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Abstract. Population dynamic models requires the evaluation of the best scale of analysis. This work analyses three
spatial scales in the context of the mosquito Aedes aegypti, main vector of dengue fever. One scale is the neighborhood,
the others scales are the census tract and the lot. A geographical database was developed including point maps with
trap locations, number of eggs collected per trap per week, polygons of census tracts, census data, among others. For
simulation purposes, a layer of regular cells (10 x 10 meters) was created to store the model's inputs and outputs. A
population dynamic model with temperature as input variable was parameterized and �tted to the neighborhood and
census tract data. For the lot level, an allocation procedure was developed as the spatial resolution was higher than
the data resolution. This procedure couples the population dynamic model with a kernel density map. Results indicate
that at the neighborhood level, the population model captured well the overall pattern with lower mosquito density
during the cold season and larger during the warm season. However, in the �rst warm season, two peaks did not �t
well, suggesting the importance of investigating the role of other variables in the dynamics of Aedes aegypti. At the
census tract level, we found no evidence of spatial clustering. At the lot level, the allocation model represented well
the overall summer to winter variation in hotspot intensity. The cost of vector surveillance is high and the procedures
proposed here can be used to design optimized control strategies and activities.

Categories and Subject Descriptors: H. Information Systems [H.m. Miscellaneous]: Databases
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1. INTRODUCTION

Due to its importance as the main vector of dengue fever and urban yellow fever, the mosquito
Aedes aegypti has been the focus of several modeling initiatives. Most models seek to represent its
temporal dynamic in response to climate and endogenous forces [Focks et al. 1993; Ferreira and Yang
2003; Otero et al. 2006] while others consider their spatial-temporal dynamic by introducing dispersal
mechanisms [Otero et al. 2008; Magori et al. 2009; Almeida et al. 2010]. One of the key challenges in
modelling Aedes aegypti is the lack of adequate data for validation.

Although routine surveys are carried out in endemic areas, the indicators produced from the inspec-
tion of indoors and outdoors container habitats are just relative measures of abundance. They do not
provide the absolute measures of density required by the models. With the more recent development
of species-speci�c traps for Aedes aegypti, though, quantitative measures of mosquito abundance be-
came available. The most popular traps are the ovitrap and the sticky trap. Ovitrap is a small vessel
�lled with a diluted hay infusion, and a wooden paddle held on the wall. Gravid female mosquitos
are attracted to the vessel and lay their eggs on the paddle [Reiter et al. 1991]. Sticky traps are
ovitraps with a sticky paper attached to the walls to which ovipositing females get glued [Gama et al.
2007]. By counting the number of captures (eggs or mosquitos), one can generate absolute measures
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of abundance at the local level (number of captures/house) or at more aggregate spatial levels (block,
neighborhood).

Trap data are generally sparse. In studies with high temporal resolution (sampling every week, for
example), their spatial distribution is either sparse [Gama et al. 2007] or concentrated in a small study
area [Honório et al. 2009]. The problem is that large sample sizes are required to obtain an adequate
representation of the mosquito spatial distribution, because of their tendency to form aggregated
distributions as well as their poor dispersal ability. On the other hand, studies with higher spatial
resolution generally use less frequent sampling [Regis et al. 2008]. High frequency sampling at high
spatial resolution poses a prohibitive cost for trap-based sampling of Aedes aegypti.

Here we propose a model-based approach that increases the e�ciency of trap-based surveys by
decoupling the temporal dimension from the spatial dimension problem. The underlying assumption
is that the mosquito spatial distribution is mostly driven by environmental variables (availability of
breeding sites and blood sources) which vary at a lower rate than the mosquito population itself. So,
spatial sampling can occur more sporadically than the temporal sampling and the temporal sampling
can be carried out with a smaller number of traps to produce an average index for the whole area.

To reconstruct the spatial-temporal population dynamics, we combine a model of the temporal pop-
ulation dynamics with a spatial allocation procedure. With this approach, it is possible to calculate,
at each simulation time step, the variation in local mosquito population size in the geographical space
at a chosen resolution.

2. POPULATION MODELS OF AEDES AEGYPTI

Models describing the population dynamics of Aedes aegypti, either deterministic [Ferreira and Yang
2003] or stochastic [Otero et al. 2006], share a common structure based on the framework of System
Theory [Bertalan�y 1975]. A typical example [Ferreira and Yang 2003] is shown in Figure 1. In this
model, the dynamics of a mosquito population is modeled as the �ow of individuals between stocks,
denoted in the diagram by four rectangles: E(t) - eggs, L(t) - larvae, P (t) - pupae, and W (t) - adults.
Stocks are connected by arrows, f1, f2 and f3, representing the �ow of individuals between life stages:
1 - egg to larva, 2 - larva to pupa, and 3 - pupa to adult. Flow occurs at rates that are temperature
dependent. New individuals enter in the population by birth (at a rate ovip) and mortality rates are
stage-speci�c (m1, m2, m3 and m4 ). This model structure represents the main demographic events
in the life cycle of an Aedes aegypti population and and its formulation as dynamic equations allows
the simulation of its temporal dynamics. Since space is not explicited, however, the model does not
describe the distribution of Aedes aegypti through space.

Few available computational models simulate Aedes aegypti spatial-temporal dynamics. [Otero et al.
2008] proposed a stochastic spatially-explicit model, based on their previous temporal model [Otero
et al. 2006], in which space is modeled as cells which are occupied by autonomous mosquito popu-
lations interconnected by �ying individuals. Dispersal between cells is modulated by the availability
of breeding sites. A similar approach was used by [Magori et al. 2009]. They considered both the
spatial distribution of breeding sites and the dynamics of the aquatic stage of the mosquitoes (larvae
and pupae) [Focks et al. 1993]. The breeding site density per house and the house density per area
were model parameters. Despite their detailed account of spatial dynamics, neither model was �tted
to real spatial data, being used to represent virtual spaces only.

A spatial-temporal model integrated with data from remote sensor images and digital maps were
used by [Tran and Ra�y 2005] to assess dengue transmission in the municipality of Iracabouro, French
Guiana.
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Fig. 1. Flow diagram describing the Aedes aegypti life cycle (adapted from Ferreira and Yang 2003). Temperature
(temp in yellow circle) controls three development rates: 1 - egg to larva, 2 - larva to pupa, and 3 - pupa to adult; ovip
is the oviposition rate; m1, m2, m3 and m4 are natural stage-speci�c death rates. C is the carrying capacity of the
area.

3. DATA AND METHODS

3.1 Data

Data used in this work were collected by [Honório et al. 2009], who weekly monitored the Aedes
aegypti population in Higienópolis, a neighbourhood of Rio de Janeiro, RJ, Brazil, during 1.5 years,
using ovitraps (Figure 2 ). Higienópolis is a low middle class residential area, divided into 22 census
tracts. The entomological study was conducted in 10 census tracts, with forty randomly distributed
ovitraps. Each week, the number of Aedes aegypti eggs per trap was counted, generating a 78-week
time series of eggs per trap. Since the mathematical model requires temperature data, weekly mean
air temperature during the period was obtained from the nearest meteorological station, located at
the Rio de Janeiro's international airport. Spatial data was integrated into a geographical database
in TerraView, version 3.2.0, including point maps with ovitrap locations, number of eggs collected per
ovitrap per week, polygons of census tracts, census data, among others. For simulation purposes, a
layer of regular cells (10 x 10 meters) was created to store the model's inputs and outputs.

Fig. 2. Study area and ovitrap locations - Higienopólis, Rio de Janeiro, RJ.
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3.2 Population Dynamic Model

To model the temporal dynamics of Aedes aegypti, an adapted version of the temperature dependent
model by [Ferreira and Yang 2003] was implemented in the TerraME modelling environment [Carneiro
2006]. The model [Lana 2009] has four di�erential equations describing the rate of change of mosquito
abundance, per life stage: eggs, larvae, pupae and adult (Figure 1 ).

δE/δt = ovip(t)(0.5W )[1− L

C
]− [σ1(t) +m1]E (1)

δL/δt = σ1(t)E − [σ2(t) +m1]L (2)

δP/δt = σ2(t)L− [σ3(t) +m1]P (3)

δW/δt = σ3(t)P − [m4]W (4)

Equation 1 describes the dynamic of the egg stock. Eggs are layed at a temperature and density-
dependent rate where ovip(t) is a quadratic function describing the e�ect of temperature on the
maximum oviposition rate. Carrying capacity, C, represents environmental characteristics such as
breeding sites availabity based on climate variables. Individuals leave the egg stage by either natu-
ral death or by ecloding into larvae. Equation 2 describes the dynamic of the larva stock. Larvae
eclode at a temperature-dependent rate. Individuals leave the larva stage by either natural death or
by evolving into pupae. Equation 3 describes the dynamic of the pupa stock. Pupa emerges at a
temperature-dependent rate as well where it remains until natural death or emerging into adulthood.
Equation 4 describes the dynamic of the egg-laying adult female stock. Female adults emerge at a
temperature dependent rate and die by natural death. In comparison to [Ferreira and Yang 2003], this
model has the following modi�cations: a) It uses the equation proposed by [Sharpe and DeMichele
1977] to describe the temperature-dependent developmental rates, σ1 to σ3. This equation describes
the rate of development of a poikilothermic organism as the temperature dependent rate of activation
and deactivation of an enzyme. Unpublished results show a better �t with a model with this modi�-
cation (Table I). b) The original constant oviposition rate was replaced by a temperature-dependent
function. An empirical function was derived by �tting a quadratic function to the ovitrap data versus
temperature (Table I).

3.3 Model Calibration and Validation

All parameters but C, the carrying capacity, were parameterized using values from the literature
(Table I). We assumed that the carrying capacity, C, represented the site-speci�c environmental
conditions available for larval development and should be calibrated locally.

Parameter Value Reference

Oviposition rate(ovip(t)) OvipRate = −0.0176 ∗ (Temp)2 + 0.8714 ∗ Temp− 9.7903 [Lana 2009]

Development rates(s):
1)egg - larva (σ1(t)) [Sharpe and DeMichele 1977]

2)larva - pupa (σ2(t)) RD(T ) = RD(298K)
( T

298K
)exp((

∆HA
R

)( 1
298K

− 1
T

))

1+exp(
∆HH

R
)( 1

T1/2
− 1

T
)

[Schoo�eld et al. 1981]

3)pupa - adult (σ3(t))
Death rates (m):
1)egg (m1(t)) 1/100 day−1

2)larva(m2(t)) 1/3 day−1 [Ferreira and Yang 2003]
3)pupa (m3(t)) 1/70 day−1

4)adult (m4(t)) 1/17.5 day−1

Carrying Capacity (C) Fitted

Table I. Parameters used in the dynamic model.
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To calibrate the model, the ovitrap data was divided into two subsets, each one composed by 20
traps. For each subset, a time series of mean number of eggs per week was calculated. One series was
used for the calibration using a Monte Carlo method [Rubinstein and Kroese 2007] that minimizes the
mean quadratic error between observed and estimated egg density (2000 iterations were performed in
10000 Monte Carlo experiments).

Once calibration was achieved, the second subset was used to simulate the model again and to
calculate a validation error between the calibrated model and the new dataset. Since this error was
lower than the calibration error, we considered the model well calibrated.

3.4 Spatialization

The population model produced a time series of mosquito density at the scale of the neighborhood.
To generate maps of the spatial distribution of the Aedes aegypti eggs in Higienópolis, two other
spatial scales were considered: one is the census tract scale, which represents an aggregate of more or
less 300 domiciles. The second scale is the lot, which can be occupied by a single premise.

3.4.1 Census tract scale. The study area consists of 9 census tracts (one was excluded because only
one trap was present). We �tted the [Lana 2009] model to each census tract keeping all parameters
�xed and allowing only C, the carrying capacity, to vary. Calibration was done as previously described.

3.4.2 Lot scale. Since the lot scale is at a higher resolution than the data points, a kernel estimator
for point events with adaptive radius was used to smooth the surface by interpolating the weekly
density of eggs. To reduce the temporal resolution (not the focus of this work), a single map was
created by averaging the weekly maps. This average map displays the most stable infestation hotspots,
which we assume to be the areas with larger carrying capacity.

Lots are very small spatial units. Implementing a population model for each one would violate the
large number assumption of deterministic population models. We then propose a top-down approach,
where mosquito dynamics is modeled at a larger spatial scale (census tract or neighborhood) and
an allocation procedure is used to distribute the mosquitoes throughout the lots according to their
expected density distribution (based on the kernel density map). The allocation procedure is shown
in Figure 3. It traverses the cellular space allocating the Aedes aegypti population. First, the space
is divided into a grid with 10x10m cells. The cells are visited in a decreasing order of egg density
as estimated by the kernel egg density map. At each cell, the algorithm deposits a quantity of eggs
that is proportional to the average capacity of an adult female to lay eggs [Otero et al. 2006] and
proportional to the local egg density estimated by the average kernel map.

Fig. 3. Aedes aegypti population dynamic allocation algorithm.
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4. RESULTS

4.1 Population model

Figure 4 shows the simulated and observed time series. The model captured the overall pattern
with lower mosquito density during the cold and larger density during the warm seasons. The data,
however, shows a large variance around this mean tendency, which is not captured by the model. In the
�rst warm season, two large peaks in the data were not captured at all by the model, suggesting that
other variables, besides temperature, may have a strong e�ect on mosquito dynamics. To investigate
it, we observed a temporal series of rain for this neighborhood and a di�erence on the volume of rain
between the �rst and second summer season was clear. So, it will be necessary to include this variable
on the model for new tests and verify the �tting.

One cannot disregard also the impact of a short time series on the �tting, and the likely importance
of migration in this speci�c population. Higienópolis is not an isolated place as the model assumes,
and its mosquito population can receive and lose individuals from/to the vicinity.

Fig. 4. Graph of comparing between Data and Simulation.

4.2 Spatialization at the census tract level

Figure 5b shows the result of �tting a population model to each of the 9 census tracts of Higienópolis
that contained traps.

The estimated carrying capacity doubled from census tract 4 to census tract 7 or 9. By comparing
the estimated C with the mean egg density per census tract, one can see that, discounting a scale
factor (5.387), C captures the spatial variation in egg density (Figure 5b).

4.3 Spatialization at the lot level

Figure 6 shows the kernel egg density map used for the allocation procedure. The map, calculated
as an average of all weekly maps, displays three main hotspots. Figure 7 (white background columns)
shows 10 of the 78 weekly maps. One can observe that the hotspots tended to remain in the same
places, varying mainly in intensity. When the model-derived population data was allocated to the
mean kernel map, the time-spatial series of mosquito abundance was reconstructed. This can be seen
in Figure 7 (black background columns). During the warm seasons, though, mosquito abundance was
less intense in the simulated maps than in the observed maps. The opposite occurs during the cold
seasons. These discrepancies are more prominent when the population model poorly estimates the
true population abundance.
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Fig. 5. (a) The Higienópolis district divided in census tracts (a). The census tracts within the study area are colored
and enumerated. The 10th census tract was excluded from the analysis. (b) Comparison between the estimated carrying
capacity per census tract and the mean number of eggs. The red line was increased �ve times to facilitate comparison
with the blue line. Applying a linear regression we obtain the equation C = 37.48+5.387∗mean(Eggs), with r2 = 96.5%.

Fig. 6. Average kernel map of egg density.

5. DISCUSSION

This work presents a multiscale analysis of an Aedes aegypti population model. Besides the neigh-
borhood scale, two other spatial scales were investigated, that are relevant for mosquito control: the
census tract and lot scales. The �rst approach aggregated egg density per census tract and calibrated
the C parameter according to the described methodology. The second approach used an allocation
algorithm based on a Kernel density map to generate predictions for each cell in a 10x10m cell grid.
Both approaches are applied to a geographical database for the Higienópolis neighborhood, in Rio de
Janeiro city, RJ, Brazil.

The population model implemented was an adaptation of [Ferreira and Yang 2003]. This model, as
most Aedes aegypti models, only uses the temperature as an external driver. Our results suggest that
other variables, besides temperature, are necessary to explain the two large peaks in the data. The
rainfall maybe a candidate, since a strong di�erence in the precipitation regime is observed between
the �rst and second warm seasons, which probably in�uences the carrying capacity C (Figure 7 ).

The ovitrap data showed intense spatial heterogeneity. At the census tract level, we found no
evidence of clustering, with high C areas located side by side with low C areas. This result suggests
that spatial correlation may not occur at this scale. The census tract division of space probably
is not ideal because the same census tract can present di�erent landscapes that are relevant to the

Journal of Information and Data Management, Vol. V, No. N, Month 20YY.



8 · Raquel M. Lana et. al.

mosquito. For example, [Reis 2010] showed that the study area presented very distinct patterns of
urbanization and vegetation coverage levels which do not overlap with the census tract de�nition. She
found di�erences in traps located in areas with di�erent levels of urbanization.

Fig. 7. Rainfall (mm) per week for Higienópolis, RJ between September of 2006 to February of 2008.

Fig. 8. Comparing observed (white background) and simulated (black background) infestation maps - left maps show
results for the winter season, right maps show results for the summer season.

The allocation procedure used to develop the lot-level map assumes that the spatial distribution
does not vary much through time. In Figure 8, we see that although a spatial variation occurs, it
is not as pronounced as the temporal variation (Figure 4 ). Hotspots are concentrated in four areas,
three of them are located in highly urbanized sites, with very low vegetation coverage [Reis 2010].
The allocation model was capable of capturing this overall spatial pattern. Still, as we used a single
average map, further �tting improvement could be achieved by developing short term maps instead
of a yearly map. Unpublished results suggest that a model with two carrying capacities, one for the
rainy season and one for the dry season, has a better �t. This suggests that an allocation model with
two maps may also produce better �tted models.
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The allocation top-down procedure introduced a simpli�cation. The method does not consider
the spread of mosquitoes by �ight. For this, a spatial population model would be required. [Otero
et al. 2008] propose a model that considers mosquito dispersion. The dispersion was driven by local
breeding site availability. Such spatial-temporal model would require more data with higher spatial
resolution in the order to be calibrated and validated. With the allocation approach, on the other
hand, one can combine sporadic spatial samples with continuous temporal sampling. The frequency
of such spatial samplings would depend on the desired precision. Our results suggest that more than
a map per year may be necessary since underestimation tended to occur in the warm season and
overestimation occurred in the cold season. [Otero et al. 2008] found the same pattern in the cold
season, although their model was parameterized for a temperate climate. A lot level model has been
proposed by [Magori et al. 2009], however the resolution is prohibitive to parameterize in large scales.

Other modeling initiatives based on geographical information are presented in the literature. [Tran
and Ra�y 2005] developed a Dengue transmission model in which the vector population mobility was
given by environmental information retrieved from a remote-sensing image. But this model was not
calibrated for the vector population. With our methodology, it should be possible to calibrate the
models like [Tran and Ra�y 2005] or [Otero et al. 2008].

Dengue fever is an important cause of morbidity and mortality in many tropical countries. Since
a vaccine is not available, disease control targets the mosquito population. The cost of monitoring
this population is very high and competes with other interventions such as treatment. Any e�ort to
reduce the cost of vector surveillance will have an important impact in such scenario. In this study,
we proposed an allocation procedure that can be used to optimize modeling and, consequently, the
development of more e�ective control strategies. Future work will be devoted to the use of this method
in speci�c control activities.
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