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Abstract. Our group has been working with different aspects of distributed and parallel processing of databases in
the relational, object-oriented, and XML data models. Classic techniques for distributed design and query processing in
relational database systems have been revisited to address dynamic issues in high performance computing and flexibility
challenges of XML documents. More recently, large-scale scientific data combined with process activities management
have introduced challenges to the database and software engineering communities, among several other computer science
research areas. Regarding scientific data, challenges are the heterogeneous data formats that encompass relational, XML,
binary, and flat files. Our group has been addressing these challenges by capitalizing on our extensive experience in
distributed data management. Since each scientific experiment tends to produce and manage its own data, in specific
formats, with its own activities (and programs), managing large scale distributed data and activities gets difficult as
the amount of heterogeneous data grows.

Categories and Subject Descriptors: H. Information Systems [H.2 Database Management]: Systems—Distributed

databases
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1. INTRODUCTION

Nowadays, parallel processing is no longer a niche of specific applications in scientific and financial
domains. Almost all computing devices, including cell phones, are multi-core. However, new software
is required in order to efficiently use such a massive number of processing elements available in current
multi-core devices and future exascale computers [Raicu et al. 2008]. One of the ways data intensive
applications can take advantage of these massive processing elements is via parallel processing through
data distribution. Data distribution has been the focus of several works in literature [Özsu and
Valduriez 2011], and some of these works focus on processing queries in parallel, aiming at improving
query performance through distribution.

However, data distribution needs a partitioning model (e.g., horizontal and vertical fragmentation)
and careful planning to design data partitions. Managing data distribution involves designing physical
partition size, logical partitioning, scheduling, and load balancing. For instance, Ailamaki mentioned
in her opening keynote at ICDE 2011 the challenges of new memory hierarchy and stated that data
partitioning is a way to eliminate contention. In fact, data partitioning is also a key concept behind
the successful map/reduce processing model [Dean and Ghemawat 2008]. Data partitioning has been
studied in the database community for many years, but these studies have mainly considered processing
elements at the scale of hundreds of units of single core processors.

Moreover, it is no news that database researchers are involved in scientific data management. For
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instance, the Scientific and Statistical Database Management Conference is on its 23rd edition. One
should also mention the pioneering work of Medeiros et al. [Medeiros et al. 1995], who has evolved
into the WOODSS system [Medeiros et al. 2005]. However, more recently, several leading database
researchers are focusing on the challenges of data management and scientific processes. Successful
technologies in business applications, such as database systems and workflow systems, have been
revisited to support scientific experiments. As reported in [Hey et al. 2009], Jim Gray comments:
"A fourth data-intensive science is emerging. The goal is to have a world in which all of the science
literature is online, all the science data is online, and they interoperate with each other". In other
words, managing scientific data is becoming fundamental to science evolution. However, as reinforced
by Ailamaki [Ailamaki et al. 2010], computer support to scientific data is still limited. This migration
from business support to science is a big challenge.

The research carried out in our group addresses a variety of inter-related issues with focus on
distributed techniques on data management. Several problems have been investigated, ranging from
issues such as how to efficiently store, fragment, and replicate large databases, to how to efficiently
process this data in High Performance Computing (HPC) environments. Our research is divided
into three main tracks: (i) adaptive data partitioning, (ii) distributed XML query processing, and (iii)
provenance management in scientific workflows. The combination of results from the first two research
tracks are directly applied in scientific data partitioning and provenance support in the management
of the scientific experiment life cycle.

Regarding our first research track (i.e., adaptive data partitioning), data partitioning outside a
database management system has to be coupled to the activities that will process them. Moreover,
new data partitioning algorithms are needed to cope with the scientific data deluge [Shoshani and
Rotem 2009]. Our work contributes to dynamic database partitioning techniques in current multi-
core computers and builds upon them to partition scientific data and to optimize workflow parallel
execution. We are open to do this for any kind of data that comes around.

Our second research track (i.e., distributed XML query processing) focuses on challenges imposed by
the different data models (eg. relational, XML, etc.). Even though distribution aspects in relational
databases have been extensively studied [Özsu and Valduriez 2011], multi-core parallel processing
environments pose new challenges with respect to dynamic data partitioning and load balancing.
Distribution techniques in the XML data model have been addressed in some works, including ours
[Andrade et al. 2006], but it is still a hot topic due to the complexity of the data structure and
its operations [Kling et al. 2010]. Our current research goals are to improve distributed relational
and XML data support in parallel databases and build upon these results to improve scientific data
management support. Specifically, we aim to address challenges in the management of distributed
resources inherent in the development of science in large scale.

Finally, our third research track (i.e., provenance management in scientific workflows) raised from
the fact that state-of-the-art scientific data management systems tend to treat the data separately
from the scientific processes, or even without paying attention to parallel processing. More impor-
tantly, current support is based on the workflow execution rather than putting it into the context
of the experiment life cycle [Mattoso et al. 2010]. All data generated along the experiment life cycle
must be registered and inter-related to be queried through provenance systems. For instance, in re-
cent international interdisciplinary workshops and conferences (e.g., the XLDB conference1), the key
requirements for scientific data management, which cannot be supported by current technology, have
been identified. Among them, we can find distributed and parallel workflow execution involving large
numbers of distributed processes and large amounts of heterogeneous data, with support for data
provenance in order to understand result data. This is one of the computer science research challenges
for the next decade.

1http://www-conf.slac.stanford.edu/xldb
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Several research initiatives are under development that build upon the tools we have developed,
as well as open source and commercial products. Our research group has fostered contact with
groups related to target applications such as oil and gas [Guerra et al. 2009; Ogasawara et al. 2009;
Oliveira et al. 2009], business [Furtado et al. 2008; Paes et al. 2008; Paes et al. 2009; Lima et al.
2009], and bioinformatics [Cavalcanti et al. 2005; Dávila et al. 2008; Cruz et al. 2010; Gadelha et al.
2011]. Collaborative research activities within these areas have produced several prototypes and new
techniques that are currently being used by our partners: Chiron [Ogasawara et al. 2011]; Hydra
[Ogasawara et al. 2009; Coutinho et al. 2010]; GExpLine [Oliveira et al. 2010]; ProvManager [Marinho
et al. 2010]; SciCumulus [Oliveira et al. 2010]; Heracles [Dias et al. 2010]; Pargres [Mattoso et al.
2005]; Matrioshka [Cruz et al. 2010] and ARAXA [Ferraz et al. 2010].

The purpose of this paper is to briefly survey the main achievements of the Distributed Database
Group in the last decade and to discuss challenges to come. Mostly, we will reference our own published
work to emphasize our contribution. The rest of this paper is organized as follows. In Section 2, we
trace the history of our group. Sections 3, 4, and 5 provide detail on each of our three main research
tracks. Section 6 describes some of those techniques developed by the group that were used in real
applications. Finally, Section 7 looks towards the future and discusses some challenges in scientific
data and workflow management, while Section 8 acknowledges our research partners and sponsors.

2. THE DISTRIBUTED DATABASE GROUP

Our group was created in 1994 at the Computer Science Department of COPPE graduate school of
engineering at the Federal University of Rio de Janeiro. It is part of the database research group
led by Jano Moreira de Souza since 1986. Marta Mattoso leads the distributed database group
with a dynamic and highly collaborative composition. The diversity and large number of researchers
participating in co-authored papers of the group shows how effective this cooperation has been. In
its current shape, it has a strong collaboration with the Computing Institute at UFF, the Fluminense
Federal University. Its main activities are found in Web pages of research projects mainly funded by
CNPq, CAPES, FAPERJ, and INRIA (GExp, Dataluge, Sarava, among others), and at the CNPq
portal for research groups.

Collaboration with INRIA along the last decade with the research director Patrick Valduriez has
evolved into promoting our group to an INRIA Associate Team (Equipe Associé2). It received
the best paper award at the Brazilian-French Workshop COLIBRI (Colloquium of Computation:
Brazil/INRIA, Cooperations, Advances and Challenges3).

Some of our HPC efforts have led to collaboration with Ian Foster and his group at Argonne
Laboratory and University of Chicago. In this joint research effort, we had access to the Teragrid
infrastructure [Meyer et al. 2006] and participated on provenance management in HPC through Swift
[Gadelha et al. 2010; Gadelha et al. 2011; Gadelha et al. 2011].

All of our scientific workflow contributions are independent of a specific Scientific Workflow Manage-
ment System (SWfMS). However, most of our tests and evaluations use the VisTrails system4 as the
workflow execution engine. VisTrails has many advantages towards its SWfMS competitors including
visualization, version control, and provenance support. Our skills in HPC have led to collaboration
with Juliana Freire at the New York University (formerly at University of Utah). Our joint paper
[Chirigati et al. 2009] has received the best poster paper award at SBBD 2009.

In this last decade, the group produced 20 journal papers, 6 book chapters, more than 100 complete
conference papers, 3 post-docs, 34 MSc and 9 PhD, with 6 ongoing PhD students. In the next four
sections we overview the main results we have obtained in our research so far.

2http://www-sop.inria.fr/teams/zenith/pmwiki/pmwiki.php/International/Sarava
3http://gppd.inf.ufrgs.br/colibri/index.en.html
4http://www.vistrails.org/
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3. ADAPTIVE DATA PARTITIONING

On-Line Analytical Processing (OLAP) applications typically access large databases using heavy-
weight read-intensive queries. These queries characterize typical activities in knowledge discovery
processes and are usually ad-hoc. They can largely benefit from parallel processing techniques. Due
to its heavyweight nature, even one single query can be significantly improved through parallelism. The
attractive characteristics of DBC (i.e., scalability, reliability, and reduced cost) led us to investigate
its use for OLAP query processing and this section describes the main results we achieved.

The ad-hoc nature of OLAP queries makes it hard for the database designer to produce a physical
data-partitioning schema that can benefit most frequent queries. A more flexible partitioning strategy
is virtual partitioning. This flexibility is a key concept in database clusters (DBC), where clusters of
PC servers appear as a cost-effective alternative to parallel database servers. Over the last decade,
the DBC approach has gained much interest for various database applications. A DBC is a set of PC
servers interconnected by a dedicated high-speed network, each one having its own processor(s) and
hard disk(s), and running an off-the-shelf DBMS [Akal et al. 2002]. Each cluster node can simply run
an inexpensive (non-parallel) DBMS, and so the DBMS is used as a "black-box" component. In other
words, its source code is not available and cannot be changed or extended to be "cluster-aware". All
extra functionality, like parallel query processing capabilities must be implemented via middleware.

3.1 Virtual Partitioning

Akal et al. (2002) proposed a virtual partitioning approach, which we refer to as simple virtual
partitioning (SVP). This approach consists in fully replicating a database along a set of sites and
breaking each query in sub-queries by adding range predicates. Each DBMS receives a sub-query and
is forced to process a different subset ("virtual partition”) of the data. As an example, let us take a
relation R(A,B,C,D) and the query Q: SELECT count(*) FROM R. By using SVP, an attribute is
chosen as the virtual partitioning attribute. Let us assume A is the VP attribute and it has values in
the interval [a1, am[. Also, the query will be processed by a DBC with n nodes. Then, SVP produces
exactly n sub-queries Qi, i=1,..., n, of the form:

Qi: SELECT count(*) FROM R WHERE A ≥ vi and A < vi+1

where vi = a1 + (i − 1) × S and S = (am − a1)/n. It is important to notice that S is the size of
each partition, which for SVP is always the same. The intervals are then calculated and each Qi

is submitted to a different cluster node. One requirement for SVP (and any of its variations) to be
efficient is that there must exist a clustered index built on the VP attribute. Such an index guarantees
that each cluster node will access a minimum amount of disk blocks.

However, SVP suffers from a major issue: many query optimizers opt for not using an index to
access a relation if the estimated amount of tuples to be accessed exceeds a certain threshold. In SVP,
the partition size is determined by the number of nodes employed to process a query. So, if such a
number is not large enough, the number of tuples in a partition may exceed this threshold and the
index may not be used. Load balancing is also an issue. As each node processes only one query, and
the DBMS is a black-box component, it is impossible to perform dynamic load balancing for a single
query. SVP basic idea is very good due to its flexibility, but needs improvements.

3.2 Adaptive Virtual Partitioning

We address the partition size determination problem in [Lima et al. 2010], originally presented in
[Lima et al. 2004], by using an adaptive approach that dynamically tunes partition sizes. We proposed
the adaptive virtual partitioning (AVP) approach, which is completely DBMS-independent and uses
neither database statistics nor query processing time estimates. AVP avoids full table scans on huge
database tables during parallel query processing. It starts just like SVP, producing sub-queries by
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adding range predicates over the virtual partitioning attribute. Each cluster node receives the same
parameterized query and a different interval to process, which is also determined as in SVP. However,
instead of executing only one query over the entire interval, the node subdivides the interval and
executes many sub-queries. Then, it tries to raise the interval size until there is no performance
degradation.

By keeping small intervals, AVP favors the use of clustered indexes. By trying to raise the size of
the intervals, it avoids a huge number of sub-queries. To validate our approach, we implemented AVP
in a Java prototype and ran TPC-H queries on a 32-node cluster using PostgreSQL. The results show
linear and sometimes super-linear speedup for many tested OLAP queries. In the worst cases, almost
linear speedup is achieved, which is excellent considering the simplicity of AVP.

The excellent results achieved with AVP lead us to develop a complete database cluster middleware
for OLAP query processing, named ParGRES [Mattoso et al. 2005]. Besides solving the partition size
problem, AVP also made it possible to provide dynamic load balancing during query processing, which
was implemented in ParGRES. The load balancing mechanism is based on help offering messages from
idle to busy nodes. When a busy node accepts the offer it sends to the idle node part of the interval
that still has to be processed. As the database is fully replicated over all nodes, sub-query reallocation
becomes easy. Today, ParGRES can be seen as an adaptive map/reduce on top of SQL.

In addition to using TPC-H, we validated our technique by running ad-hoc queries over a real world
OLAP database (IBGE’s Statistical Multidimensional Database - BME), on a 64-node cluster of the
Grid’5000 [Bolze et al. 2006] experimental platform. Results are in [Paes et al. 2008]. The experiments
showed that, in almost all cases, ParGRES yields super-linear speedup while adding cluster nodes
(from 1 to 64 nodes). The experimental results show that AVP improves the performance of ad-hoc
queries in real scenarios, even with skew.

Then we addressed a major AVP (and ParGRES) issue: the need for full database replication be-
tween cluster nodes. Our new strategy combines AVP and Hybrid Design (HD), a table partitioning
technique proposed by [Röhm et al. 2000]. From this point, we refer to the original AVP as AVP-FR
(AVP with Full Replication). In [Lima et al. 2009], we propose a distributed database design strat-
egy for database clusters based on physical and virtual data partitioning combined with replication
techniques. To address the limitation of static physical partitioning, we take advantage of replicas
and propose a dynamic query load balancing strategy. In this way, our solution makes it possible
to obtain intra-query parallelism during heavyweight query execution with dynamic load balancing
while avoiding the overhead of full replication. We call the new approach AVP-PR (AVP with Partial
Replication). We ran new experiments with AVP-PR, which achieved excellent speedup [Lima et al.
2009] and decreased disk space utilization.

We also experimented AVP in Grid computing. Ideally, a grid or cloud database solution must
respect database autonomy (i.e., avoid database or application migration) while taking advantage
of distributed and parallel computing. However, the migration from clusters to grids poses many
challenges for parallel query processing, as it must be dealt with in two levels: grid level, which requires
the distribution of tasks between grid nodes, and cluster level, which requires the re-distribution of
those tasks between cluster nodes (considering the typical scenario where each grid node is a PC
cluster). The new level requires attention to load balancing and final result composition.

In [Kotowski et al. 2008], we propose a middleware solution to OLAP query processing in grids,
called GParGRES, which employs AVP-FR to provide transparent inter and intra-query processing.
Compared with the DBC approach, where the database is replicated at a single site, gAVP-FR enables
the database to be replicated at multiple sites, thus increasing data availability and quality of service.
We partially implemented the middleware as grid services on Grid’5000. In [Kotowski et al. 2008],
we present experimental results obtained with two clusters of Grid’5000 using queries of the TPC-H
Benchmark. The results show linear or almost linear speedup in query execution, as more nodes are
added in all tested configurations.
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F1year := <CPub, σ//paper/@date<2000−01−01>
F2year := <CPub, σ//paper/@date≥2000−01−01>

F1bib := <CPub, π/publication/bibliography, {}>
F2bib := <CPub, π/publication, {/publication/bibliography}>

Fig. 1. Example of Horizontal (left) and Vertical Fragments (right)

4. DISTRIBUTED XML QUERY PROCESSING

The rise of native XML Database Management System (XDBMS) has made XML query processing
more efficient. However, even these XDBMS present poor performance when queries are executed
over large amounts of data or when the query is very complex (e.g., ad-hoc analytical queries). In
general, processing queries over large databases leads to limited performance due to poor memory use
and I/O. In fact, [Ferraz et al. 2010] shows experimentally that it is intractable to handle large XML
documents in main memory. Inspired by our excellent results with distributed query processing in
relational databases, as discussed in Section 3, we have adapted these techniques to the XML model,
and shown that performance of XML queries can also be improved by parallelism.

In this section, we discuss the steps we have taken so far in distributed XML query processing,
showing the most important results we have obtained.

4.1 Fragmentation Design in XML Data

To be able to obtain good performance by distributing the query processing, the first step is the
fragmentation design. In this step, the database is fragmented according to attributes accessed in
frequent queries. However, the first challenge to achieve this goal is to decide what an XML fragment
is. We thus need a formal definition of a fragmented XML database. Such definition must allow the
global collection to be reconstructed from its fragments through reconstruction rules. Such rules are
used to decompose the distributed query. Several techniques have been proposed to fragment XML
repositories [Bremer and Gertz 2003; Ma and Schewe 2003]. However, they lack some important
desiderata for an XML fragmentation model: soundness conditions, the use of an algebra to define
the fragments, and support for Single Document (SD) and Multiple Document (MD) collections.

Inspired by the definition of a fragment in relational [Özsu and Valduriez 2011] and object-oriented
models [Baião et al. 2004], we have defined three types of fragments [Andrade et al. 2006]: hori-
zontal, where instances are grouped according to a selection predicate; vertical, where subtrees are
pruned from the documents by projection operations; and hybrid, where selection and projection are
combined. These definitions follow the semantics of the TLC algebra [Paparizos et al. 2004].

As an example, Fig. 1 shows horizontal and vertical fragments that were defined over the collection
CPub. The horizontal fragments F1year and F2year separate documents containing papers published
before January 1st 2001 from those published after that. As an alternative fragmentation design, the
vertical fragment F2bib prunes the bibliography subtree from the fragment. This subtree is used as
the root of fragment F1bib.

Suppose that a collection C (either SD or MD) is decomposed into a set of fragments Φ =
{F1, F2, ..., Fn}. Each fragment is allocated to a node in a distributed environment. We call dis-
tribution design the definition of fragments and their allocation. For a distribution design to be
considered correct, we have also adapted to our context the three correction rules described in [Özsu
and Valduriez 2011] that must be satisfied by the fragments [Andrade et al. 2006]: completeness,
disjointness, and reconstruction. The completeness rule makes sure that a data item of C is in at
least one of the fragments. The disjointness rule makes sure a data item is not in more than one
fragment at the same time. Finally, the reconstruction rule determines that it must be possible to
reconstruct the original collection from its fragments. For horizontal fragmentation, the union (∪)
operator [Jagadish et al. 2001] is used (TLC is an extension of TAX [Jagadish et al. 2001], and for
vertical fragmentation, the join (⊲⊳) operator [Paparizos et al. 2004] is used. We keep an artificial ID
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attribute in each vertical fragment for reconstruction purposes.

4.2 A Methodology for Distributed Query Processing

Our query processing methodology [Figueiredo et al. 2010] assumes that global XML collections are
fragmented and distributed across the network. The methodology involves the decomposition of the
main query into sub-queries that will be executed in the remote sites containing fragments of the
global collections. Our methodology is an adaptation of the four generic layers proposed by Özsu and
Valduriez (2011). Given an XQuery, we first analyze it and transform it into an algebraic query in
TLC. This is done by the Query Decomposition layer. Then, the query tree is further analyzed to
replace references to the global collection by its corresponding fragments (Localization Layer). The
localization layer also reduces the query tree by removing irrelevant fragments (that is, fragments
that do not contribute to the query result). Next, Global Optimization is performed. At this point,
sub-queries are generated and sent to the local sites. Each site performs Local Optimizations and
executes the sub-query. Results are sent back to the central node, consolidated, and finally sent back
to the user.

Our experimental results show that queries tend to perform better in the distributed environment.
Some queries achieved reductions in the order of 95% when compared to the execution time in the
centralized environment. These results are promising, and show that XML can benefit from the
parallelism achieved by database fragmentation and distribution. However, they also show that the
fragmentation design is very important. We are currently working on this direction (an algorithm to
generate the fragmentation design for XML databases).

4.3 Virtual Fragmentation of XML Databases

When queries are ad-hoc, such as in scenarios like Decision Support Systems (DSS), physical parti-
tioning design techniques can be an inappropriate solution. In such cases, it is still possible to take
advantage of parallelism to improve query performance. The approach we take is to follow the success-
ful virtual partitioning discussed in Section 3 for XML databases. Adapting SVP to the XML model
[Rodrigues et al. 2011] was a challenging problem, since the generation of virtual partitions cannot be
done by using primary keys (they may not exist in the XML documents). Besides, in contrast with the
relational model, the elements and attributes in XML documents are often assigned to string values,
which complicates the definition of the intervals that characterize the virtual partitions. Another
challenge refers to the types of input data a query can use. In the relational model, SQL queries refer
to tables. In XQuery, a query can use specific documents (by using the doc() function) or collections
(by using the collection() function). This difference impacts on the cardinality of elements the query
will deal with, and thus impacts on the partitioning algorithm.

To solve the problem caused by the absence of keys, and also to avoid problems with a non-uniform
data distribution related to the virtual partitioning attribute, our solution to generate the virtual
fragments uses the position of XML elements to define the intervals for the sub-queries. Thus, we
modify the original query by adding the selection predicates “[position() ≥ vi and position() < vi+1]”
as in SVP. As an example, assume an input document “orders.xml” that contains 1000 orders, and a
query that retrieves all orders that were issued before 2001-01-01, as shown in Fig. 2 (left-hand side).
Assume also that we want to process this query using 4 cluster nodes. We thus modify the original
XQuery to generate 4 sub-queries, each of them ranging over a different interval. Fig. 2 shows the
first sub-query, that ranges over the interval [1, 250[.

We have adapted our distributed query processing methodology [Figueiredo et al. 2010] to support
ad-hoc queries by using the virtual partition technique. The experimental results show that our
approach is effective and can reach speed up of up to twenty two times in high cost queries when
compared to the centralized environment [Rodrigues et al. 2011]. Our next step is to apply the
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for $o in doc(’order.xml’)//order

where $o/date < 2001-01-01

return $o

for $o in

doc(’order.xml’)//order[position() >= 1 and position() < 250]

where $o/date < 2001-01-01 return $o

Fig. 2. Original query and one of its sub-queries

adaptive virtual partitioning technique to XML, and see if we can obtain even better results.

5. PROVENANCE MANAGEMENT IN THE LIFE CYCLE OF SCIENTIFIC EXPERIMENTS

Modern scientific investigations depend on huge amounts of data and complex scientific apparatuses.
Such investigations, also known as large-scale science, enable a new type of collaborative interdisci-
plinary research based on shared expertise, instruments, and computing resources. However, these
computing resources are often driven by the execution of scripts (a.k.a. pipelines), which specify the
sequence of programs that should run to enact a given scientific experiment.

The paradigm of scientific workflows introduced a new model of interaction in the research commu-
nity, which requires richer information than the one captured in the traditional script-based pipelines.
Scientific workflows are an attractive alternative to represent those pipelines or script-based applica-
tions. In scientific workflows, activities are often programs or services that represent solid algorithms
and computational methods. Current Scientific Workflow Management Systems (SWfMS) focuses
on managing the execution of scientific workflows. Nevertheless, executing a workflow is only part
of a large-scale scientific experiment. In different situations, multiple scientific workflows compose
the same large-scale scientific experiment, which is often interweaved with human-dependent manual
operations. In this case, multiple SWfMS may be in place due to the idiosyncrasies of each scientific
workflow.

Current SWfMS fail to support the scientific experiment as a whole throughout its life cycle. There-
fore, the organization of the experiment life cycle support into a set of integrated experimentation
technologies represents a research challenge. This research challenge is especially difficult because
it relates different computer science fields besides Databases, including Software Engineering during
composition, HPC during execution, and Information Visualization during analysis, among others. In
addition, supporting the large-scale scientific experiment life cycle fundamentally requires provenance
gathering during all phases. Provenance provides historical information about data manipulated in a
workflow [Freire et al. 2008]. This historical information tells us how data products were generated,
showing their transformation processes from primary input and intermediary data.

According to Freire et al. (2008), provenance can be categorized into prospective and retrospec-
tive. Prospective provenance may be defined as a computational specification of activities of a given
workflow and corresponds to the steps that must be followed to generate a data product or class of
data products. On the other hand, retrospective provenance defines the actual steps taken during
the execution of the workflow. Therefore, the management of provenance information provides to the
scientists a variety of data analyses, such as data quality, audit trails, and experiment documentation
[Simmhan et al. 2005]. However, the integrated management of provenance of a large-scale scientific
experiment composed by multiple scientific workflows executed in different SWfMS becomes a very
complex and challenging task.

In this section, we present the several initiatives of our group in terms of provenance management
in the large-scale scientific experiment life cycle. Initially, we present our model of the large-scale
scientific experiment life cycle. After that, we briefly discuss how conceptual workflow definitions are
mapped into an executable workflow using GExpLine, our tool for managing scientific experiments
based on software product lines [Northrop 2002]. Moreover, we also describe how a recommendation
system can aid the reuse of existing scientific workflows parts. Finally, we describe an approach to
the management of provenance in the previously mentioned setting, with different SWfMS enacting
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Fig. 3. The proposed scientific experiment life cycle [Mattoso et al., 2010]

different scientific workflows in the same large-scale scientific experiment.

5.1 Our model of a Scientific Experiment Life Cycle

In this section we introduce our model of a scientific experiment life cycle. Fig. 3 presents the
large-scale scientific experiment life cycle, which essentially consists of multiple loops traversed by
the scientist several times in the course of a scientific experiment. In Fig. 3, the major phases are
identified [Mattoso et al. 2010]: composition, execution, and analysis. Each phase has an independent
cycle, taking place at distinct moments of the experiment, and handling explicit provenance metadata.

The composition phase is responsible for structuring and setting up the whole experiment, establish-
ing the logical sequence of activities, the type of input data and parameters that should be provided,
and the type of output data that are generated. The execution phase is responsible for materializing
the experiment, thus defining exactly the input data and the parameters to be delivered to the SWfMS
in order to execute the experiment. Finally, the analysis phase is responsible for studying the data
generated by the composition and execution phases. A scientist may face two different situations when
analyzing the results of an experiment: (i) the result is likely to be correct or (ii) the hypothesis is
refuted. In both cases, scientists will probably need new workflow executions to effectively validate the
hypothesis or to create a new one. In the case of running several workflows to validate a hypothesis,
all the workflows (with different parameters and data sets) must be connected to the same experiment.
In fact, most of the existing SWfMS fails to meet this requirement.

5.2 GExpLine support in Workflow Composition using Provenance

The concept of experiment lines [Ogasawara et al. 2009] is an innovative approach to represent a
scientific experiment. An experiment line may be defined as a conceptual workflow that is capable of
giving rise to multiple concrete workflows. It is a flow of activities where each activity behaves like
an independent component [Szyperski 1997]. When an activity of the flow can be implemented by
any activity from a list of alternative activities, it is called a variation point. It means that there is
more than one alternative program, algorithm, or method to implement the variation point. Also,
when an abstract activity can be suppressed when deriving a concrete workflow, in order to represent
a different type of result or analysis, and not due to its incorrectness, it is defined as an optional
activity. Finally, a mandatory activity is an activity that must be present in all derived concrete
workflows. Experiment lines are composed of optional, mandatory, and variant activities.
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In addition of supporting experiment lines, GExpLine presents a powerful configuration management
mechanism that allows the versioning of workflow elements to model the experiment. In this way,
GExpLine allows scientists to [Oliveira et al. 2010]: (i) design experiment lines; (ii) derive concrete
workflows; (iii) import concrete workflows from Taverna [Hull et al. 2006], Kepler [Altintas et al.
2004], and VisTrails [Callahan et al. 2006]; (iv) control the versions of abstract/concrete workflows
[Ogasawara et al. 2009]; and (v) query prospective provenance data.

5.3 A recommendation system for workflow reuse based on provenance

The conception of a workflow is not a trivial task, and in many cases it becomes a barrier to model more
sophisticated experiments. SWfMS like Taverna, Kepler, and VisTrails offer rich graphic interfaces
that allow previously registered components to be dragged and dropped into a workflow editing area.
However, in current SWfMS, the scope for discovering an activity is limited, since not all components
are necessarily registered in the SWfMS. In addition, the knowledge of which activities can be linked
to each other is still tacit. It is necessary to run a large number of examples to gain some experience
in the setup of the activity flow.

An alternative, often used by scientists, is to try to reuse a previously defined workflow or parts
of it. However, the manual reuse is error prone and counterproductive. Aiming to support workflow
conception based on reuse, we proposed a recommendation system [Oliveira et al. 2008] that is designed
to work over the VisTrails SWfMS. Based on the collaborative filtering approach [Sarwar et al. 2001],
prospective provenance is used to recommend to the scientist a set of candidate components to use
in the workflow being designed. We infer the need of a component and proactively recommend that
component to the scientist. To do so, we parse the previously designed workflow files to extract
the relations among components. Those relations are mapped into a database table, containing the
components, the port that they are usually connected to, and the workflow itself. Then, each time a
scientist adds a component to his current workflow, the tool automatically analyses the database and
recommends the most relevant components previously connected to this one, and indicates how they
can be connected.

5.4 Data Partitioning in Parallel Workflow Execution

In this section we discuss the challenges for executing scientific workflows in large scale. Our ongo-
ing and future work on supporting data partitioning in parallel workflow execution is similar to a
map/reduce approach. A middleware is implemented to bridge the gap between the SWfMS and the
high performance computing (HPC) environment. Based on a high level function to partition and
distribute scientific data, our parallel workflow activity execution engine allocates data partitions to
activities replicated in multiple processors. It follows a kind of bag-of-tasks parallelism, but uses a
dynamic data partitioning and performs result composition similar to the reduce part of map/reduce.
However, the main contributions of our approach is more than a map/reduce parallelism. It aims at
helping the scientist in: (i) identifying data parallelism in workflow activities at an abstract level, (ii)
modeling workflow activities using MTC paradigm, (iii) submitting activities from the SWfMS to the
distributed environment, (iv) steering by finding failures, detecting performance bottlenecks, monitor-
ing processes status to make the SWfMS aware of the remote execution, (v) gathering prospective and
remote retrospective provenance data, and (vi) querying provenance data during and after workflow
execution. Despite the advances in SWfMS and provenance support, addressing these issues remains a
challenge for the next years. In the following paragraphs we summarize how we are approaching some
of these needs of the scientist with focus on parallel processing. We give some details on our ongoing
work prototypes with focus on different HPC environments. Hydra and Chiron are focused on MTC
clusters. Heracles [Dias et al. 2010; Ogasawara et al. 2010] explores P2P techniques to provide fault
tolerance mechanisms and dynamic resource management in MTC, while SciCumulus is focused on
adaptive algorithms to match the dynamism of Clouds.
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Hydra [Ogasawara et al. 2009] is a middleware solution focused in MTC clusters. The parameter
sweep parallelization of Hydra has been evaluated in several simulation workflows from the oil domain
using equation solvers [Guerra et al. 2009]. Additionally, Hydra’s data partitioning has been used in
Fasta files for different bioinformatics workflows [Coutinho et al. 2010].

Cloud computing [Oliveira et al. 2010] provides a new dimension to HPC. Clouds have been shown
to be applicable to a wide-range of problems in several domains, including scientific ones [Hey et al.
2009]. An important advantage of clouds is that they do not require scientists to assemble expen-
sive computational infra-structure or even configure many pieces of software since images can be
pre-configured to be instantiated on demand. However, executing scientific experiments in cloud envi-
ronments is still an open problem. SciCumulus [Oliveira et al. 2010] is a cloud middleware for running
parallel scientific workflows in clouds with coupled provenance support. Differently from the current
mainstream, SciCumulus presents mechanisms to manage and configure the environment before work-
flow execution, i.e., by automatically creating virtual machines (VM) and setting up virtual clusters.
SciCumulus protects scientists from the complexity of configuring and managing cloud environments
and collects distributed provenance data from the various instantiated VMs. In [Oliveira et al. 2011]
we show the potential of public cloud environments such as Amazon EC2 when it comes to executing
parameter sweep involving hundreds (up to 667) variations and thousands of data files that produced
several gigabytes of data. As future work in clouds we intend to address workflow steering techniques,
failure recovery and other cloud challenges such as security, privacy and dynamic configurations.

All these successful experiences in scientific data parallelism and MTC scheduling have led to
the construction of Chiron, a data centric workflow parallel execution engine that encompasses the
best ideas of Hydra and proposes optimization heuristics for the parallel execution [Ogasawara et al.
2011]. In Chiron, we addressed the problem of workflow optimization by using an algebraic approach.
Our approach is inspired by decades of well-founded query optimization models based on relational
algebra to abstract query execution plans. Thus, we propose a scientific workflow algebra, where data
is uniformly represented by relations and workflow activities are mapped to operators that have data
aware semantics. We conducted a thorough validation of our approach using both a real oil exploitation
application and synthetic data scenarios. The experiments run in Chiron demonstrate performance
improvements of up to 226% compared to an ad-hoc workflow implementation [Ogasawara et al. 2011].

5.5 ProvManager support in managing provenance data

The main focus of ProvManager [Marinho et al. 2010] is to manage prospective and retrospective
provenance in distributed environments. It was conceived to work as a central repository that stores
all the provenance data generated by an experiment. Before starting an experiment trial, ProvManager
analyzes the workflows that are bound to the experiment to extract prospective provenance and to
instrument them with special activities that are able to collect retrospective provenance at runtime.
All the collected provenance information is stored in a knowledge base, which is enriched with inference
rules. After the experiment trial, scientists are able to query provenance in an integrated way, even if
different SWfMS were in-place during the experiment execution.

To illustrate ProvManager in action, consider an experiment structure that is composed of two
workflows: the first workflow is instantiated in VisTrails and the other one is instantiated in Kepler.
The first workflow is composed by three activities that are running on a remote host. In order to
capture provenance data from this workflow, the scientist has to first publish it in ProvManager by
uploading the workflow specification (in the VisTrails case, a .VT file). At this moment, ProvManager
configures the workflow by automatically adding special activities that will be responsible for capturing
and publishing provenance data in ProvManager during workflow execution. Finally, at the end of the
instrumentation, a new .VT file is returned to the scientist to be reloaded into VisTrails for execution.
During both the instrumentation and execution of the workflow, ProvManager captures provenance
data from the workflow and publishes this data into the knowledge base, which is implemented as a
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Prolog database.

With all the provenance data collected from the experiment, ProvManager makes the experiment
analysis process simpler to the scientist because it works as an integrated place for accessing the
provenance data, avoiding to scientist the need to visit each system (in our example, Kepler and
VisTrails) individually in a distributed execution environment. In addition, ProvManager provides
functionalities to help the scientist manipulate the experiment provenance data, such as a high-level
provenance query interface and workflow execution monitoring.

6. APPLICATIONS

This section describes application areas where the techniques discussed in the previous sections have
been applied. We have experimented our distributed data partitioning techniques using benchmarks
as well as in real applications. We briefly describe some of the applications from collaboration ini-
tiatives with the Research Center of Petrobras (the largest Brazilian oil company, a world leader in
development of advanced technology from deep-water and ultra-deep water oil production), bioin-
formatics groups at Fiocruz (The Oswaldo Cruz Foundation, one of the world’s main public health
research institution), and IBGE (The Brazilian Institute of Geography and Statistics).

Deepwater oil exploitation. An important step in oil exploitation is pumping oil from ultra-
deepwater from thousand meters up to the surface through tubular structures, called risers. Main-
taining and repairing risers under deep water is difficult, costly, and critical for the environment (e.g.,
to prevent oil spill). Thus, scientists must predict riser fatigue based on complex scientific models and
observed data for the risers. Performing risers fatigue analysis requires a complex workflow of data-
intensive activities, which may take a very long time to compute. A typical riser’s fatigue analysis
workflow [Mattoso et al. 2010] takes as input files containing riser information, such as finite element
meshes, winds, waves and sea currents, and case studies, and produces result analysis files to be fur-
ther studied by the scientists. Some activities, e.g., dynamic analysis, are repeated for many different
input files, and depending on the mesh refinements and other riser’s information, each single execution
may take hours to complete. We have used our tools to support the life cycle of this workflow, from
conception through analysis. Most notably, we have successfully used Hydra to obtain near-linear
speed-up on the execution of this workflow.

Bioinformatics. Most bioinformatics workflows are data intensive and can largely benefit from
data parallelism. However, scientists more concerned with biological results than with parallel pro-
gramming techniques must expend a large amount of effort to exploit it. By using Hydra’s components,
data parallelism can be achieved. In [Coutinho et al. ], we explored data parallelism in Hydra by mod-
eling and parallel executing a bioinformatics workflow for the identification of orthologous genes in
protozoan genomes, which consists of two main activities: BLAST and MCL. We setup a fragmen-
tation cartridge based on FASTA format. Our experiment was implemented on top of the VisTrails
SWfMS and the MTC layer was deployed on a SGI Altix cluster of NACAD center at COPPE. Con-
sidering the performance of the parallelizable workflow tasks, we achieved a speedup of 99.51 with 128
cores. Based on provenance data collected by Hydra the scientist can fine-tune the experiments.

BME. We have used ParGRES to run typical OLAP queries over the Brazilian official census
database (Population and Housing Census 2000) [Paes et al. 2008]. In this application, we used a
64-node cluster of the Grid’5000 platform from INRIA. Our experiments explored intra-query parallel
processing with time consuming typical BME census queries. The results showed that, in almost all
cases, ParGRES yields super-linear speedup while adding cluster nodes (from 1 to 64 nodes). Our
experimental results show that AVP improves the performance of ad-hoc queries in real scenarios,
including data skew.
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7. CHALLENGES IN SCIENTIFIC DATA AND WORKFLOW MANAGEMENT

Unifying data and the process that generated these data into the same management system is nec-
essary to understand the complexity of an application and to support a richer decision making. The
development of systems that use both data and models is still an open issue (VLDB 2011 Challenges
and Visions track), even though it was on the agenda of the Asilomar Report (1998). In scientific
applications, it is impossible to analyze data separated from their models. SWfMS integrated to
provenance systems are working towards this goal, but current solutions are still away from delivering
tools that could accelerate the rate of scientific progress. Challenges identified in [Deelman and Gil
2006] are still open, including supporting scientists in the experiment life cycle, i.e., creating, merging,
executing, steering, re-using and analyzing the scientific processes.

The very large scale of scientific data management makes scientific workflow management difficult.
Some workflow activities may access or produce huge amounts of data and demand HPC environments
with highly distributed data sources and computing resources. However, combining SWfMS with
such environments to improve throughput and performance through parallelism remains a difficult
challenge. In particular, existing workflow development and computing environments have limited
support for data parallelism patterns. Such a limitation makes it difficult to automate and efficiently
perform parallel execution on large sets of data, which may significantly slow down the execution of
a workflow. Some workflows may have to be executed partly on HPC environments and partly on
the scientists’ own environments. Another difficulty is to support distributed data provenance [Cruz
et al. 2009], as described in Section 5, a key function that records critical metadata about experiments
(input datasets, parameters, processes, etc.) to help a scientist understand experimental results or
reuse existing workflows or parts thereof.

These problems are not addressed by current SWfMS and related research. Current solutions oc-
cupy extreme points of a spectrum. Either the SWfMS is semantically rich and provides graphical
interfaces, without supporting high performance processing, or the SWfMS is completely dedicated
to parallel execution in grids, with no visual interface and low semantic support. Swift, for example,
allows scientists to specify parallel workflows using a scripting language. Similarly, MapReduce im-
plementations, such as Hadoop [Wang et al. 2009], allow single activities to be parallelized. These
solutions, however, require scientists to stipulate low level parallelization strategies that limit the
opportunities for automatic optimizations. Besides the incipient support of SWfMS for parallel pro-
cessing of workflow activities, there are the new challenges brought by the HPC environments. In
2008, Raicu, Foster and Zhao [Raicu et al. 2008] introduced the Many-Task-Computing (MTC) com-
putational model as a way to represent the large-scale parallelism of tasks that is not supported by
current solutions. The challenges regarding MTC are related to the execution of multiple tasks in the
context of complex scientific workflows with thousands of processing nodes in clusters, grids or clouds
[Oliveira et al. 2010; Dias et al. 2010; Oliveira et al. 2011].
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