
Inout Secure DB: Maximizing security for data INside and
OUTside the database

Luiz Gomes-Jr1, Isabella Mika Taninaka1, Marcelo Rosa1, Keiko Fonseca1, Daniel Lucani2

1 Universidade Tecnológica Federal do Paraná
Curitiba – PR – Brazil

taninaka@alunos.utfpr.edu.br, {lcjunior,mrosa,keiko}@utfpr.edu.br
2 Chocolate Cloud

daniel@chocolate-cloud.cc

Abstract. As cloud services are becoming an alternative for internal IT infrastructures in many organizations,
guarantees of data privacy become a priority. This article presents a secure database system that takes privacy as a
design principle. The proposed system offers improved privacy guarantees for data in primary and secondary memory
as well as for data that is served to users as a result of SQL queries. Data in working memory is protected using
Intel’s SGX platform for trusted execution, while data in secondary memory uses network coding for secure storage.
SGX provides hardware-based processing privacy offering protection for a wide range of sophisticated attacks. Network
coding provides inter and intra-cloud privacy for stored data (by means of storage provided by Chocolate Cloud). For
privacy of data served to the outside world, we propose a flexible role-based access control mechanism that anonymizes
data at query-time. We have implemented a modular, multi-service architecture that is well suited to the advantages
and limitations of the SGX platform. We present the architecture of the system, its components and performance
evaluation.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous; H.3 [Information Storage and
Retrieval]: Miscellaneous; I.7 [Document and Text Processing]: Miscellaneous

Keywords: Data Privacy, Privacy by Design, Secure DBMS

1. INTRODUCTION

The continuous development and growing availability of cloud services are changing the relationship
between organizations and their technological infrastructures. Several commercial cloud providers
currently offer products that provide flexible scalability, high availability, and security to small and
large companies [Cusumano 2010]. These products have become very attractive given the potential
to reduce costs when contrasted with in-house development and support of IT infrastructures.

However, cloud services can introduce security risks to their clients: although transferring private
data to data centers can be secured by TLS/SSL protocols, and cloud service providers often offer
a high level of security from external attacks, internal deliberate attacks are harder to predict and
prevent. Internal personnel (e.g. a network administrator) could have full privileges to access sensitive
information. Although encrypting sensitive information would provide some protection, attackers
with physical access to the servers can still try to gain access to decrypted information in computer
memories. This problem is more evident in databases deployed in cloud service providers: even when
data is stored encrypted, during the query processing the data are decrypted in memory and are
vulnerable to attackers with physical access to the servers.

To tackle these internal security aspects we propose a secure database architecture based on the

Copyright c©2019 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 10, No. 1, June 2019, Pages 3–15.

4 · Luiz Gomes-Jr et. al.

Intel’s SGX1 technology [Costan and Devadas 2016]. SGX, a kind of trusted execution environment
(TEE), provides secure enclaves where software code runs in an encrypted region of the memory
(thus protecting data from physical attacks). As for data stored on secondary memory (disks), we
take advantage of a related project on a secure key-value store, namely Chocolate Cloud Storage
Service2. The CC Storage Service uses network coding algorithms to spread data across distinct
servers, which makes it difficult for attackers to reconstitute the encrypted data even when some
servers are compromised.

Securing data internally is critical in a cloud environment but becomes useless when data is served to
users and applications in plain form. Therefore, we consider that the design of security mechanisms for
external data access is an indispensable part of a secure database system project. To protect sensitive
information and guarantee data privacy, it is important to use data anonymization techniques and
make them an integral part of the system. Data anonymization changes the data in order to obfuscate
details that can be used to identify sensitive information. In this article we present our rule-based
access control mechanism that streamlines the management of anonymized access to the database. In
our solution, the administrator defines the anonymicity level allowed for each role. This fine-grained
access control allows the data to be anonymized when required, serving users with either the raw,
non-modified data or with a layer of anonymization – adjusted based on the user’s role profile. The
technique to anonymize the data is registered in the database as a user defined function (UDF),
providing flexibility for administrators to match roles with diverse anonymization options.

This article describes the implementation of our SQL-based database system with improved privacy
guarantees for data. The goal is to provide a unifying solution that preserves privacy both inter-
nally (secure processing of data) and externally (automatic data anonymization when users query the
database). The system’s architecture is based on multiple, complementary services. This strategy
simplifies the development using the SGX technologies (given current memory allocation limitations)
but also makes the system more flexible and scalable.

The remainder of the article is organized as follows: Section 2 presents important concepts and
research related to this proposal. Section 3 describes the architecture of the system and the imple-
mentation of the internal mechanisms. Section 4 details the experiments developed to test the system’s
performance. Finally, Section 5 concludes the article with final considerations and future work.

2. BACKGROUND AND RELATED WORK

Regarding the system’s internal security, there have been several proposals for databases employing
traditional encryption strategies [Shmueli et al. 2009; Basharat et al. 2012]. While these proposals offer
a reasonable level of security for data stored in secondary memory, the systems are still vulnerable
to physical attacks in which the opponent has direct access to the computer’s primary memory.
Homomorphic encryption [Gentry 2009], a theoretical solution for this problem, has a performance
penalty of orders of magnitude, making it unsuitable for database workloads.

Hardware support for encrypted in-memory processing is an answer for the aforementioned per-
formance issues. Intel’s SGX [Costan and Devadas 2016] is currently the most comprehensive and
commercially available implementation of a trusted execution environment (TEE). As a TEE, it has
the following features: (i) containing a hardware encoded cryptographic key (known only by the
module); (ii) remote attestation (which means two enclaves can trust each other through a modified
Sigma protocol over a Diffie-Helman Key Exchange - DHKE - allowing them to exchange crypto-
graphic keys), (iii) sealing data (which means once a data is sealed by the module, it can only be
unsealed by that module). From the developer’s perspective, it ensures that nothing can tamper with

1https://software.intel.com/en-us/isa-extensions/intel-sgx
2http://www.chocolate-cloud.cc/

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

Inout Secure DB · 5

the code running inside such modules. It also changes the way software are developed in order to run
safely from external attacks.

Intel’s SGX has been employed in several high profile projects, such as Microsoft’s Haven [A. Bau-
mann and Hunt 2015] and SecureCloud [Brito and Fetzer 2018]. The interest from the industry and
research communities contributes to the evaluation and improvement of the security and performance
guarantees.

A practical approach to build a secure database is to use simpler models for querying and storage,
which reduces the amount of code to be protected. The most basic model of NoSQL database is
the key-value, which uses arbitrary keys to identify values stored as uninterpreted byte arrays. This
was the approach taken by the Chocolate Cloud project [Sipos et al. 2017]. The service offers secure
processing and communication through the use of the SGX architecture and guarantees confidentiality
for the storage using network coding algorithms.

Network coding is based on splitting the information of an item into parts stored at different
locations. The reconstruction of the original item can only be done by retrieving multiple parts. This
strategy guarantees confidentiality even when some of the storage servers are compromised [Sipos
et al. 2017].

In our proposal, we are using the Chocolate Cloud Storage Service to provide secure data storage and
retrieval. We are then building more expressive modules to provide more flexibility while constraining
intra-module complexity and system vulnerability. To provide more flexibility to users, we implement
a service that translates SQL queries into Chocolate Cloud’s key-value query API.

There have been other proposals to bridge the relational model with simpler NoSQL models. For
example, [Schreiner et al. 2015] proposes mappings for key-value stores and document databases.
Another approach is the new class of databases labeled as NewSQL [Pavlo and Aslett 2016], which
focus on providing BigData capable systems that retain SQL and integrity guarantees. However these
proposals do not address the security issues described here.

The other aspect of security addressed in this work regards data that is served to the outside world
through queries. The usual strategy in this case is to anonymize the data before delivery. There are
several strategies to provide guarantees of anonymity to data, with some of the most used approaches

Fig. 1. Inout DB architecture

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

6 · Luiz Gomes-Jr et. al.

being based on k-anonymity and entropy [Kelly et al. 2008]. Anonymization can also be applied to
unstructured data, a notable example being blurring of people’s faces in images and videos based on
machine learning algorithms for face detection [Garcia and Delakis 2004]. Given the wide range of
anonymization techniques, we defined, as a design principle, to being agnostic in relation to the specific
strategy to anonymize the data being delivered to users. In our proposal, the database administrator
controls which anonymization strategy is more adequate for a given subschema of data. We provide
fine-grained configuration of strategies based on a Role-based Access Control [Ferraiolo et al. 1995]
mechanism.

3. SYSTEM DESIGN

The main principles considered when designing the proposed system are:

—Provide the highest level of privacy guarantees for data in all stages of storage and processing

—Simplified integration of data anonymization options for administrators

—Offer a SQL-based query language for users

—Modularization of code base

The following sections describe how these design principles were met and detail our implementation
strategies.

3.1 Architecture

We are building our secure database service in a modular architecture. Independent modules are
easier to fit in the enclave’s limited memory and can be replicated for scalability. Figure 1 shows the
components of the architecture. Users issue queries to the Access Control Microservice, responsible
for role-based access and privacy control. This microservice offers regular access control, matching
roles to schema definitions, and adds privacy options, allowing access to anonymized elements of
the database. The SQL Translation Engine handles SQL queries and interacts with the underlying
key-value store module to answer requests. The translation engine receives queries from the Access
Control Microservice, parses the contents and makes the necessary calls to the underlying data store
to compose the results.

To simplify the deployment of our algorithms in SGX-enabled environments, we used SCONE

Fig. 2. Access Control microservice - Internal modules

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

Inout Secure DB · 7

[Arnautov et al. 2016]. SCONE is a secure container mechanism for Docker3 that uses the SGX
trusted execution to protect container processes from outside attacks.

3.2 Attack model

We consider that both the hardware and the operational system running in the cloud machines can
be tampered with: this includes side-channel attacks to the processors [Oleksenko et al. 2018] and
unauthorized root access by cloud providers [Richter et al. 2016], for example.

All communications with our secure database service - running inside enclaves - are performed over
TLS/SSL protocols. All private keys used by such a service are not hardcoded: they are stored and
managed by SCONE CAS/LAS services. Such services also run inside enclaves and provide keys to
our software after a remote attestation – a process where two different enclaves running in different
machines check if they trust each other.

Therefore, only trusted applications outside the cloud can securely interact with our secure database
service, and the data processed by such a service can not be accessed by unauthorized users: this
feature is granted by Intel SGX technology.

3.3 Automatic Data Anonymization

CREATE USER maria; GRANT fullaccess TO maria;
CREATE USER joao; GRANT noaccess TO joao;

Fig. 3. An example of user creation and role assignment

CREATE TABLE teachers(name, age, department);
CREATE ROLE fullaccess; CREATE ROLE noaccess;
GRANT ALL PRIVILEGES ON teachers TO fullaccess;
GRANT SELECT(anon(name), age, department) ON teachers TO noaccess;

Fig. 4. An example of role creation and privilege granting

The Access Control microservice is the interface between users and the underlying data services.
Figure 2 shows the internal modules of the service. Database administrators use the service to assign
access privileges to users, which are stored in the data dictionary. Users issue SQL queries, which are
parsed and checked for compatibility with the user’s privileges. Accepted queries are redirected to the
SQL Translator microservice, which retrieves the data and compiles the result set. Before returning
the results to the user, the Access Control microservice may need to process the data to comply with
the anonymity requirements.

In the proposed Role-based Access Control mechanism, the database administrator defines roles
to be assigned to users. When a new user is created, s/he must be given a role so s/he can access
the information stored in the database. This role might have restricted access to several tables
and attributes, enabling or disabling certain actions by the user. Figure 3 shows the SQL-inspired
commands for the creation of users and granting each one of them different roles. Since each user has
a different role, the queries that they can send to the database are different and the results will also
be different.

3https://www.docker.com/

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

8 · Luiz Gomes-Jr et. al.

query : create | grant | select | insert;
create : create_table | create_role | create_user;
grant : grant_role | grant_privilege;
create_role : CREATE ROLE role_name_create;
create_user : CREATE USER user_name_create;
grant_privilege : GRANT privilege_type

ON TABLE? table_name_grant TO role_name_grant_priv;
grant_role : GRANT role_name_grant_role TO user_name_grant_role;
privilege_type : ALL PRIVILEGES #Priv_All

| privilege_list #Priv_Others;
privilege_list : table_privilege (COMMA table_privilege)*;
table_privilege : DELETE #Priv_Delete

| INSERT nyy#Priv_Insert
| REFERENCES attribute_list? #Priv_References
| SELECT select_item_list? #Priv_Select
| UPDATE attribute_list? #Priv_Update;

attribute_list : [attr_name_grant (COMMA attr_name_grant)*];
select_item_list : [select_item (COMMA select_item)*];
select_item : user_function cache? [attr_name_grant_select]

| attr_name_grant_select;

Fig. 5. Simplified grammar definitions

When creating the database schema (tables/attributes), the administrator can specify several levels
of access that can be granted to a role, varying from full access to a table’s attributes, anonymized
versions of attributes or no access at all. To specify that a given role has restricted access to an
attribute, the administrator chooses the anonymization function that the system has to apply at
query-time.

Figure 4 shows an example of table and role creation as well as the operations that associate them.
In the example, the role fullaccess can see and edit the whole table teachers, while noaccess can only
see an anonymized version of the attribute name derived from the function anon().

Figure 5 shows a simplified definition of our grammar based on Backus–Naur notation (as used
by the ANTLR4 parse generator). The grant_privilege rule is used to assign an access level to a
role. The select_item rule encompasses the most important options available for the administrators
when granting privileges to a privacy-sensitive table attribute. The administrator defines the attribute
name for the grant and chooses (i) the anonymization function to be applied, and (ii) whether the
anonymized contents of the attribute must be cached (details below).

The normal behavior of the select query, when retrieving content for a user whose role is at the
anonymized access level, is to anonymize the content as the query is being processed. However, if
the cache option is used when granting access, the first time a select query is issued by a user with
this role, the anonymization will happen during the processing of the query. The result will also be
stored together with the original content. If subsequent queries request the same content with the
same anonymization level, the content delivered will be the cached one and the anonymization during
the processing will not be needed. This mechanism is especially important for computationally heavy
anonymization procedures such as blurring of faces in images or videos (examples are provided in
Section 4).

4http://www.antlr.org/

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

Inout Secure DB · 9

Fig. 6. SQL Translation service - Internal modules

a) INSERT INTO reading
(clientID, timestamp, read_1 ... read_30);

b) key: reading | <clientId> | <timestamp>
value: [<read_1> ... <read_30>]

Fig. 7. Example an insert query (a) mapping into a key-value pair (b). ClientID and timestamp compose the primary
key of the table and become part of the mapped key. The table has 30 attributes (omitted for clarity).

3.4 SQL Translation

Figure 6 shows the internal parts of the SQL translation module and its interactions with the key-value
store. Data definition (DDL) queries are handled by the parser and have their settings stored in the
data dictionary. The schema and keys define how each tuple will later be mapped to the key-value
model.

When a data manipulation (DML) query is received, a dictionary lookup is performed to determine
the mappings between the models. For insertion queries, the specified row has to be transformed
into a key and a value to be inserted in the key-value store. In our approach, a key is composed
by a concatenation of the table name and the primary key(s) (a predefined separator is used for
readability). Tuple attributes are also concatenated to be stored as the value. Figure 7a shows an
insert query for a table named reading that has the two first attributes as primary keys. Figure 7b
shows the resulting key-value pair generated. The key/value pair is then submitted to the Chocolate
Cloud Storage Service. For selection queries, the key is assembled with both the table name and the
keys presented in the query, potentially with a wildcard character (*) to retrieve all keys matching
the prefix. Currently only queries with conditions over the primary keys are supported. More flexible
selects and joins are upcoming developments.

The translation module was implemented in ANSI C. The module issues REST requests to a Choco-
late Cloud Storage Service. A wider coverage of the SQL language will be implemented with extra
indexes for non-key attributes – stored in the key-value database. Joins on the primary keys can be
implemented efficiently since the Chocolate Cloud Storage Service returns keys in alphabetical order,
enabling the use of a merge-join algorithm. Other joins can be implemented using the aforementioned
extra indexes or full table scans when indexes are not available.

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

10 · Luiz Gomes-Jr et. al.

CREATE USER mika; CREATE ROLE admin;GRANT admin TO mika;
CREATE USER maria; CREATE ROLE nocache; GRANT nocache TO maria;
CREATE USER joao; CREATE ROLE withcache; GRANT withcache TO joao;

Fig. 8. Basic configuration of users for all tests

3.5 Network Coded Storage

This service focuses on managing reliable distributed storage and data privacy of critical or confiden-
tial data. It also provides support for standard processing and search operations on data as well as
a flexible storage capability for various data types. Our main goal is to deliver a storage system that
enables users and applications to trade-off data availability (for efficient processing) and data redun-
dancy/reliability (for efficient storage), but without compromising privacy during communications,
processing, or storage.

This service creates datastores to store objects (key-value pairs) in them. The datastores allow us
to separate objects into different namespaces, which can rely on the same level of data protection
and overall storage policy at the time of storing the data. The system supports configurable settings,
including: (a) number of nodes used to store members of the datastore in a distributed fashion, which
is related to the reliability provided by the system; (b) number of nodes that can fail before data loss
for the members of the datastore, which determines the amount of redundancy and storage cost in
the system; and (c) data locality support, which can speed up retrieval of data for processing.

At its core, this service has a number of micro-services to handle incoming/outgoing data, reliability
management, storage in the system, and repairs of node or device losses. A critical component for
reliability management is the network coding micro-service, which carries out encoding, decoding
and recoding operations within the Intel SGX enclave. The use of Random Linear Network Coding
(RLNC) [Ho et al. 2006] is key to reducing the cost of storage of the data, compared to standard
replication strategies, while also maintaining a reasonable use of network resources during the repair
of lost devices in the system. Network coding allows the system to take an original data of size qL bits
and stripe it into g fragments of L bits before starting the encoding process. To encode the data and
generate g+r coded fragments (r represents the added redundant coded fragments), the micro-service
performs a linear combination over a finite field of GF (28) using coding coefficients drawn uniformly
at random from the elements of the field. This micro-service also carries out a decoding check to
guarantee that any g coded fragments will be sufficient to decode the data. The decoding method is
implemented using Gaussian elimination essentially solving a system of linear equations considering
the coding coefficients of the specific coded fragments collected at the time of decoding. Although
encoding and decoding are used for storing and accessing data, i.e., operations triggered by the system’s
users, our network coded service also supports a repair functionality triggered by the service itself upon
detection of node or device losses. This repair is carried out using the ability of network codes to
recode data without the need to decode, which translates in a distributed recombination of coded
fragments and reduced traffic between racks and nodes in the network when repairing losses [Dimakis
et al. 2010]. We refer the reader to [Paramanathan et al. 2013] for a tutorial on network coding. For
more performance details on the network coded storage service, we refer the reader to [Lucani et al.
2018].

4. EXPERIMENTS

To test the performance of our proposed microservices, we set up tests based on two real-world
scenarios. The first regards video footage from security cameras in public locations. The videos
present a clear privacy concern since unauthorized persons should not have access to the raw footage.
The second scenario is that of an electric power company that collects energy usage summaries several

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

Inout Secure DB · 11

CREATE TABLE VIDEO(file);
GRANT ALL PRIVILEGES ON VIDEO TO admin;
GRANT SELECT(faceBlur(file)) ON VIDEO TO nocache;
GRANT SELECT(faceBlur(file) WITH CACHE) ON VIDEO TO withcache;

Fig. 9. Simplified commands for configuration of access levels for the videos

CREATE TABLE fasor(client, current A, current B, ...);
GRANT ALL PRIVILEGES ON fasor TO admin;
GRANT SELECT(anon(name)) ON fasor TO nocache;
GRANT SELECT(anon(name) WITH CACHE) ON fasor TO withcache;

Fig. 10. Simplified commands for configuration of roles access for fasor (real table has 32 attributes)

times per day for thousands of customers. The data are aggregated in our database service and
consumed by operational and analysis applications such as billing, fraud detection, and quality of
service evaluation.

4.1 Data Anonymization Module

For the experiments of the data anonymization module, we set up users and access roles as shown
in Figure 8. The main goal of these tests is to assess the cache mechanism for the anonymization
procedures. The role nocache is intended to represent access without the caching mechanism, while
the role withcache represents the use of the mechanism.

The commands for table creation and privilege assignment for the video use case are shown in Figure
9. The user admin has unrestricted access to the footage while the roles withcache and nochache can
only access the video processes by the anonymization function faceBlur().

Figure 10 shows the configuration of the tests using a table called fasor that contains the energy
consumption readings for the tests of the second use case. In this case, we use a simple word scrambling
function anon() to represent a simple anonymization function. Other settings are similar to those of
Figure 9.

The results of the experiments with the video anonymization are in Figure 11. For this computa-
tionally heavy anonymization, the benefits of the caching mechanism are clear. A query that requires
the execution of the anonymization function takes several times longer to complete. The figure also
shows that the overhead of the cache mechanism is minimal when compared to a query that has full
access to the data.

For the experiments of our second scenario, we populated the table fasor and issued a total of
100 selects for each test (considering that the processing time for the anonymization function is
minimal). In this experiment we also assessed the impact of running the microservice inside an SGX
enclave (using SCONE). The results of the experiments are shown in Figure 12. The chart confirms
the benefits of the caching mechanism but, most importantly, gives insight into the performance
degradation under SGX. When the data are retrieved without the anonymization (i.e. the user has
full access or data have been already cached), query processing under SGX/Scone is slower. However,
when the anonymization procedure is called, the performance under SGX/Scone is better for the
procedures tested (word scrambling, md5 hashing). This unexpected behavior is probably due to
Scone using PyPy5, a version of the Python language with a just-in-time code compiler.

5https://pypy.org/

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

12 · Luiz Gomes-Jr et. al.

4.2 SQL Translation Module

Number of queries Time without SGX Time with SGX
Total Per Query Total Per Query

10 0.19 0.0191 0.35 0.0354
50 0.25 0.0050 0.58 0.0117
100 0.49 0.0049 1.16 0.0116
1000 5.10 0.0051 11.67 0.0117
10000 51.00 0.0051 117.86 0.0118
100000 523.35 0.0052 1178.59 0.0118

Table I. Performance tests for select queries (in milliseconds)

Since the Query Translator microservice is a potential performance bottleneck in our infrastructure,
we developed extensive tests based on a real scenario and real data. Here we focus on tests of the
translation engine with and without the use of the SGX environment (SCONE). For the tests, we
used queries for insertion (Figure 7) and selection of power usage summaries (for the table fasor in
our second use case). The goal is to show the impact of using SGX in the execution of the query
translation algorithm.

Table I shows performance tests for select queries over our service. We show results for increasing
numbers of elements in the queries. The column Time without SGX represents the time taken in
the translation of the queries, including identifying query type, parsing, retrieving metadata and
building the respective key-value queries, without the use of an SGX enclave. The column Time
with SGX represents the time to process the queries inside an enclave (using Scone). The tests show
a performance penalty of around 100% when using SGX. For the dataset tested, the performance
degrades linearly with the increase in the number of queries.

Figure 13 shows histograms for Insert query times with and without SGX. Although queries running
on SGX in general take longer to complete, the fastest SGX queries are comparable with the slowest
non-SGX queries. Figure 14 shows results for total Select query processing times. The graph shows
the time taken for processing queries with 10, 100, 1000, and 10,000 elements. The lines, drawn for

Fig. 11. Evaluation of performance (total time) for SELECT statement using cache for video select

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

Inout Secure DB · 13

Fig. 12. Evaluation of performance (total time) for SELECT statements

reference, show how queries on SGX take longer to complete, reaching more than twice the running
time for the larger queries. These tests also demonstrate that the impact of SGX on performance is
linear.

5. CONCLUSION

This article described the development of a secure database system with improved privacy guarantees.
Our goal is to combine solutions for internal and external data security in a unified framework.
Our main contributions are: (i) a modularized architecture intended to simplify SGX integration
and improve scalability; (ii) SGX-based implementations of the Access Control and SQL translation
modules; (iii) an integrated role-based access control mechanism that streamlines data anonymization
in SQL queries.

To assess the performance of our system, we developed experiments based on two real world sce-

Fig. 13. Evaluation of performance for INSERT statements

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

14 · Luiz Gomes-Jr et. al.

Fig. 14. Evaluation of performance for SELECT statements

narios. Our experiments show the performance impact associated with data anonymization and SGX-
based execution. While the impact is considerable, we believe that it is tolerable for scenarios with
sensitive data. We also demonstrated how our transparent caching mechanism can help curb perfor-
mance degradation for heavy anonymization functions.

Many of the security features implemented in this research rely on SGX, a proprietary technology
from Intel. As such, the proposed system inherits SGX’s offered attack surface, present and future,
which might pose security threats if the technology is compromised. With the increasing demand
for privacy solutions and interest from the industry and research communities, we believe that any
design issues will be addressed with urgency, especially considering that currently there are no other
technologies that provide such level of privacy with reasonable performance penalties.

Another possible shortcoming is the dependency of a single vendor (Intel). While this might be a
limiting factor in the future, it is important to notice that other processor manufacturers are imple-
menting similar concepts in their architectures. ARM has explored TEEs for several years, releasing
in 2002 the specification of TrustZone [ARM 2009] for the ARMv6Z sub-architecture. AMD is also
developing its AMD Memory Encryption [Kaplan and Powell 2013]. As the technologies mature, we
expect industry standards to enable our solution to be implemented across vendors.

Future work in the system include supporting more elaborate SQL queries, query processing opti-
mization, and more performance and security tests. We also plan to assess parallel execution of our
microservices to improve scalability.

ACKNOWLEDGMENTS
This research is being performed in the context of the SecureCloud project. The SecureCloud project has received
funding from the European Union’s Horizon 2020 research and innovation programme and was supported by the Swiss
State Secretariat for Education, Research and Innovation (SERI) under grant agreement number 690111. This work
was partially funded by the EU-BR SecureCloud project (MCTI/RNP 3rd Coordinated Call). This work has been
supported in part by the INCOM project (No. 8057-00059B) financed by the Innovation Fund Denmark.
Copyright c©2019 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

Inout Secure DB · 15

REFERENCES

A. Baumann, M. P. and Hunt, G. Shielding applications from an untrusted cloud with haven. ACM Trans. Comput.
Syst., 2015.

ARM. Security technology - building a secure system using trustzone technology. Tech. rep., ARM Technical White
Paper, 2009.

Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., Lind, J., Muthukumaran, D.,
O’Keeffe, D., Stillwell, M., Goltzsche, D., Eyers, D. M., Kapitza, R., Pietzuch, P. R., and Fetzer,
C. Scone: Secure linux containers with intel sgx. In 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, K. Keeton and T. Roscoe (Eds.). USENIX
Association, pp. 689–703, 2016.

Basharat, I., Azam, F., and Muzaffar, A. W. Database security and encryption: A survey study. International
Journal of Computer Applications 47 (12), 2012.

Brito, A. and Fetzer, C. Securecloud: Secure big data processing in untrusted clouds. In DSN Workshops. IEEE
Computer Society, pp. 53–54, 2018.

Costan, V. and Devadas, S. Intel sgx explained. Tech. Rep. 2016/086, Cryptology ePrint Archive, 2016.
Cusumano, M. Cloud computing and saas as new computing platforms. Commun. ACM 53 (4): 27–29, Apr., 2010.
Dimakis, A. G., Godfrey, P. B., Wu, Y., Wainwright, M. J., and Ramchandran, K. Network coding for
distributed storage systems. IEEE Transactions on Information Theory 56 (9): 4539–4551, Sept, 2010.

Ferraiolo, D., Cugini, J., and Kuhn, R. Role based access control (RBAC): Features and motivations. In Annual
Computer Security Applications Conference. IEEE Computer Society Press, 1995.

Garcia, C. and Delakis, M. Convolutional face finder: a neural architecture for fast and robust face detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence 26 (11): 1408–1423, Nov, 2004.

Gentry, C. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-first Annual ACM
Symposium on Theory of Computing. STOC ’09. ACM, New York, NY, USA, pp. 169–178, 2009.

Ho, T., Medard, M., Koetter, R., Karger, D. R., Effros, M., Shi, J., and Leong, B. A random linear network
coding approach to multicast. IEEE Transactions on Information Theory 52 (10): 4413–4430, Oct, 2006.

Kaplan, D. and Powell, J. AMD memory encryption. Tech. rep., AMD, 2013. http://amd-dev.wpengine.netdna-
cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf.

Kelly, D. J., Raines, R. A., Grimaila, M. R., Baldwin, R. O., and Mullins, B. E. A survey of state-of-the-
art in anonymity metrics. In Proceedings of the 1st ACM workshop on Network Data Anonymization, NDA 2008,
Alexandria, VA, USA, October 31, 2008, S. Antonatos, M. Bezzi, E. Boschi, B. Trammell, and W. Yurcik (Eds.).
ACM, pp. 31–40, 2008.

Lucani, D. E., Feher, M., Fonseca, K., Rosa, M., and Despotov, B. Secure and scalable key value storage
for managing big data in smart cities using intel sgx. In 2018 IEEE International Conference on Smart Cloud
(SmartCloud). pp. 70–76, 2018.

Oleksenko, O., Trach, B., Krahn, R., Silberstein, M., and Fetzer, C. Varys: Protecting SGX enclaves from
practical side-channel attacks. In 2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX Asso-
ciation, Boston, MA, pp. 227–240, 2018.

Paramanathan, A., Pedersen, M. V., Lucani, D. E., Fitzek, F. H. P., and Katz, M. Lean and mean: network
coding for commercial devices. IEEE Wireless Communications 20 (5): 54–61, October, 2013.

Pavlo, A. and Aslett, M. What’s really new with newsql? SIGMOD Record 45 (2): 45–55, 2016.
Richter, L., Götzfried, J., and Müller, T. Isolating operating system components with intel sgx. In SysTEX’
16. Trento, Italy, 2016.

Schreiner, G. A., Duarte, D., and dos Santos Mello, R. Sqltokeynosql: a layer for relational to key-based nosql
database mapping. In iiWAS, G. Anderst-Kotsis and M. Indrawan-Santiago (Eds.). ACM, pp. 74:1–74:9, 2015.

Shmueli, E., Vaisenberg, R., Elovici, Y., and Glezer, C. Database encryption: an overview of contemporary
challenges and design considerations. SIGMOD Record (ACM Special Interest Group on Management of Data) 38 (3):
29–34, Sept., 2009.

Sipos, M., Braun, P. J., Lucani, D. E., Fitzek, F. H. P., and Charaf, H. On the effectiveness of recoding-
based repair in network coded distributed storage. Periodica Polytechnica.Electrical Engineering and Computer
Science 61 (1): 12–21, 2017. Copyright - Copyright Periodica Polytechnica, Budapest University of Technology and
Economics 2017; Last updated - 2017-03-09.

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

