MODELS OF EQUATIONS

$$
\begin{align*}
\text { RQME } & =\frac{100}{\overline{\mathrm{H}}} \sqrt{\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{H}_{\mathrm{i}}-\widehat{\mathrm{H}}_{\mathrm{i}}\right)^{2}}{\mathrm{n}}} \tag{Eq.1}\\
\mathrm{r}_{\mathrm{H} \hat{\mathrm{H}}} & =\frac{\operatorname{cov}(\mathrm{H}, \widehat{\mathrm{H}})}{\sqrt{\mathrm{s}^{2}(\mathrm{H}) \mathrm{s}^{2}(\widehat{\mathrm{H}})}} \tag{Eq.2}\\
\mathrm{S}_{\mathrm{yx}} & =\sqrt{\frac{\sum_{\mathrm{i}}^{\mathrm{n}}(\mathrm{Hi}-\widehat{\mathrm{Hi}})^{2}}{\mathrm{n}-\mathrm{p}}} \tag{Eq.3}\\
\mathrm{CV} & =\frac{\mathrm{s}}{\overline{\mathrm{H}}} * 100 \tag{Eq.4}\\
\mathrm{bk} & =\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\widehat{\mathrm{H}}_{\mathrm{i}}-\mathrm{H}_{\mathrm{i}}\right)}{\mathrm{n}} \tag{Eq.5}\\
\mathrm{Fcal} & =\frac{\mathrm{Qm} \text { regressão }}{\mathrm{Qm} \text { resíduo }} \tag{Eq.6}\\
\mathrm{R}^{2} \mathrm{aj} & =1-\left(1-\mathrm{R}^{2}\right) \mathrm{x} \frac{\mathrm{n}-1}{\mathrm{n}-\mathrm{p}} \tag{Eq.7}
\end{align*}
$$

In which: = sum; $\mathrm{Hi}=$ observed height; = predicted height; $\mathrm{n}=$ number of samples; = average heights; cov = covariance; $\mathrm{s}^{2}=$ variance; $\mathrm{s}=$ standard deviation; Qm $=$ medium square; $\mathrm{R}^{2}=$ coefficient of determination; $\mathrm{p}=$ number of coefficients in the model. $\Sigma_{\mathrm{i}=1}^{\mathrm{n}} \widehat{\mathrm{H}}_{\mathrm{i}} \overline{\mathrm{H}}$

