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Abstract. Geographic Information System (GIS) in general, and Web mapping systems in particular, have become
part of our set of digital tools for regular usage similarly to a search engine, an online social network, or a messaging
system. However, the literature still lacks works that investigate and model how users interact with these systems. The
well-known Web user models are too general, and are unable to accurately represent some specific common actions, such
as pan or zoom in a Web mapping system. In this article, we describe how a user interacts with a Web mapping system
and present a methodology that we have designed to retrieve this information from a traditional system, the Google
Maps. We also develop a synthetic descriptive model of the user’s behavior and we employ this model to create a proof-
of-concept workload generator. Finally, we make a performance evaluation with another real-world GIS, called goGeo,
to compare our workload generator with a conventional benchmark application. This shows how adding user features
can significantly change the effective workload imposed on a GIS, and how this implies that performance evaluations of
these systems in the past have often been based on imprecise assumptions.

Categories and Subject Descriptors: H.3.4 [Information Storage and Retrieval]: Systems and Software—Perfor-
mance evaluation (efficiency and effectiveness); H.4.0 [Information Systems Applications]: General

Keywords: GIS, Performance Evaluation, User Behavior, Web Map Tile Services, Workload Modeling

1. INTRODUCTION

Web mapping systems, such as Google Maps and Bing Maps, are examples of GIS that have become
very popular tools. These systems are used in an independent, to carry out tasks such as finding
a place or tracing a route, but they are also widely integrated into other applications. In this last
approach, Web mapping systems may be used to give information about traffic conditions, weather
forecast, location services, points of interest, and a wide range of other uses that can have financial,
as well as social benefits. Moreover, there are several other applications that use Location Intelligence
and Location Based Services in logistics, Business Intelligence, and CRM systems.

Two critical issues in the development of GIS applications are performance and scalability. In
general, these issues arise from the large number of users, and the huge amount of data. Some GIS
face additional challenges while employing large distributed systems to serve the users. The main
factors that affect the performance of a system are design, implementation, and the workload imposed
on the system [Feitelson 2015]. While the first two factors are usually taken into account by the GIS
application developers, the last one tends to be neglected to some extent. Stress benchmarks are a
very common approach for performance evaluation in GIS, but they usually fail to address the unique
patterns of this kind of system [Guan et al. 2014]. This approach is useful for detecting bottlenecks and
comparing systems; however it is not suitable, for example, for deployment planning, identification of
the most demanded components in the system, or carrying out an effective evaluation of the user’s
Quality of Experience [Fiedler et al. 2010]. A properly designed workload generator can fill this gap.
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The design of a workload generator for an in-production system is theoretically simple, since the
users are already present. However, in practice there are some difficulties with regard to data collection,
data analysis, development of the model, implementation, and validation. Our experience showed
that the main issue concerning GIS is data collection. We could not find public databases with
the necessary information and the instrumentation of the client application imposed some serious
constraints. Despite of the difficulties, it is still noticeable the lack of works in the literature devoted
to this subject, given the fact that Web mapping systems have been widely adopted. There are works
that try to simulate a real GIS workload and evaluate its effects on geographical databases [Ray
et al. 2011; Simion et al. 2012]. Other works employ the usage history to improve the server cache
strategies [García et al. 2012; Quinn and Gahegan 2010]. Romoser et al. [2012] have adopted an
methodological approach similar to ours, however to a very different GIS application called USGS
EROS, a system for navigation on and downloading of images of the Earth.

Recently, Guan et al. [2014] carried out an investigation with a similar objective: to model the
behavior of the users of Web mapping systems for a performance evaluation. Their work provides
some valuable theoretical insights about some user characteristics, based on previous works in the
literature about general Web workloads and an empirical knowledge of the use of Web mapping
systems. However, our work is based on data collected from real users of the Google Maps, and we
provide an in-depth analysis of mapping systems operations, such as zoom and pan.

In this article, we present the results of our investigation about the users’ behavior when employing
Web mapping systems, with an emphasis on Google Maps. We describe how a user interacts with
a Web mapping system and the methodology that we have employed to collect and extract this
information from the Web browser. Based on the collected data, we have developed a synthetic
descriptive model of the user behavior. This model served as the basis for a proof-of-concept workload
generator. Finally, we employed this workload generator to carry out a performance evaluation and
make a comparison with a conventional benchmark application.

This work is structured as follows. In Section 2, there is a brief description of Web mapping systems
in general and some relevant related works are examined. In Section 3, we describe our data collection
and analysis. Section 4 describes our descriptive model that is the basis for our workload generator.
In Section 5, we present a case study, comparing our workload generator with a traditional benchmark
application in the context of a real-world Web tile server. Finally, we provide some final remarks and
recommend some future work directions in Section 6.

2. BACKGROUND AND RELATED WORK

Web mapping systems render a map as a set of fixed scales (or zoom levels), dividing the map up
into images of the same size, which are called tiles. Applications bind a specific resolution to their
tiles, e.g., Google Maps employs tiles of 256x256 pixels. The number of tiles grows exponentially as
the zoom level increases, following the 4zoom rule, i.e., 1 tile at zoom level 0, 4 tiles at zoom level
1, 16 tiles at zoom level 2, and so on, as is illustrated in Figure 1. The highest zoom level provided
by Google Maps is 21, which means that the highest map resolution is 256x256×421 pixels. The tile
model that is based on the zoom level has become a standard for Web map systems [Masó et al. 2010].
Among other advantages, this model allows the users to narrow down their requests to the images in
the part of the map they are interested in looking at. Naturally, it is important for any research or
development that involves Web mapping systems to take account of the tile model. In our work, the
tile model is a basic building block for the workload characterizing, modeling, and generating.

Despite the wide adoption of Web mapping systems, there has been a very limited the amount of
research on understanding and modeling the real-world users of these systems. In the following, there
is a brief description of the key works related to this topic. Romoser et al. [2012] analyzed the logs of
the USGS EROS, a system for browsing and downloading Earth images, i.e., an application that is
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Fig. 1. Illustration of the tile model with three levels.

very different from Google Maps from the perspective of the user behavior. The authors investigated
the workload imposed on this system, and described the access behavior according to users, images,
and requests. They observed that most of the requests came from a small set of users, and these
requests were made to a small set of popular sites, i.e., specific places of the planet. Romoser et al.
[2012] found out an access pattern to the images related to large natural disasters, such as earthquakes
and tsunamis. These patterns were used to improve caching and prefetching techniques, and thus to
improve the system performance.

Kang et al. [2001] proposed an algorithm to perform prefetching of the tiles that are most likely to
be requested, based on information from the updated global access pattern. The authors also proposed
an algorithm to replace the tiles in the cache based on the same probabilities. However, Kang et al.
[2001] did not carry out an investigation about the real data access to the Web mapping systems as
a means of assessing the effectiveness of their algorithms. Similarly, other authors have implemented
prefetching strategies based on the history of previous accesses, with a view to identifying the most
accessed areas, and storing them in a cache [Kefaloukos et al. 2012; García et al. 2012].

Ray et al. [2011] introduced the Jackpine, a tool for benchmarking spatial databases. The authors
built models of several common scenarios of access to the spatial databases so that they could mimic
real workload. Although they undertook several spatial database operations, the workload generator
was developed without taking into account some key factors of GIS access, such as the think time.
In Web mapping systems, the think time is the time a user takes to analyze the map and perform
the next action. In a later work, Simion et al. [2012] employed Jackpine as a concurrent workload
generator, to assist in the classification of different microbenchmarks based on CPU and disk usage.
However, the workloads were defined without conducting a statistical analysis of the real data, since
the authors preferred to set up Jackpine on the basis of their industrial experience and a sort of
“common sense”. As we will show in Section 5, without an accurate statistical analysis of the real-
world demand, workloads can lead to serious mistakes in the performance evaluation of the Web
mapping systems.

Zhang et al. [2007] analyzed traces of heterogeneous applications to characterize the workload
imposed on the servers. However, the authors only focused on modeling the CPU usage and devising
strategies for anomaly detection, and capacity planning. Cibulka [2013] investigated the influence of
the latitude, longitude, and scale on the response time of tile-based Web mapping systems. As it
could be expected, the results showed that the response time is actually dominated by the density of
objects, although the author did not discuss the cache effects. The work also fails to explore other
aspects of the user behavior that are needed for a more comprehensive workload model.
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Guan et al. [2014] carried out a work that is parallel to ours, and with similar motivating factors. The
authors created a theoretical workload based on the behavior of the Web mapping users, called HELP.
The information about the users’ behavior was estimated from previous findings in the literature about
general Web workloads, and the authors supplemented the modeling with their empirical knowledge of
the use of Web mapping systems. They proposed statistical distributions for session length, user think
time, probability of zoom in/out and pan operations per zoom level. They also set out a technique to
find hotspots on the map to decide on the starting point of the navigation. In our work, we employed
data collected from users of the Google Maps, and conducted an in-depth deeper analysis of pan
and zoom operations. This included a description of the use of the zoom levels and a comparison of
the frequency of the most widely used operations. In addition, our work shows the distribution of
the pan sizes in pixels and their relation with the zoom level and screen resolution. We also present
the relationship between the screen resolution and the number of tiles requested by zoom and pan
operations, together with probability distributions of the user think time and the session duration.

3. CONCEPTS AND METHODOLOGY

Geographic Information Systems offer access to information that is associated with a specific position
on a map. Both the information and position can be provided to a GIS to help guide the user search.
In general, a GIS offers the overlay of different georeferenced data layers, which can be useful for
different kinds of analysis and investigation. A very common use of this technology is in the creation
of Web mapping systems. These systems have become very popular, since they offer a simple user
interface to explore the GIS resources without having to learn the concepts behind them.

Google Maps is one of the most popular Web mapping systems in the world and it shares the use
of some traditional operations with other applications in this category, such as zoom and pan. Thus,
from the standpoint of a performance evaluation, it is important to know how the users perform these
operations, i.e., it is worth characterizing and modeling these operations. This sort of model can be
used as the basis for the development of workload generators that can be employed in the evaluation
of different Web mapping systems. Since February 2014, Google Maps have provided data in its URLs
that make it possible to retrieve information about some operations, including zoom and pan, but also
search and routes. This context motivated us to choose Google Maps to perform our data collection
and investigation.

In the following subsections, we present some additional details about Google Maps and the infor-
mation provided by the URLs. We also describe our data collection campaign and our methodology
to obtain and analyze the information of interest.

3.1 Data Collection

The Google Maps system provides a Web and a mobile version, but in this investigation our focus is
on the Web version. This version updates the URLs as a result of user actions, which means the URLs
have a lot of useful information about what the user did and in what sequence the actions occurred.
This allows the user actions to be tracked from the set of URLs of a map navigation session. The two
most basic pieces of information in the URLs are the geographic coordinate and the zoom level. In the
following, the URL structure is described and an example of a URL with both types of information
highlighted in bold. The first two numbers represent the latitude and longitude, while and the latter,
followed by the letter z, is the zoom level. In Google Maps, the zoom may vary from 0 to 21 on the
road map.

WEBSITE/maps/@LAT,LONG,ZOOM

https://www.google.com/maps/@37.3075744,-95.4133961,4z
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Fig. 2. Procedures of extraction of timestamps and computation of intervals between actions.

In addition to the information about the coordinate and zoom level, it is possible to retrieve infor-
mation about searches, routes, StreetView visualization, and so on. This information can be easily
obtained by employing properly crafted regular expressions. Thus, we have developed a Google
Chrome extension to anonymously collect the Google Maps URLs and some mouse movements inside
the page, while also recording the respective timestamps. Additionally, the extension collects the page
resolution in pixels, which are equivalent to the width and height of the part of the map that appears
on the screen. The page resolution is collected for every user action, because the page can be resized
during the session. We published the extension in the Chrome Web Store. Nearly 120 users installed
the extension, which provided us with more than 60,000 URLs for a period of 5 months.

We defined a user navigation session as the time the user spends on Google Maps, which is measured
as follows. The time starts when the user accesses the Google Maps page and ends when he/she finishes
the task, either by closing the tab/window or accessing another address in the same tab. During a
navigation session in Google Maps, the extension collects anonymous data on user actions. As soon
as the user has completed the navigation session, the information is gathered and sent to our server.

3.2 Data Analysis

Initially, we employed the timestamps of the user actions to identify the intervals between consecutive
actions. A timestamp indicates when the action has ended, but does not give information about
when the action started. We assumed that most of the actions do not diverge significantly from the
average and this average tends to be small in comparison with the interval between the actions. In
view of this, we created a software tool that iterates through a set of URLs from a user session and
computes the difference interval Ti+1 − Ti, where Ti+1 and Ti are the timestamps of the URLi+1 and
URLi, respectively. This interval represents the user think time, i.e., the time the user takes, after
completing an action, to analyze the map and then perform the next action. Figure 2 illustrates the
extraction procedure for timestamp and the computation of intervals, which are applied to the whole
session of every user.

After extracting the timestamps and computing the intervals between the actions, we needed to
know what actions were performed during a session and at what zoom level each action was performed.
First, the zoom level of each user access on the road map, which is the default map, was extracted and
used to estimate the proportion of a session that the user stays in each zoom level. As we will describe
in Section 4, this proportion is an important part of the behavior we are investigating. On the hybrid
map, i.e., on the map overlaid by satellite images, the zoom level is replaced by information about
distance, which was not suitable for the zoom level analysis.

A single URL does not provide enough information to identify the operation performed by the
user. Thus, we developed the Algorithm 1 to process every pair of URLs and identify the performed
operation. Algorithm 1 receives a pair of consecutive URLs as input and then compares the differences
between the URLi and the URLi+1. On the basis of these differences the algorithm can correctly
infer the performed operation. The first URL of a navigation session is a special case, since this URL
has no predecessor and so the URLi parameter is provided with a NULL value. We have designated
this initial operation as BEGIN . Every conditional statement (lines 4, 6, 8, and 10) checks if the
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Algorithm 1 Evaluate the difference between URLi and URLi+1 and identifies the operation.
Input: URLi and URLi+1

Output: The operation performed by the user.
1: if URLi = NULL then
2: operation← BEGIN ;
3: else if searchChanged(URLi, URLi+1) then
4: operation← SEARCH;
5: else if routeChanged(URLi, URLi+1) then
6: operation← ROUTE;
7: else if zoomChanged(URLi, URLi+1) then
8: operation← ZOOM ;
9: else if coordinateChanged(URLi, URLi+1) then

10: operation← PAN ;
11: else
12: operation← ANOTHER;
13: end if
14: return operation;

consecutive URLs differs in a specific part of the string. For example, if the search information differed
from that of the URLs then a SEARCH operation was performed.

As a first example, we will evaluate the consecutive URLs 1 and 2 that follow. In this pair of URLs
there was a change in the zoom level, from 4z to 5z. Thus, the difference between the consecutive
URLs is defined as a ZOOM operation.

(1) www.google.com/maps/@37.0625,-95.677068,4z
(2) www.google.com/maps/@37.0625,-95.677068,5z

In fact, it is common for consecutive URLs to have multiple differences from each other. This
does not mean the user has performed multiple actions, but that one action has generated multiple
differences. We observed that the correct action could be identified if the difference between the two
consecutive URLs was evaluated in a specific order. This order is the one employed for the conditional
statements in Algorithm 1. For example, in the following two consecutive URLs 3 and 4, there are
differences in the zoom level and in the central coordinate. Despite this, the operation is identified
as a ZOOM , since the difference in the central coordinate is caused by the ZOOM operation. The
central coordinate is updated after a zoom, depending on the mouse/pointer position, which does not
mean that a pan has been performed.

(3) www.google.com/maps/@37.0625,-95.677068,4z
(4) www.google.com/maps/@38.2971386,-65.7063659,5z

During the search and route operations, the central coordinate and the zoom level can also be
changed. Thus, Algorithm 1 initially checks differences in the parts of the URLs related to the actions
of route and search. We provide a final example employing the following three consecutive URLs
(5, 6, and 7). When the user searches for a drugstore, the URL 5 changes to include the search
information, as shown in bold in URL 6. Naturally, the difference between these two URLs is correctly
identified as a result of a SEARCH operation. In the sequence, the user performs a pan, and the
URL 7 keeps the search information, i.e., there is no difference in this part of the URL. Since the only
difference between URL 6 and URL 7 is the central coordinate, Algorithm 1 can properly identify the
PAN operation.

(5) .../maps/@37.0625,-95.677068,4z
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(6) .../maps/search/drugstore/@37.0625,-95.677068,4z
(7) .../maps/search/drugstore/@40.2194479,-80.7356618,4z

With the information about the central coordinate and zoom level, it is possible to compute the
equivalent pixel position and the tile position on the map. This is illustrated in an example of the
use of the API Google Maps1. On the basis of the algorithm introduced in this example, we were
able to identify the tiles pattern accessed by a user. By noting the central pixel position and the
page resolution, we could also calculate the bounding box of the user screen and the amount of tiles
requested in each operation.

We also collected the mouse positions during the drag movements so as to be able to compute the
sizes of the pans. However, due to inertia effect on the map, this information cannot be used with
accuracy. As an alternative solution, we relied on the central geographic coordinate and information
about the zoom level of the URLs for the road map to compute the sizes of the pans. In a pan
operation, the central geographic coordinate and the zoom level of each URL are used to extract the
central pixel positions. Moreover, the difference between these central pixel coordinates of the two
consecutive URLs is the pan size.

4. MODELING THE BEHAVIOR OF THE USERS

In this section, we present the main results observed during the data analysis. These results reveal
some important aspects of user behavior, which can be used to create user models and synthetic
workload generators that properly resemble real-world conditions. As described in [Feitelson 2015],
well-designed workload generators are very important tools for the performance evaluation of systems
and can also provide valuable inputs for the systems development.

At first, we investigated the user preference concerning the zoom level. Figure 3 shows the histogram
of the choice of zoom level during the users sessions, i.e., the zoom level selected by the user while
performing every operation. As was expected, the features of human biology mean that some zoom
levels are more comfortable for most of the operations performed by most of the users. Close to 50%
of all operations are performed in only three zoom levels: 15, 16, and 17. Zoom level 17 has an
additional influence; it is the default choice from Google Maps for a search operation if the returned
results can be displayed in this zoom level. Additionally, zoom level 17 allows a comfortable navigation
with a high Level of Details (LoD). Zoom levels 15 and 16 also have high LoD and allow comfortable
navigation. Zoom levels higher than 17 take the user to a very close visualization of the Earth, which

1Google Maps API: https://developers.google.com/maps/documentation/javascript/examples/map-coordinates
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Fig. 6. Average pan size as a function of the zoom level.

makes the navigation generally uncomfortable for human beings. Zoom levels from 14 and below have
a low LoD and do not bring any benefits to most of the searches. A similar behavior was found by
García et al. [2012] when they analyzed traces of Web map servers.

To understand the Web map user behavior, it is important to know how often this user performs
each operation. Thus, we computed the frequencies of use of the four most common operations: pan,
zoom, search, and route. A route operation is composed of two or more steps: a starting point, an end
point, and any number of intermediate steps. Since each step consumes resources in a Web map server,
it was regarded as a route operation. Figure 4 shows the frequency or percentage of these operations
in all the evaluated sessions. The operations of pan and zoom are the most frequent, together they
correspond to nearly 90% of the users’s actions.

The prevalence of pans and zooms in the user behavior led to a deeper investigation of these
operations. Starting from the pan operation, Figure 5 shows the distribution of the sizes of the pans
in pixels. Movements to the left and to the top of the screen are represented at the left side of the
0 value and movements to the right and to the bottom are represented at the right side. Most of
the pans are small, and the percentage of the sizes that are higher than 1,000 pixels is close to zero.
Moreover, the users tend to make larger movements on the Y-axis, which seems to be related to the
widescreen format. This screen format provides less information on the Y-axis, and so there is a need
for larger movements in this direction. The widescreen format is currently the most adopted, as can
be seen in the StatCounter Web page2. It may not be clear in the figure, but the total number of
pans is the same in both axes. The reason for this is that every pan operation is included in both
axes even in movements that are only horizontal or only vertical.

Figure 6 shows the average size of the pan for both axes as a function of the zoom level. The
movements in the Y-axis have larger average than movements on the X-axis and the size of the pan
operations tends to increase as the zoom level grows. In fact, the higher the zoom level, the smaller the
relative movement over the Earth that is generated by identical pan operations. In other words, the
size of the pan must follow the zoom level so that it can carry out relevant movements. In the period
that we collected the data, the default zoom level of Google Maps was 4, which motivates the users
to explore this scale and explains the increased average in this level. The zoom levels smaller than
4 were not included in Figure 6 because the data collected does not have representative information
about pan operations in these zoom levels. The sum of all the pan operations below the zoom level 4
is only 0.5% of the total.

2Top 10 Desktop Screen Resolutions on Feb 2015 | StatCounter Global Stats: http://gs.statcounter.com/#desktop-
resolution-ww-monthly-201501-201502-bar
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We also analyzed the impact of the pan and zoom operations on the number of tiles requested.
Figure 7 shows the histogram of the number of tiles requested per pan operation. In most cases, the
number of tiles is zero because a large number of small pans only affect parts of the tiles. Since these
tiles have already been loaded, even when they do not appear on the screen, there is no new tile
transfer. As the screen resolutions support at least three tiles on each axis, no pan generates a request
of just 1 or 2 tiles. Currently, the most widely used screen resolution is 1366x768, as can be seen in
the StatCounter Web page, which allows a visualization of 6 or 7 tiles on the X-axis and 3 or 4 tiles
on the Y-axis. These are among the most common number of requested tiles per pan operation. The
other values follow the same reasoning, i.e., the screen resolution influences the distribution of tiles
requested per pan operation. As expected, large pans have a low frequency, e.g., pan operations that
request more than 16 tiles are rare.

Figure 8 shows the histogram of the tiles requested per zoom operation. Again, the number of tiles
is directly proportional to the screen resolution. As can be seen, the most requested numbers of tiles
are 18, 24, and 28 and the reason for this is that they are related to the most commonly used screen
resolution, 1366x768 px. Depending on how the tiles are arranged, this resolution can fit 6 or 7 tiles
on the X-axis and 3 or 4 tiles on the Y-axis, which means the product of each pair corresponds to 18,
21, 24, and 28. 40 and 45; they also have high frequencies for the same reason and correspond to the
number of requested tiles for the second most commonly used resolution, which is 1920x1080 px.

In addition to identify the operations, the characterization of the user behavior also involves time
issues. Figure 9 shows the PDF of the intervals between the user actions, while Table I shows the
average, and some important percentiles of these intervals. Although there are long intervals, some
higher than 1 minute, they are not representative. More than 95% of the intervals are shorter than 15
seconds, which is significant information about the think time of the users. Figure 10 shows the CDF
of the durations of the user sessions. There are two distributions represented in the figure: one with all
the sessions (All Sessions), and another in which the sessions only have intervals between consecutive
actions smaller than 1 minute (Engaged Users). This latter distribution removes the sessions in
which the user leaves the Google Maps application open, but embarks on another task. Although
this kind of session has a long duration, it does not really have an engaged user. For example, in our
collected data, there are some rare samples (< 0.01%) of users that leave the Google Maps open for
days. From the perspective of workload generation, this type of session has little interest, since the
tile requests become very rare. Operationally, very long sessions can be broken up into smaller ones.

All the operations described in this section are commonly found in any Web mapping system.
Although the distributions might be different in other systems, the characteristics remain and the

Table I. Mean and percentiles of the intervals between user actions.
Mean 25th Percentil 50th Percentil (Median) 75th Percentil 95th Percentil
4297 ms 1302 ms 2320 ms 4608 ms 14347.1 ms
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model can be applied to them. Thus, our model can be used as a starting point to create a workload
generator and emulate real user features, such as the pan and zoom operations, and think time.

5. CASE STUDY: GOGEO

Stress benchmarks are suitable for comparing the performance between systems and understanding
their behavior under saturation. However, they do not give a clear idea of how real users will interact
with the system. For example, without a proper workload, developers are unable to determine the
number of real users the system can support. Since the real workload is unknown until the system
goes into production, a satisfactory strategy is to employ a synthetic workload that is as close as
possible to the real one. In Section 4, we described some characteristics of the behavior of Web map
users and discussed the importance of these characteristics on the design of the workload generators.
In this section, we take one of the investigated characteristics – the intervals between actions or think
time – to develop a proof-of-concept workload generator. By taking into account the think time, our
workload better represents the frequency or the rate at which the users send requests to the server.

We employed the goGeo3 infrastructure, including its Web tile server, to execute the tests. This
illustrates how the data from a production system (Google Maps) can be used to evaluate a system
that is still under development (goGeo). All the tests involved the same set of computers and a
151.3 MB database with more than 500,000 companies in Brazil. The set of requested tiles covers the
entire territory of Brazil. The caching functionality was disabled in the server, which meant that all
the requests required a new tile rendering. Each test ran for 10 minutes and the response time of each
request was measured.

Initially, we executed a stress workload based on the MapLarge performance tests4. We generated 25
synthetic Web map clients to send requests for random tiles. The stress workload sends these requests
as quickly as possible. The average response time of this workload was 105 ms. Following this, we
created multiple workloads with the users’ think time, starting with 25 clients and increasing this
number until it reached a similar average response time as the stress workload. We used an empirical
distribution, based on the distribution shown in Figure 9, to simulate the users’ think time. With 800
clients the average response time was even smaller (71 ms), but with 1,000 clients it was larger (158
ms). This means that with a similar average response time, the system can support between 800 and
1,000 clients when the intervals between the requests are taken into account.

3goGeo – High Performance Maps Platform: http://www.gogeo.io
4MapLarge – Map Server Performance: http://maplarge.com/mapserverperformance
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As it would be expected, the two workloads present other differences in their statistical properties.
For example, our workload has a higher autocorrelation in the response time function, as illustrated
in Figure 11. The straight line parallel to the X-axis is the confidence bound at a significance level
of 0.05. While the stress workload shows autocorrelation until a time lag of 6 × 101, the user-based
workload reaches a lag of 2.5× 102 and 1.8× 103 for 800 and 1,000 clients, respectively. This means
that, for a similar average response time, the time lag of the user-based workload is about one order of
magnitude greater than the lag of the stress workload. Naturally, this difference was created only by
the introduction of the think time, which suggests that other user characteristics could have a similar
effect on the statistical properties of the workload.

In summary, although our proof-of-concept user-based workload generator does not represent many
of the characteristics of real users, it was able to corroborate our initial hypothesis about the impor-
tance of adding real-user features. We confirmed this through the significant impact on the perfor-
mance evaluation of a real-world GIS system.

6. CONCLUSION AND FUTURE WORK

The use of geographic information systems has increased in recent years, but there is still a lack
of models for describing user behavior in this kind of application. This deficiency constrains the
performance evaluation and capacity estimation of the geographic information systems. Without a
suitable workload, developers may devote too much time to features of the system that are rarely
used, while critical components are overlooked. In this article, we presented a descriptive model
of the behavior of Web map users, which was developed on the basis of real-world data. We also
implemented a workload generator based on the think time of the users and compared this with a
stress benchmark. The results showed that adding user characteristics can significantly change the
effective workload imposed on the server, and for example, lead to a different conclusion about the
saturation of the system.

In future work, we intend to create a generative model that is able to comprehensively represent
the behavior of the Web map user during a navigation session, including the relationships between
the actions at each zoom level. This improved model will allow a more accurate workload generator
to be developed. The investigation of the behavior of GIS users employing mobile devices is another
key subject of research. There are important challenges related to the data collection in this context,
such as capturing the user actions, saving the data locally and recovering the data without disturbing
the user. In addition, the modeling may require the investigation of other factors about the user.
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