardino
et al., 2005),
among others, as long as they have a high DM content and
these are added in adequate amounts so that the silage dry
matter content is between 28 and 34% as recommended by
Borreani et al. (2018), thus avoiding compression problems
and subsequent losses.
In addition to improving the fermentation pattern
of
silage, the use of residues as moisture-sequestering
additives can reduce losses during the ensiling process, in
this sense, Negrão et al. (2016) observed a reduction in
effluent losses in Brachiaria decumbens silage when added
with 40% rice bran.
According to Wilkinson (1983), the dry mat- ter
content, amount of soluble carbohydrates, and the buffering
power of the material have a direct effect on the adequate
fermentation of the ensiled material. The growth of bacteria
of the genus Lactobacillus depends directly adequate levels
of soluble carbohydrates in the ensiled mass so that they
establish, grow, and produce lactic acid since it is
responsible for silage stabilization (Valença et al., 2016;
Van Soest, 1994).
With the increasing use of by-products as an ad-
ditive for silages, new residues from food processing are
being sought, and in this aspect, the banana peel appears
as an
alternative, since the processing of this fruit gene- rates great
production of residues and this one has in its composition
high content of dry matter and non-fibrous
carbohydrates,
ether extract, and protein with averages of (87.76, 31.46, 6.25
and 8.28 respectively) that can assist
the silage fermentation
process (Monção et al., 2014 ). Brant et al. (2017), observed
that the inclusion of 25% of the banana house in elephant
grass silage reduced losses during the fermentation process.
The high moisture content of grasses at har- vest
can be corrected by using wilt or using additives (Bernardes
et al., 2005). According to the authors, de- pending on the
additive used, better quality silage can be produced, with
better digestibility and potential for ingestion.
Use of additives in grass silages
Use of banana peel
According to McDonald et al. (1991), silage addi-
tives can be classified into five main groups: fermentation
stimulators, partial or total fermentation inhibitors, aero-
bic
deterioration inhibitors, nutritional, and absorbents.
The banana is the second most-produced fruit in
the world, however, its production generates a large amount
of waste (pseudostem, leaves, and peels) with great
potential for use both in the production of biofuels and in
animal feed (Mohapatra et al., 2010). In 2016, banana
production in Brazil was estimated at 6,764,324 tonnes,
where the state of Minas Gerais was responsible for 11% of
national production, occupying third place in the country
(EMBRAPA, 2016).
The use of additives in the production of silage
helps to reduce losses and can also improve the nutri- tional
value of ensiled mass (Bernardes et al., 2005). In small-
scale silage production, Gusmão et al. (2018) recommend
the use of residues from the food industry that act as
moisture-scavenging additives.
Cad. Ciênc. Ag., v. 12, p. 0108, https://doi.org/10.35699/2447-6218.2020.25450
Database
Email address
Google Scholar
https://scholar.google.com.br/?hl=pt
Scielo
https://scielo.org/pt
PubMed
https://pubmed.ncbi.nlm.nih.gov
Elsevier
https://www.elsevier.com/pt-br
Science Direct
https://www.sciencedirect.com
Capes Periodicals
https://sucupira.capes.gov.br/sucupira/public
4
Londero, R. et al.
Of the total banana production in Brazil, it is
estimated that only 2.5 to 3% are industrialized, and of this
total 40% is transformed into waste (peels), which can cause
problems to the environment if not disposed of correctly.
Thus, the banana peel can be used in animal
feed, as a by-
product, especially in periods of food deficit
(Monção et al.,
2014; Emaga et al., 2011).
production and processing, when considering the impro-
vement in the nutritional value of the milk lipid fraction and
the increase in the contents of conjugated linoleic acid.
Ferreira et al., (2016) reported that the use of ba- nana peel
dried in the sun in 20% of the diet does not alter milk
production, however, reduces the digestibility of DM and
nutrients, which may limit the weight gain of animals.
The banana peel has bromatological characteris-
tics
that make it a good alternative for use in the feeding
of
ruminants, with carbohydrate values of up to 32.4% of dry
matter, where these are mostly soluble carbohydrates
(Emaga
et al., 2011), in addition to a source of protein,
ether extract,
minerals, and essential amino acids (leuci-
ne, valine,
threonine, and phenolphthalein) (Mohapatra et al., 2010).
Fermentative profile
The fermentative pattern is an important aspect to be
evaluated in the production of silage, where the pH and
ammoniacal nitrogen are considered important parameters to
be observed. According to Borreani et al., (2018) and
Ferraretto et al., (2018), pH values between
3.8 and 4.2 characterize well-preserved silage, and values
above these may indicate butyric fermentation, whereas
ammoniacal nitrogen must have values below 10% of DM
to qualify silage with good fermentation standard (Arruda et
al., 2010). At the time of harvest, the plants
may present
unfavorable characteristics for ensiling, such as high humidity
and low content of soluble carbohydra-
tes, being factors that
make it difficult to reduce the pH of the ensiled material,
causing secondary fermentation (Evangelista et al., 2004;
Bergamaschine et al., 2006).
As it presents good nutritional values compared
to
citrus and cassava peel, the banana peel has been used in the
feeding of ruminants by small producers in tropical
regions,
where the use of by-products has the purpose of having lower
feeding costs, increasing the productivity and profitability
of meat and milk production (Oliveira et al., 2012).
The form of supply of this product can be made in
natural or dehydrated in the sun, with or without some type
of treatment (Conte, 2017). The results with
the use of
banana peel in animal feed are positive. Souza
et al., (2016)
evaluating ways of treating banana peels, sun-dried peels for
7 days treated or not with lime and calcium oxide on the
performance of dairy cows conclu- ded that the use of sun-
dried peel in 20% of the diet did not affect milk production.
In the ensiling process, secondary fermentation
occurs mainly when forage plants have dry matter content
below 21%, soluble carbohydrates below 2.2% in the
natural matter, and low carbohydrate / buffering ratio,
requiring the use of techniques to correct such deficiency
(McDonald et al., 1991).
The fermentation of soluble carbohydrates oc- curs
through the action of hetero and homofermentati- ve
microorganisms, and soluble sugars are fermented to
volatile fatty acids, carbon dioxide, water, and heat (Muck,
2010). Lactic acid plays a fundamental role in the anaerobic
conservation of ensiled biomass and the production of this
acid depends directly on the number of soluble
carbohydrates in the forage (Senger et al., 2005).
According to Pimentel et al. (2016), the use of
banana peel to replace sorghum silage by up to 60% in the
feeding of F1 Holstein x Zebu cows during lactation did not
influence milk production with an average of
16.49 kg and observed an increase in consumption and feed
efficiency of dry matter.
Antunes et al. (2017) reports that the inclusion of
banana peel in diets in place of sorgum silage did not
influence fat and protein contents, thus maintaining its
quality. Thus, it is evident that the chemical composition
of
banana peel is satisfactory for maintaining milk quality,
since it
has about 8% of ethereal extract, 8% of crude protein, non-
fibrous carbohydrates around 13% that
contribute to the
energy supply to rumen microorganisms
that, together with
dietary protein, can produce adequa- te amount of microbial
protein of high biological value (Monção et al., 2014,
Antunes et al., 2017). Emaga et al., (2011) evaluated the in
vitro digestibility of banana
peel and observed a value of 86%,
thus showing the great
potential of this by-product.
Banana peel is a viable option as an additive for
silage production, when dehydrated it can increase the dry
matter content of grass biomass, improving the fermentation
profile and consequently reducing losses. The main aspects
of a good fermentation pattern can be observed by the pH,
ammonia nitrogen combined with the dry matter content, in
grass silages with banana peel additives. These values are
shown in table 1.
Brant et al. 2017 shows that the inclusion of
dehydrated banana peel in elephant grass silage reduces
losses
from the fermentation process with more consistent
results at
the 25% inclusion level.
Evaluating milk quality, Melo et al., (2018) subs-
titution of up to 60% of sorb silage by banana peel in the
diet of lactating cows may be an alternative for milk
Cad. Ciênc. Ag., v. 12, p. 0108, https://doi.org/10.35699/2447-6218.2020.25450
5
Dependência espacial da fertilidade do solo sob plantio direto e suas relações com a produtividade da soja
Table 1 Fermentative characteristics of banana peel and grass silages with banana peel additives.
Food
Inclusion %
pH
NH
3
DM
Author
fresh banana peel
Banana Peel + inadequate
fruits
Banana peel+brachiaria
grass
Banana peel + elephant
grass
Banana Peel + Alfalfa
-
3.9
-
10.20
Salim et al 2021
-
3.61
-
10.43
Conte 2017
20
4.3
5.8
36.9
Marques 2018
20
4.07
3.76
30.6
Brant et al 2017
20
5.4
50.6%
27.2
Elahi et al 2019
Fermentative losses
thor found values of loss by gases, effluent losses and dry
matter recovery of 8.7, 782 and 676.9g/kg respectively,
which can be considered high values compared to other
silages, which may be due to the low dry matter of the
banana peel in this experimental condition. However, when
evaluating the use of dehydrated banana peel as an additive
in elephant grass silage, Brant et al., (2017), observed that
the inclusion of dehydrated banana peel increased the dry
matter of elephant grass silage, with a decreasing linear
effect on gas and effluent losses and increasing linear effect
for dry matter recovery, with values of 10.02, 0.03 and
97.9% respectively. Marques (2018), evaluating the
inclusion of dehydrated banana peel in Marandu grass silage,
observed an effect similar to that found by Brant et al.,
(2017), with values of 8.9,
1.76 and 91.5% for losses by gases, effluents and dry matter
recovery respectively, at the 40% inclusion level.
During the production of silage, losses occur in the
ensiled material, which can be in the form of effluents or gases
and the values will vary according to the composi-
tion of the
forage (dry matter, soluble carbohydrates, and
buffering
capacity). The losses by effluent correspond to
the loss of
intracellular content, such as nitrogen compou-
nds, organic
acids, minerals, and soluble carbohydrates, thus increasing
the components of the cell wall, which have low nutritional
quality (Faria et al., 2010).
According to Loures et al., (2003), the effluent
exposed to the environment can become a contaminant to
watercourses, since these have a high biochemical demand
for oxygen. For Nússio et al., (2002), the use of
forages with a
higher dry matter content and the mixture
of drier crops with
material with a higher water content helps to reduce losses by
effluents. According to Pereira
and Bernardino (2004), one
way to control effluent losses
is through the wilting of plants
and the use of absorbent additives.
Digestibility of banana peel
Tropical grasses show great variation in their
composition, requiring the evaluation of their composi- tion
and the evaluation of fractions is the main point for
estimating the energy content (Detmann et al., 2004).
Knowledge of the composition of food (energy value and
digestibility) is of paramount importance for the correct
formulation of rations that meet the needs of maintenan-
ce
and production of animals (Muniz et al., 2012), and
knowledge of digestive dynamics has a role important for
efficient feeding programs and the development and
selection of forage plants with higher value (Ladeira et al.,
2001).
According to Brant et al., (2017), the use of
dehydrated banana peel in elephant grass silage can reduce
losses by gases and effluents during the fermen- tation
process due to its capacity to increase the dry
matter content
of the silage, where every 1% of inclusion
of banana peel in
silage there was an increase of 0.4% in dry matter content.
Also, according to the authors, the increase in the levels of
banana peel in the ensiled mass had a decreasing linear effect
on the values of pH and ammoniacal nitrogen. Andrade et
al., (2010) evaluating
losses, fermentative characteristics, and
nutritional value
of elephant grass silage containing
agricultural by-pro-
ducts, found that cassava, cocoa, and
coffee husks in doses
of 14.2; 26.3 and 30%, respectively,
acted efficiently as
moisture-sequestering additives in
elephant grass silage, in addition to improving the
fermentative characteristics
of silages with lower pH and
ammonia nitrogen values.
According to Ítavo et al. (2002), ruminal degra-
dation of cellulose and hemicellulose is the main source
of
energy for maintaining, growing, and producing cattle.
In
tropical conditions, forage grasses have a different
composition from temperate grasses (Van Soest, 1994).
The evaluation of food digestibility can be done by
different methods, however, the estimation of rumen
degradation rates provides a closer estimate of the actual
digestive parameters of food (Muniz et al., 2012). The in-
situ technique or the nylon bag suspended in the ru- men
allows the food to have a simulation of the rumen
Seeking to assess the potential use of banana peel
in
silage, Conte (2017), evaluating the silage of banana peel and
fruits called unsuitable for the industrialization of bananas
(selected by the processing industry), the au-
Cad. Ciênc. Ag., v. 12, p. 0108, https://doi.org/10.35699/2447-6218.2020.25450
6
Londero, R. et al.
environment that is closer to the real one, despite not
predisposing the food to chew rumination and passage
(Carvalho et al., 2006). In situ degradation evaluates food
infractions such as the soluble fraction (a), potentially
degradable fraction (b), the degradation rate of fraction b (c),
potential degradability (DP), and the effective degradability
(DE) of the fractions of matter dry and neutral detergent
fiber (Salman et al., 2010).
between sorghum silage and silage + banana peel with
calcium oxide
Seeking to evaluate the inclusion of banana peel in
Marandu grass silage, Marques (2018), evaluating the
doses of
10, 20, 30 and 40% of inclusion of dehydrated banana peel
in Marandu grass silage, observed greater effective
degradability of the matter. dry at a dose of 40% inclusion,
which demonstrates that the inclusion of banana peel in grass
silage can contribute to increasing
non-structural
carbohydrates in the ensiled mass, impro- ving degradability.
According to Padam et al. (2012) and
Monção et al. (2014),
characterized the banana peel as a good energy source to be
used in animal nutrition.
The estimation of fiber degradation in neutral
detergent (NDF) is expressed in a complementary way by
indigestible NDF, however, the method does not consider
the
physical replenishment to the rumen environment (Muniz et
al., 2012). The NDFi content estimation adop- ted by the
Cornell Net Carbohydrate and Protein System (CNCPS) and
the National Research Council (NRC) has lignin as the main
limitation of the digestion of forage plants (Cassida et al.,
2007). neutral can be increased by using plants with a lower
concentration of lignin or indigestible NDF, in addition to
the cultivation of selec- ted forages, harvesting the material
at the ideal point of maturity, or making use of additives
(Grant et al., 2018).
The use of by-products/waste from banana pro-
duction as raw material, in addition to economic benefits,
would represent a reduction in environmental impacts, as
they are discarded into the environment and promote
additional costs for processing companies (Lousada ju- nior
et al., 2005). Pimentel et al. (2017), when replacing sorghum
silage by up to 60% with sun-dried banana peel, they found
no differences in milk production and
production corrected
for 3.5% fat, which had an average
of 16.49 kg/day.
According to a work carried out by Monção et al.,
(2014), evaluating the inclusion of calcium oxide in the
dehydration of banana peel, they found values of 58.18%
for the in vitro degradability of dry matter when the peel
did not undergo any treatment. In the same sense, work
carried out by Souza et al., (2016), evaluating the inclusion
of banana peel in the diet of cows, with the treatments of
sorghum silage, silage + banana peel, silage + banana peel
with limestone and silage + banana peel with calcium oxide,
observed that the total apparent digestibility of dry matter
was similar
Conclusion
Banana peel is an option for strategic use in grass
silage, its inclusion in the silage can improve the
fermentation pattern and reduce losses, and the use of grass
silage with banana peel can be an alternative to be used in
ruminant feeding due to its nutritional charac- teristics
combined with its low cost in regions of greater availability.
References
Andrade, I.V.O.; Pires, A. J. V.; De Carvalho, G. G. G. P.; Veloso, C. M.;
Bonomo, P. 2010. Perdas, características fermentativas e valor nutritivo
da
silagem de capim-elefante contendo subprodutos agrícolas. Revista
Brasileira de Zootecnia, 39: 2578-2588. Doi: https://doi.org/10.1590/
S1516-
35982010001200004
Bernardes, T. F.; Reis, R. A.; Moreira, A. L. 2005.Fermentative and
microbiological profile of marandu-grass ensiled with citrus pulp pellets.
Scientia Agricola, 62: 214-220. Doi: http://dx.doi.org/10.1590/S0103-
90162005000300003
Bernardino, F.S.; Garcia, R.; Rocha, F. C.; Souza, A. L.; Pereira, O. G.
2005. Produção e características do efluente e composição bromatológica
da
silagem de capim-elefante contendo diferentes níveis de casca de café.
Revista Brasileira de Zootecnia, 34: 2185-2291. Doi: https://doi.
org/10.1590/s1516-35982005000700004
Antunes, C. R., Júnior, V. R. R., Caldeira, L. A., Sousa, C. F., Rigueira,
J. P. S., de Souza, G. R., ... & de Menezes, J. C. 2017. Efeito da casca de
banana na dieta de vacas em lactação sobre as características do
leite e do
queijo Minas frescal. Revista Brasileira de Ciência Veterinária,
24: 189-196.
Borreani, G.; Tabacco, E.; Schmidt, R. J.; Holmes, B. J.; Muck, R. E.
2018. Silage review: Factors affecting dry matter and quality losses in
silages. Journal of Dairy Science, 101: 3952-3979. Doi: https://doi.
org/10.3168/jds.2017-13837
Bergamaschine, A. F.; Passipiéri, M.; Filho, W. V. V.; Isepon, O. J.; Correa,
L. A. 2006. Qualidade e valor nutritivo de silagens de capim-marandu (B.
brizantha cv. Marandu) produzidas com aditivos ou forragem
emurchecida. Revista Brasileira de Zootecnia, 35: 1454-1462. Doi:
http://dx.doi.org/10.1590/S1516-35982006000500027
Brant, L. M. S.; Pimentel, P. R. S.; Rigueira, J. P. S.; Alves, D. D.;
Carvalho, M. A. M.; Alves, W. S. 2017. Fermentative characteristics and
nutritional value of elephant grass silage added with a dehydrated banana
peel. Acta Scientiarum. Animal Sciences, 39: 123-129. Doi:
10.4025/actascianimsci.v39i2.33925
Bernardes, T. F.; Daniel, J. L. P.; Adesogan, A.T.; McAllister T. A.; Drouin,
P.;
Nussio, L.G.; Huhtanen, P.; Tremblay, G. F.; Bélanger, G.; Cai, Y. 2018.
Silage review:Unique challenges of silages made in hot and cold regions.
Journal of Dairy Science, 101: 4001-4019. Doi: https://doi.
org/10.3168/jds.2017-13703
Cad. Ciênc. Ag., v. 12, p. 0108, https://doi.org/10.35699/2447-6218.2020.25450
7
Dependência espacial da fertilidade do solo sob plantio direto e suas relações com a produtividade da soja
Loures, D. R. S.; Garcia, R.; Pereira, O. G.; Cecon, P. R.; De Souza, A. L.
2003. Características do efluente e composição químico-bromatológica
da
silagem de capim-elefante sob diferentes níveis de compactação. Revista
Brasileira de Zootecnia, 32: 1851-1858. Doi: http://dx.doi.
org/10.1590/S1516-35982003000800007
Carvalho, G. G. P.; Pires, A. J. V.; Veloso, C. M.; Da Silva, F. F.; Silva,
R. R.2006.Degradabilidade ruminal do feno de forrageiras tropicais.
Agricultural Science and Technology, 12: 81-85. Doi: https://doi.
org/10.18539/cast.v12i1.4493
Cassida, K. A.; Turner, K. E.; Foster, J. G.; Hesterman, O. B. 2007.
Comparison of detergent fiber analysis methods for forages high in
pectin.
Animal Feed Science and Technology, 135: 283-295. Doi: https://
doi.org/10.1016/j.anifeedsci.2006.07.004
Marques, O. F. C. 2018. Qualidade fermentativa e valor nutricional do
capim marandu com casca de banana desidratada. Janaúba: Universidade
Estadual de Montes Claros, 54f. Dissertação Mestrado. Disponível em:
https://www.posgraduacao.unimontes.br/ppgz/wp-
content/uploads/sites/24/2019/11/Orlando.pdf
Conte, R. A. 2017. Conservação e utilização do subproduto da banana
como
alimento alternativo para vacas leiteiras. Chapecó: Universidade do Estado de
Santa Catarina, 63f. Tese. Disponível em: https://sistemabu.
udesc.br/pergamumweb/vinculos/00002d/00002d62.pdf.
McDonald, P.; Henderson, A. R.; Heron, S. J. E.1991. The biochemistry of
silage. 2.ed. Aberystwyth: Chalcombe Publications, p. 340, 1991.
Corrêa, L. A.; Pott, E. B.; Cordeiro, C. A. 2001. Integração de pastejo e
uso
de silagem de capim na produção de bovinos de corte. In: Embrapa
Pecuária
Sudeste-Artigo em anais de congresso (ALICE). In: Simpósio de Produção
de Gado de Corte, Viçosa, MG. Anais... Vicosa: UFV, 2001.
Melo, M. T. P., Rocha, V. R., Pimentel, P. R. S., Caldeira, L. A., Ruas, J.
R. M., Chamone, J. M. A., ... & Soares, C. 2018. Composição de ácidos
graxos do queijo e leite de vacas alimentadas com casca de banana.
Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 70: 965-974.
Mohapatra, D.; Mishra, S.; Sutar, N. 2010. Banana and its by- product
utilization: an overview. Journal of Scientific & industrial research, 69:
323-329. Disponível em: http://nopr.niscair.res.in/ handle/123456789/8581
Detmann, E.; Zervoudakis, J. T.; Cabral, L. S.; Rocha Júnior, V. R.;
Valadares Filho, S. C.; De Queiroz, A. C.; Ponciano, N. J.; Fernandes,
A. M. 2004. Validação de equações preditivas da fração indigestível da fibra
em detergente neutro em gramíneas tropicais. Revista Brasileira de
Zootecnia, 33: 1866-1875. Doi: https://doi.org/10.1590/S1516-
35982004000700026
Monção, F. P.; Dos Reis, S. T.; Rigueira, J. P. S.; De Sales, E. C. J.;
Geraseev, L. C.; Alves, D. D.; Rocha Júnior, V. R.; De Oliveira, E. R.
2014. Caracterização físico-quimica da casca de banana tratada com
óxido
de cálcio. Agrarian, 7: 339-347. Disponível em: https://ojs.ufgd.
edu.br/index.php/agrarian/article/view/2710/1811
Elahi, M. Y., Yusuf, A. O., Torshabi, A., Fazaeli, H., Dehghani, M. R., &
Salem, A. Z. (2019). Ensiling pretreatment of banana waste by-products:
influences on chemical composition and environmental rumen biogas and
fermentation. Waste and Biomass Valorization, 10: 3363-3371.
Muck, R .E. 2010. Silage microbiology and its control through additives.
Revista Brasileira de Zootecnia, 39: 183-191. Doi: http://dx.doi.
org/10.1590/S1516-35982010001300021
Emaga, T. H.; Bindelle, J.; Agneesens, R.; Buldgen, A.; Wathelet, B.;
Paquot, M. 2011. Ripening influences banana and plantain peel
composition and energy content. Tropical animal health and production,
43:
171-177. Doi: https://doi.org/10.1007/s11250-010-9671-6
Muniz, E. B.; Mizubuti, I. Y.; Pereira, E.S.; Pimentel, P. G.; Ribeiro, E. L. A.;
Pinto, A. P. 2012. Cinética ruminal da fração fibrosa de volumosos
para
ruminantes. Revista Ciência Agronômica, 43: 604-610. Doi: https://
doi.org/10.1590/S1806-66902012000300025
Evangelista, A. R.; Peron, A. J.; Amaral, P. N. C. 2004. Forrageiras não
convencionais para silagem mitos e realidades. In: Simpósio Sobre
Manejo Estratégico da Pastagem. Viçosa, MG. Anais... Viçosa, MG: UFV,
2004. p.463-507.
Negrão, F. D. M.; Zanine, A. M.; Souza, A. L.; Cabral, L. S.; Ferreira,
D. J.; Dantas, C. C. O. 2016. Perdas, perfil fermentativo e composição
química das silagens de capim” Brachiaria decumbenscom inclusão de
farelo de arroz. Revista Brasileira de Saúde e Produção Animal, 17: 13-25.
Doi: http://dx.doi.org/10.1590/S1519-99402016000100002
Faria, D. J. G.; Garcia, R.; Tonucci, R. G.; Tavares, V. B.; Pereira, O. G.;
Da
Fonseca, D. M. 2010. Produção e composição do efluente da silagem de
capim-elefante com casca de café. Revista Brasileira de Zootecnia, 39:
471-478.
Doi: https://doi.org/10.1590/S1516-35982010000300004
Nussio, L.G.; Paziani, S.F.; Nussio, C. M. B. 2002. Ensilagem de capins
tropicais. In: Embrapa Pecuária Sudeste-Artigo em anais de congresso
(ALICE). In: Reunião Anual da Sociedade Brasileira de Zootecnia, 39,
Recife, PE. Anais... Recife: SBZ: Ed. dos Editores, 4f.
Ferraretto, L. F.; Shaver, R. D.; Luck, B. D. 2018. Silage review: Recent
advances and future technologies for whole-plant and fractionated corn
silage harvesting. Journal of Dairy Science, 101: 3937-3951. Doi:
https://doi.org/10.3168/jds.2017-13728
Oliveira, R. L.; Cândido, E. P.; Leão, A.G. 2012. A nutrição de ruminantes
no
Brasil. In: Tópicos especiais em ciência animal I - coletânea da I jornada
científica da pós-graduação em ciências veterinárias da Universidade
Federal do Espírito Santo, p.169.
Grant, R. J.; Adesogan, A. T. 2018. Journal of dairy science silage special
issue: introduction. Journal of Dairy Science, 101: 3965-3936. Doi:
https://doi.org/10.3168/jds.2018-14630
Gusmão, J. O.; Danés, M. A. C.; Casagrande, D. R.; Bernardes, T. F.
2018.
Total mixed ration silage containing elephant grass for small-scale
dairy farms.
Grass and Forage Science, 73: 717-726. Doi: https://doi.
org/10.1111/gfs.12357
Padam B, S; Tin, H. S; Chye, F, Y.; Abdullah, M. I. 2014. Banana by-
products: an under utilized renewable food biomass with great potential.
Journal
Food Science and Technology, v.51, n.12, p.35273545. Doi:
https://doi.org/10.1007/s13197-012-0861-2
Ítavo, L.C.V.; Valadares Filho, S. C.; Da Silva, F. F.; Valadares, R. F. D.;
Cecon, P. R.; Ítavo, C. C. B. F.; De Moraes, E. H. B. K.; Paulino, P. V. R.
2002. Consumo, degradabilidade ruminal e digestibilidade aparente de fenos
de graneas do nero Cynodon e rações concentradas utilizando indicadores
internos. Revista Brasileira de Zootecnia, Viçosa, 31: 1024-
1032. Doi:
https://doi.org/10.1590/S1516-35982002000400027
Pereira, O. G.; Bernardino, F. S. Controle de efluentes na produção de
silagem. Simpósio sobre manejo estratégico da pastagem, v. 2, p. 509-545,
2004.
Pimentel, P. R. S.; Rocha Júnior, V. R.; De Melo, M. T. P.; Ramos,
J. C. P.; Cardoso, L. G.; Silva, J. J. P. 2016. Feeding behavior of F1
Holstein x Zebu lactating cows fed increasing levels of banana peel. Acta
Scientiarum. Animal Sciences, 38: 431-437. Doi: https://doi.
org/10.4025/actascianimsci.v38i4.32266
Ladeira, M. M.; Rodriguez, N. M.; Borges, I.; Benedetti, E.; Brito, S. C.; Sá,
L. A. P. 2001. Cinética ruminal do feno de Stylosanthesguianensis. Arquivo
Brasileiro de Medicina Veterinária e Zootecnia, 53: 1-8. Doi:
https://doi.org/10.1590/S0102-09352001000200017
Cad. Ciênc. Ag., v. 12, p. 0108, https://doi.org/10.35699/2447-6218.2020.25450
8
Londero, R. et al.
Pires, A. J. V.; Reis, R. A.; Carvalho, G. G. P.; Siqueira, G. R.; Bernardes,
T. F.; Ruggieri, A. C.; Roth, M. T. P. 2010. Degradabilidade ruminal da
matéria seca, da proteína bruta e da fração fibrosa de silagens de milho,
de
sorgo e de Brachiaria brizantha. Arquivo Brasileiro de Medicina
Veterinária e Zootecina, 62: 391-400. Doi: https://doi.org/10.1590/ S0102-
09352010000200020
Souza, C. F., Rocha, V. R., Reis, S. T. D., Antunes, C. R., Rigueira, J.
P. S., Sales, E. C. J. D., ... & Souza, G. R. 2016. Casca de banana em
dietas para vacas mestiças em lactação. Revista Brasileira de Saúde e
Produção Animal, 17, 86-100. Doi: https://doi.org/10.1590/S1519-
99402016000100009
Valença, R. L.; Ferreira, A. C. D.; Dos Santos, A. C. P.; Da Silva, B. C. D.;
Oliveira, V. da S.; Neto, J. A. S.; Lima, J. U. do N.; Oliveira, E. S. 2016.
Silagem de bagaço de laranja pré-seco e a sua utilização na alimentação
de
ruminantes Revisão. Revista de Ciências Agroveterinárias, 15: 68- 73. Doi:
https://doi.org/10.5965/223811711512016068
Randa, S.Y.; Lekito, M. N.; Iyai, D.; Pattiselanno, F. 2017. Nutritive Value
and the Quality of Ensiled Napier Grass (Pennisetum Purpureum Schum.)
and Banana (Musa acuminata) Peelings. Animal Production, 19: 101-110.
Doi: http://dx.doi.org/10.20884/1.jap.2017.19.2.594
Salim, A., Chacko, B., Senthil Murugan, S., Bunglavan, S. J., & Ranjith,
D. 2021. Raw Banana Peel SilageAn Alternative Livestock Feed. Ind.
J. Pure App. Biosci, 9(2), 84-88.
Van Soest, P. J. 1994. Nutritional ecology of the ruminant. Ithaca:
Cornell University. 2. Ed. 476p.
Wilkinson, J. M. 1983.Silages are made from tropical and temperate crops.
2. Techniques for improving the nutritive value of silage. World Animal
Review.
SEBRAE, Serviço Brasileiro de Apoio às Micro e Pequenas Empresas.
2008. Banana: Relatório Completo. Brasília. 2008.
Senger, C. C. D.; Mühlbach, P. R. F.; Sánchez, L. M. B.; Netto, D. P.;
Lima, L. D. de. 2005. Composição química e digestibilidade ‘in vitro’ de
silagens de milho com distintos teores de umidade e níveis de
compactação.
Ciência rural. Santa Maria, 35: 1393-1399. Doi: https://
doi.org/10.1590/S0103-84782005000600026
Cad. Ciênc. Ag., v. 12, p. 0108, https://doi.org/10.35699/2447-6218.2020.25450