
A Parallel and Distributed Approach to the Analysis of Time
Series on Remote Sensing Big Data

Sávio S. T. de Oliveira, Luiz M. L. Pascoal, Marcelo de C. Cardoso,
Elivelton F. Bueno, Vagner J. S. Rodrigues, Wellington S. Martins

Universidade Federal de Goiás, Goiânia-GO, Brazil
{savioteles,luizmlpascoal}@gmail.com, {marcelo.cardoso,elivelton.bueno,vagner}@gogeo.io,

wellington@inf.ufg.br

Abstract. The era of Remote Sensing Big Data has arrived. Indeed, massive amounts of remotely sensed data have
been collected by different countries from a large number of Earth observation spaceborne and airborne sensors. They
allow us to identify meaningful changes in the Earth’s surface that may affect whole ecological systems and be a threat
to biodiversity. Crucial to that end is time series analysis of remote sensing images, for which the Time-Weighted
Dynamic Time Warping (TWDTW) algorithm stands out as one of the most used approaches found in the literature so
far. However, the computational complexity of the TWDTW algorithm makes it rather inefficient for Remote Sensing
Big Data. Also, the huge volume of high spatial-temporal resolution remote sensing data cannot be handled by a
single computing node. To overcome that drawback, this work proposes a parallel algorithm, named SP-TWDTW
(Spatial Parallel TWDTW), that allows for the analysis of large scale time series using Manycore architectures (GPU).
In order to process massive time series of remote sensing data in a cluster of computers, an approach for distributing
the TWDTW processing is introduced in this paper.

Categories and Subject Descriptors: D.1.3 [Software]: Concurrent Programming; H.2.4 [Database Management]:
Miscellaneous; C.2.4 [Computer-communication networks]: Distributed Systems—Distributed databases; Dis-
tributed applications

Keywords: Big Data, Parallel Programming, Remote Sensing, Time Series Analysis

1. INTRODUCTION

Never before in the current era has the Earth’s surface changed so fast. While urban and agricultural
areas greedily expand into the surrounding natural space, whole forest ecosystems are diminishing at
an alarming speed. To identify those changes and highlight their dynamics, the analysis of remotely
sensed image time series has become an essential technique. In fact, time series analysis is now
being embedded in many systems used by the global community addressing questions on sustainable
environment [Bégué et al. 2018]. The ever-increasing volume of satellite remote-sensing data shows
significant potential for scientists to explore it through time series analysis [Huang et al. 2017]. Remote
sensing data are clearly showing the characteristics of Big Data. We are now living in the age of Remote
Sensing Big Data [Chi et al. 2016].

Dynamic time warping (DTW) has been widely used as a distance measure for time series classifi-
cation [Bagnall et al. 2017]. However, it is not well suited for time series analysis of land use and land
cover data because it disregards the temporal range when finding the best alignment between two
time series [Maus et al. 2019]. The Time-Weighted Dynamic Time Warping (TWDTW) algorithm
performed well in identifying land use and land cover with better results than other DTW variations
for searching occurrences of patterns in time series of remote sensing data [Maus et al. 2019].

Copyright c©2019 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 10, No. 1, June 2019, Pages 16–32.

A Parallel and Distributed Approach to the Analysis of Time Series on Remote Sensing Big Data · 17

The TWDTW algorithm has a high computational cost, with time complexity of O(n2), where n is
the length of the longest time series being analyzed, making its use unfeasible in Remote Sensing Big
Data [Xiao et al. 2013]. In this scenario it is necessary to parallelize the TWDTW algorithm. However,
the data dependence of it is high and is a challenge to exploit the fine-grained parallelism. Besides
that, the huge volume of high spatial-temporal resolution remote sensing data cannot be handled by
a single computing node [Huang et al. 2017].

This paper proposes a new massive parallel algorithm, named Spatial Parallel TWDTW (SP-
TWDTW), based on TWDTW, that explores the Manycore (GPU) architectures addressing the
TWDTW data dependency. In order to support time series analysis in Remote Sensing Big Data, a
new architecture is introduced for processing the time series analysis algorithm in a cluster of com-
puters, where the memory spaces are automatically managed so that they do not exceed capacity.
Unlike TWDTW, SP-TWDTW takes into account the temporal axis and the spatial autocorrelation
to determine the land use mapping in a given region. Techniques which ignore spatial autocorrelation
typically perform poorly in the presence of spatial data [Vatsavai 2008].

The main contributions of this work are:

—A new massive parallel algorithm for spatio-temporal analysis of remote sensing images.
—The inclusion of the spatial dimension in time series classification.
—An automatic system to manage the memory usage between CPU and GPU spaces.
—An architecture for processing time series analysis in a distributed environment.
—Experimental work with real and synthetic data

This paper is an extended version of [de Oliveira et al. 2018], presented in the XIX Brazilian
Symposium on GeoInformatics (GEOINFO 2018). In particular, the present work introduces a new
architecture for processing TWDTW in a cluster of computers to support the time series analysis for
Remote Sensing Big Data. This paper is organized as follows. Section 2 summarizes the background,
related work and existing systems that support parallel processing of time series analysis. Section 3
describes the TWDTW algorithm used as the basis for this work. The new algorithm proposed in this
paper is presented in Section 4 for parallel and distributed processing of time series analysis. Section
5 validates the parallel and distributed solution proposed in this work. Finally, Section 6 presents
some conclusions and future work.

2. BACKGROUND AND RELATED WORK

In this section, we summarize the background, related work and existing systems that support parallel
processing of time series analysis. In Section 2.1, we review methods for the time series analysis of
remote sensing data using the DTW algorithm. In Section 2.2 we elaborate on the current work for
processing time series analysis with parallel architectures. Section 2.3 introduces some algorithms to
improve the time series analysis through spatial interpolation.

2.1 Time Series Analysis

Time series analysis comprises methods for extracting important statistics and characteristics from
time series data. The DTW allows the alignment between two time series, even if they have different
lengths or they are not aligned on the time axis. Given the time series A and B, the distance between
them is computed as

DTW (A,B) = min

√√√√ K∑
k=1

wk (1)

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

18 · Sávio S. T. de Oliveira et. al.

where wk = (i, j) represents the association between the i-th and j-th observations, ai and bj , re-
spectively time series A and B, which are equivalents according to the Euclidean distance, d(i, j) =√

(ai − bj)2. The sequence w1, w2, ..., wk represents the association between pairs of observations from
the two given time series, denoted by the adjustment path. Equation 1 is subject to the following
conditions: i) The first observation of one series must match the first observation of the other series,
w1 = (1, 1), and the last observation of one series must match the last observation of the other,
wk = (m,n); ii) Given wk = (i, j) and wk+1 = (i′, j′) then 0 ≤ i′ − i ≤ 1 and 0 ≤ j′ − j ≤ 1.

Several techniques of time series analysis have been previously proposed [Cressie and Wikle 2015].
Some methods process each image independently and compare the results for different time in-
stances [Gómez et al. 2011; Lu et al. 2016]. The technique presented in [Costa et al. 2018] builds
a time series of each pixel and processes them independently. In the end, the algorithm chooses some
seed pixels in the image and calculates the distance between the time series of these seeds to their
neighbors using the DTW method, grouping similar neighbors. Some papers [Petitjean et al. 2012;
Petitjean and Weber 2014] proposed non-parallel methods using DTW to analyze time series of satel-
lite images. Petitjean et al. [2012] and Petitjean and Weber [2014] used a maximum time delay to
avoid time distortions based on the date of the satellite images.

2.2 Parallel and Distributed Approaches for Time Series Analysis

The rapid growth of Multicore/Manycore processors has attracted the attention of many researchers.
Verbesselt et al. [2010] and Jamali et al. [2015] proposed algorithms for supporting parallel execution
in Multicore architectures using the library foreach1 from R language. The TWDTW (described in
Section 3) method [Maus et al. 2016] also uses foreach package to parallelize the execution. The
papers [Xiao et al. 2013; João Jr et al. 2017; Zhu et al. 2018] presented parallel solutions to analyze
time series using Manycore architectures (GPUs), but time series analysis in remote sensing was not
addressed.

The unprecedented proliferation of data has posed significant challenges in managing, processing
and interpreting this large volume of data. Due to the emergence of high-performance computing
clusters, the Apache Spark [Zaharia et al. 2010] cluster implementation has been chosen to compute
distributed DTW efficiently, achieving nearly linear speedup with DTW [Shabib et al. 2015]. The
Apache Hadoop framework [White 2009] is also used for the distributed processing of DTW for fast
similarity search based on DTW with the MRDTW (Map Reduce based DTW) platform [Yin et al.
2015]. For remote sensing time series analysis, a map/reduce architecture was proposed [Camara et al.
2016] for distributed processing of the TWDTW algorithm in the Hadoop ecosystem.

Great efforts have been made towards the incorporation of novel ideas for searching and mining
massive time series under Dynamic Time Warping (DTW) [Rakthanmanon et al. 2013]. Xu et al.
[2016] designed, implemented, and evaluated a time series analysis approach that is able to decompose
large scale mobile traffic into regularity and randomness components. Huang et al. [2017] introduced
a novel in-memory computing framework using Apache Spark on Hadoop Yarn model with a focus
on parallel processing of massive remote sensing data, but not handling time series. Some papers
[Chebbi et al. 2018; Ma et al. 2015; Chi et al. 2016; Liu et al. 2018] describe the most challenging
issues in managing, processing, and efficient exploitation of big data for remote sensing problems.
Chebbi et al. [2018] focus on the comparison of two well-known platforms of Remote Sensing Big
Data namely Hadoop and Spark. Liu et al. [2018] makes an attempt to introduce the latest theory,
methods and applications to manage, exploit and analyze remote sensing big data. Ma et al. [2015]
and Chi et al. [2016] give an overview of the Big Data problems, including the analysis of Remote
Sensing Big Data challenges, current techniques and works for processing remote sensing big data.
Many platforms have been proposed to deal with big data in remote sensing, but no solution was

1https://cran.r-project.org/web/packages/foreach/index.html

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

A Parallel and Distributed Approach to the Analysis of Time Series on Remote Sensing Big Data · 19

found for time series processing on Remote Sensing Big Data using distributed and massively parallel
(GPU) architectures.

2.3 Spatial Interpolation

Some papers perform the time series analysis through spatial interpolation [Li and Heap 2014], which
is the process of using points with known values to estimate values of other unknown points. Methods
for time series analysis which ignore spatial autocorrelation typically perform poorly in the presence
of spatial data [Vatsavai 2008]. Several methods have been used for it, of which the most important
are:

(1) Nearest Neighbor: the value of each point is determined by the nearest points [Mitas and
Mitasova 1999];

(2) IDW: it weights the points closer to the prediction location greater than those farther away [Shep-
ard 1968];

(3) Kriging: assumes that the distance or direction between sample points reflects a spatial correla-
tion that can be used to explain variation in the surface [Stein 2012].

3. TIME-WEIGHTED DYNAMIC TIME WARPING (TWDTW)

The DTW algorithm does not perform well for time series analysis of remote sensing images because
it disregards the temporal range when finding the best alignment between two time series classifica-
tions [Maus et al. 2016]. So, the TWDTW [Maus et al. 2016] was proposed as a variation of the DTW
algorithm. The TWDTW is sensitive to seasonal changes of natural and cultivated vegetation types
and considers inter-annual climatic and seasonal variability. The TWDTW method computes the cost
matrix Ψn,m given the pattern U = (u1, ..., un) and time series V = (v1, ..., vm). The elements ψi,j of
Ψn,m are computed by adding the temporal cost ω, becoming ψi,j = |ui − vj | + ωi,j , which ui ∈ U
∀ i = 1, ..., n and vj ∈ V ∀ j = 1, ...,m. To calculate the time cost, the logistic model is used with a
midpoint β and a bias α presented in Equation 2.

ωi,j =
1

1 + e−α(g(ti,tj)−β)
, (2)

in which g(ti, tj) is the elapsed time in days between dates ti for the patterns U and tj in the time
series V . From the cost matrix Ψ an accumulated cost matrix is calculated, named D by using a
recursive sum of the minimum distances, as shown in equation 3

di,j = ψi,j +min{di−1,j , di−1,j−1, di,j−1}, (3)

which is subject to the following conditions:

dij =

ψi,j i = 1, j = 1∑i
k=1 ψk,j 1 < i ≤ n, j = 1∑j
k=1 ψi,k i = 1, 1 < j ≤ m

(4)

The k-th lowest cost path in D produces an alignment between the pattern and a subsequence of
V with associated distance δk, in which ak is the first element and bk the last element of k. Each
minimum point in the last row of the cost matrix is accumulated, i.e. dn,j ∀ j = 1, ...,m, produces an
alignment, with bk = argmink(dn,j), k = 1, ...,K and δk = dn,bk , in which K is the minimum number
of points in the last row of D.

A reverse algorithm, Equation 5, maps the path Pk = (p1, ..., pL) along the k-th “valley” to the
lowest cost in D. The algorithm starts in pl=L = (i = n, j = bk) and ends with i = 1, i.e. pl=1 = (i =

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

20 · Sávio S. T. de Oliveira et. al.

1, j = ak), in which L denotes the last point of alignment. The path Pk contains the elements that
have been matched between the series.

pl−1 =

(i, ak = j) se i = 1

(i− 1, j) se j = 1

argmin(di−1,j , di−1,j−1, di,j−1) otherwise
(5)

The land cover mapping with TWDTW is performed in two steps. In the first step, the DTW
algorithm is applied to each pattern in U ∈ Q and each time series V ∈ S. This step provides
information on how many patterns match with time series intervals. In the second step, the best
matching pattern found by the DTW algorithm is used for land cover mapping.

4. SPATIAL-TIME SERIES ANALYSIS OF REMOTE SENSING IMAGES WITH A PARALLEL
ARCHITECTURE

TWDTW is a pattern-matching algorithm based on dynamic programming with time complexity
O(n2). This section presents the solution proposed in this work for the parallel processing of spatial
time series analysis. This solution, named SP-TWDTW (Spatial Parallel TWDTW), parallelizes the
TWDTW analyzing the temporal axis of the time series, as well as the spatial axis of the neighboring
pixels to classify each time series.

The accumulated cost matrix D is computed from the cost matrix Ψ using the recursive sum of
the minimum distances, as shown in equation 3. The construction of D cannot be trivially paralleled
since the computation of each element (i, j) of the matrix depends on the previous elements (i− 1, j),
(i, j−1) and (i−1, j−1). This dependency can be seen in Figure 1a. The idea behind the SP-TWDTW
algorithm is presented in Figure 1b. Each diagonal is computed in parallel, with each thread being
responsible for a diagonal cell. Since the elements are not dependent on each other within the diagonal,
the calculation of the accumulated cost does not lead to an inconsistent matrix. The details of the
SP-TWDTW matrix computation are presented in Algorithm 1 in Section 4.1. Section 4.2 introduces
a new architecture for processing time series analysis in a distributed environment.

4.1 Spatial Parallel Time-Weighted Dynamic Time Warping (SP-TWDTW)

Algorithm 1 describes the SP-TWDTW, which has as input the set of patterns Q and the set of time
series S and calculates the final alignment cost matrix between each U ∈ Q and V ∈ S. Since Q

(a) The computation of
each element in D de-
pends on the values of
previous elements.

(b) SP-TWDTW: Par-
allel processing of D

Fig. 1. Computation of the accumulated cost matrix D

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

A Parallel and Distributed Approach to the Analysis of Time Series on Remote Sensing Big Data · 21

and S can be larger than available memory, the input of this algorithm admits that these sets are
stored on the disk. The SP-TWDTW manages the loading of blocks of Q and S to CPU memory
and subsequently to the GPU memory so that it does not exceed their limits. The SP-TWDTW also
receives as input the maximum size of the sets Q and S that fill in the GPU memory (bQ and bS
respectively) and CPU memory (max_bQ and max_bS respectively).

The algorithm starts in lines 2 and 3 by reading the blocks of the patterns into the queueQ and
blocks of the time series into the queueS. This task is performed by a CPU thread that manages the
input queue size and the CPU memory available size. So, it is not necessary to wait for this step to
finish before starting to load the blocks into the GPU global memory. Between lines 4 and 28, the
Algorithm 1 loads the blocks into the GPU memory and computes the matrix D. This is done while
there are blocks to be processed.

From line 5 until line 8, bQ patterns U and bS time series V are loaded into the GPU global memory,
joining the patterns in a single bigQ sequence and the time series in a single bigS sequence. This union
allows the GPU to perform block processing using all its computational power. In line 9, the cost
matrix is constructed from bigQ and bigS, with each GPU thread being responsible for computing an
element of the array.

The calculation of matrix D is performed following the idea presented in Figure 1b, where each
thread computes the cost of each element in the diagonal. Since each element of the diagonal depends
only on the two diagonals, they can be calculated independently. Given that bigQ and bigS have
several patterns U and time series V , bQ ∗ bS threads are launched in the GPU, with each block of
threads being responsible for calculating the cumulative cost between a pattern U and a time series
V . Each block in the GPU has min(sizeU, sizeV) threads that is the maximum size of a diagonal
when comparing U and V , so that each thread performs the calculation of one diagonal element.

From line 14 to 20, the costs of the first sizeU elements from the upper diagonals above the secondary
diagonal are computed. In a square matrix, these first sizeU diagonals are the upper triangular matrix.
The Algorithm 1 assumes that the index starts at position 0. To identify each diagonal, the row index
in the upper matrix is computed as si− tid and the column index is determined by the thread id. The
matrixD is updated for each diagonal element using the function update_accumulated_cost_matrix.

The elements of the next sizeV − 1 diagonals are computed between lines 21 and 26. In a square
matrix, for example, these sizeV − 1 diagonals are the lower triangular matrix. To identify each
diagonal, the row index in the upper matrix is calculated as sizeU − tid− 1 and the column index is
set to sizeV − sj − tid− 1. The matrix D is then updated for each element of the diagonal.

D[indexi,j] = min(D[indexi−1,j], D[indexi−1,j−1], D[indexi,j−1) + Ψ[indexi,j] (6)

index = (i+ blockIdx.x ∗ sizeU) ∗ sizeV ∗ gridDim.y + (j + blockIdx.y ∗ sizeV) (7)

The function update_accumulated_cost_matrix (Algorithm 2) updates each element Di,j of the
accumulated cost matrix D. The calculation of Di,j follows the equation 3, which is the smallest value
between Di−1,j , Di−1,j−1 and Di,j−1 plus the cost Ψi,j . The index in the matrices Ψ and D related
to i, j of the matrices U and V must be computed, since the matrices Ψ and D are sent as vectors to
the GPU and the series U and V in blocks of size bQ and bS respectively. So, it is necessary to find
the pair U and V inside D and Ψ and then find the correct position in the matrix D related to U and
V. In the GPU bQ ∗ bS blocks of threads are launched with bQ on the x-axis and bS on the y-axis.
So, each block of threads handles one block in Ψ and D.

The matrixD is computed following equation 6 and the global index of Ψ andD follows the equation
7, in which (i + blockIdx.x ∗ sizeU) ∗ sizeV ∗ gridDim.y finds the correct line in Ψ and D, wherein
blockIdx.x the id of the block of threads in the x-axis and gridDim.y the number of blocks in the

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

22 · Sávio S. T. de Oliveira et. al.

y-axis. The part of the equation (j + blockIdx.y ∗ sizeV) finds within the matrix line the correct
position of the element (i, j), being blockIdx.y the id of the block of threads in the y-axis.

Algorithm 1: sp-twdtw(Q, bQ, max_bQ, S, bS, max_bS, temporal_weight,
spatial_weight)

Input: Q: set of patterns U
bQ: number of patterns U in the GPU memory
max_bQ: max patterns U in the CPU memory
S: set of time series V
bS: number of time series V in the GPU memory
max_bS: max time series V in the CPU memory
temporal_weight: temporal axis weight
spatial_weight: spatial axis weight
Output: R: final alignment cost matrix between each U and V

1 while There are patterns U and time series V on disk do
2 queueQ← load max_bQ patterns U to CPU memory
3 queueS ← load max_bS timeseries V to CPU memory
4 while There are patterns in queueQ and time series in queueS do
5 gpu_queueQ← load bQ patterns U to GPU global memory
6 gpu_queueS ← load bS time series V to GPU global memory
7 bigQ← merge all patterns U in gpu_queueQ
8 bigS ← merge all time series V in gpu_queueS
9 Ψ← compute the cost matrix between bigQ and bigS

10 sizeU ← compute the pattern size of each U in bigQ
11 sizeV ← compute the time series size of each V in bigS
12 tid← thread id
13 if tid < sizeU then
14 for si← 0 to sizeU - 1 do
15 if tid ≤ min(si, sizeV − 1) then
16 i← si− tid
17 j ← tid
18 update_accumulated_cost_matrix(Ψ, D, i, j, sizeU, sizeV)

19 end
20 end
21 for sj ← sizeV − 2 to 0 do
22 if tid ≤ min(sj, sizeU − 1) then
23 i← sizeU − tid− 1
24 j ← sizeV − sj − tid− 1
25 update_accumulated_cost_matrix(Ψ, D, i, j, sizeU, sizeV)

26 end
27 end
28 end
29 for Each U in gpu_queueQ and V in gpu_queueS do
30 compute_dtw_path(R,D, sizeU, sizeV)
31 end
32 end
33 end
34 for Each line i in R do
35 for Each column j in R do
36 Ii,j ← compute_spatial_interpolation(Ri,j)
37 Ri,j ← Ri,j ∗ temporal_weight + Ii,j ∗ spatial_weight

38 end
39 end

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

A Parallel and Distributed Approach to the Analysis of Time Series on Remote Sensing Big Data · 23

Algorithm 2: update_accumulated_cost_matrix(Ψ, D, i, j, sizeU , sizeV)

Input: Ψ: input cost matrix
D: input accumulated cost matrix
i: pattern index in the cost matrix
j: time series index in the cost matrix
sizeU : patter length
sizeV : time series length

1 indexi,j ← computes the global index in Ψ from indices i and j
2 indexi−1,j−1 ← computes the global index in Ψ from indices i− 1 and j − 1
3 indexi−1,j ← computes the global index in Ψ from indices i− 1 and j
4 indexi,j−1 ← computes the global index in Ψ from indices i and j − 1
5 D[indexi,j]← min(D[indexi−1,j], D[indexi−1,j−1], D[indexi,j−1) + Ψ[indexi,j]

The algorithm computes the final alignment between each U and V following the equation 5 in the
function compute_dtw_path between lines 29 and 31. This cost is stored in the matrix R, each row
of which represents a pattern U and each column a time series V to be sorted.

Between lines 34 to 39, the SP-TWDTW analyzes the spatial axis, performing a spatial inter-
polation on line 36 for each alignment between U and V , that is, each element of R. We al-
ready have the cost of the alignment between U and V stored in Rij , but in line 36, the method
compute_spatial_interpolation(Ri,j) searches for the cost of other spatially close time series to V
related to the pattern U , estimates the value of Rij and stores it in the matrix I at Iij . There are
several factors that impact on the quality of this spatial prediction [Li and Heap 2014] and, therefore,
a mechanism has been made where it is possible to give weights for the temporal and spatial axis in
line 37 of the algorithm. This weighted cost is stored in the output R matrix.

The drawback of the diagonal based method is that the sizes of the diagonals vary, which causes a
waste of GPU resources. When the diagonal size is lower than the number of block threads, some of
these threads become idle. But, the performance gain in parallelizing the computation of the diagonal
is better than sequential computation.

4.2 Distributed Processing of Spatial-Time Series Analysis

In order to explore the potential of Big Data, a solution with a parallel architecture and distributed
memory must be used consisting of three main components [Ranjan 2014]: i) data ingestion: collects
data from multiple sources, ii) data processing: exploitation of available computing resources, such
as a cluster of computers with CPUs and GPUs and iii) data storage: maintaining and retrieving the
system data. This Section presents an architecture for parallel and distributed processing of spatial
time series in the context of Remote Sensing Big Data. Because of the volume of data, this solution
explores a cluster of computers and the Manycore architecture of the GPUs in each server. So, it is
possible to store, index, and query this large volume of data efficiently.

At a high level, it keeps the spatial and relational indexes in host memory, handling data ingestion
using CPUs and data recovery via disks. At query time, the data are moved from host memory to
GPU memory for parallel processing on GPU. As shown in Figure 2, the architecture consists of a
Core Executor, a Query Executor, an ETL module, and a disk store. Clients ingest data and run
queries through the HTTP API.

4.2.1 Core Executor. The Core Executor is responsible for running the jobs for time series analysis
on the local processing unit on each server in the cluster. If the GPU is available and the algorithm is
ready to run on it, Core Executor chooses the GPU to process the time series analysis. Otherwise, the
CPU cores are chosen. The challenge, in this case, lies in how to gather the best from each processing

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

24 · Sávio S. T. de Oliveira et. al.

Fig. 2. The architecture for time series analysis in Remote Sensing Big Data.

unit, since CPU cores support fewer threads and do not require additional data communication, while
GPUs expect a large number of concurrent threads, and require explicit communication between the
standard machine memory and the GPU.

The SP-TWDTW runs on the CPU and is responsible for sending the data to the GPU if it is
available on the machine. For algorithms that do not have this mechanism, the algorithm is invoked
according to the availability of the GPU on the server, with Core Executor being responsible for
controlling CPU and GPU memory. If the server does not have a GPU available, the algorithm runs
on the CPU.

4.2.2 Query Executor. The Query Executor uses Apache Spark [Zaharia et al. 2010] to perform
temporal and relational filtering on the data achieving high performance, using a state-of-the-art DAG
(Directed Acyclic Graph) scheduler, a query optimizer, and a physical execution engine. Spark offers
over 80 high-level operators that make it easy to build parallel apps. The native Spark ecosystem does
not provide support for spatial data and operations. So, the Query Executor included the Geospark
system [Yu et al. 2018], which extends the core engine of Apache Spark and SparkSQL to support
spatial data types, indexes, and geometrical operations at scale.

The Query Executor utilizes prefilters to cheaply filter archived data before sending them to Core
Executor for parallel processing. After prefiltering, only those satisfying filter condition values need
to be pushed to the Core Executor. Input data is fed to the Core Executor and executed there one
batch at a time. The Query Executor is responsible for managing the CPU memory, so that the time
series data is retrieved from the disk and does not exceed the memory capacity. For the SP-TWDTW
algorithm, the data is sent to CPU memory, since the SP-TWDTW has an internal memory control
mechanism.

4.2.3 Extract, Transform and Load (ETL). The ETL process (Extracting-Transforming-Loading)
is responsible for extracting data from heterogeneous sources, transforming and finally loading them
into the storage system. The remote sensing image data acquired from either aircraft or spacecraft
platforms is readily available in digital format and made available like raster data. The ingester API
is ready to work with raster image data on GeoTIFF, an extension of the Tagged Image File Format
(TIFF). GeoTIFF includes a standard definition of geolocation information and it is one of the most
popular formats for earth observing remote sensing data [Qu et al. 2006].

The architecture allows several remote sensing images to be inserted in a distributed and parallel
manner. The ingestion of data begins with sending the time series of remote sensing data through the
API. The ETL module divides input data streams into batches and stores them in Hadoop Distributed

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

A Parallel and Distributed Approach to the Analysis of Time Series on Remote Sensing Big Data · 25

File System (HDFS) 2. HDFS provides scalable, highly available and fault-tolerant storage at low-cost
[Olson 2010]. HDFS also detects and compensates hardware issues, including disk problems and server
failure.

The ETL module converts the input TIFF remote sensing image to CSV file to allow the spatial-
temporal filtering on Query Executor because GeoSpark inside it cannot handle remote sensing TIFF
image files natively. Once data is available into an ETL HDFS instance, it is then replicated to other
servers following a replication factor that can be configured to ensure fault tolerance, load balance,
and reliability.

5. EXPERIMENTS AND DISCUSSION

The following section describes the test scenario consisting of the data and hardware that is used to
obtain the running times and other characteristics of the SP-TWDTW algorithm. The results are
presented in Section 5.1 for parallel processing on Manycore architectures. The size-up, scale-up and
speedup of the architecture proposed for distributed processing of the SP-TWDTW is evaluated in
Section 5.2. In Section 5.3 we analyze the results of the solution proposed in this work for distributed
and parallel time series analysis in Remote Sensing Big Data context.

5.1 SP-TWDTW

This section aims to evaluate the performance of the TWDTW and SP-TWDTW algorithms executed
on CPU and GPU, respectively. In the CPU tests, a machine with Intel Xeon E5-2686 v4 (Broadwell)
processors and 61 GB of RAM was used. The GPU tests were performed on an NVIDIA Tesla V100
card with 16 GB of available memory and 5120 CUDA cores with a clock of 1455 MHz. The TWDTW
was implemented in C++ 3 and SP-TWDTW was implemented on the GPU using the NVIDIA CUDA
language. To compare the response time between the SP-TWDTW and the TWDTW, the time series
V and the patterns U were obtained from real data in Brazil [Maus et al. 2016] from MODIS sensor,
specifically the Porto dos Gauchos municipality, that covers approximately 7,000 km2 and is located
in the state of Mato Grosso, Brazil, inside of the Amazon Biome. Each test was performed ten times
and the response time was obtained from the average of them.

The temporal and spatial resolution of remote sensing systems has increased in the last years being
a great challenge for the remote sensing field [Battude et al. 2016]. The results regarding the response
time for high temporal resolution are presented in Figure 3a, by comparing the TWDTW and SP-
TWDTW over a pattern U and a time series V , varying their size. The Planet’s 4 and Jilin-1 5

constellation of satellites are capable of revisiting the same location on earth twice a day. In 20 years,
nearly 14600 observations have been captured and this number tends to grow.

The TWDTW algorithm works better for smaller time series due to the fact that SP-TWDTW
uses the GPU for processing. In this case, the transfer time of U and V from the CPU memory to
the GPU memory overcomes the final response time of the algorithm. The response time increases
considerably on TWDTW algorithm as the size of the pattern U and the time series V increases. The
SP-TWDTW algorithm performed better as the time series size grew reaching a response more than
11 times lower than TWDTW because it was able to take advantage of the processing cores available
in the GPU when demand was higher.

The results regarding the high spatial resolution are shown in Figure 3b by comparing the response

2https://hadoop.apache.org/docs/current1/hdfs_design.html
3The original version of TWDTW was developed in R, but, in this work, we implemented in C++ to be able to compare
fairly with SP-TWDTW, since the C++ language allows for better performance.
4https://www.planet.com/products/planet-imagery/
5https://www.cgsatellite.com/imagery/static-imagery/

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

26 · Sávio S. T. de Oliveira et. al.

(a) Comparison between the TWDTW (CPU) and the
SP-TWDTW (GPU) algorithms using only one pattern
U and one time series V varying their size. The x

axis contains the size of U and V following the format:
sizeofU x sizeofV .

(b) Comparison between the TWDTW (CPU) and the
SP-TWDTW (GPU) algorithms with several patterns
U and time series V . The x axis follows the format:
number of patterns U x number of time series V . Each
pattern has size 45 and time series size 23.

Fig. 3. Comparing the response time between TWDTW (CPU) and SP-TWDTW (GPU). Both algorithms were
implemented in C++.

time of SP-TWDTW and TWDTW using small batches of time series U and V with a size of 45
and 23 respectively. The pattern batch size was fixed at 40 to keep a realistic scenario for remote
sensing. The SP-TWDTW used a batch size equal to 40x138496, running several batches to calculate
the alignment between each U and V . In this scenario, the SP-TWDTW obtained a response time
almost 11 times lower than the TWDTW, since it exploited the GPU architecture.

To compare the accuracy of the SP-TWDTW algorithm and TWDTW algorithm, we selected the
Porto dos Gauchos municipality, located in the state of Mato Grosso, Brazil, inside of the Amazon
Biome. The most important classes for that area were selected: cotton-fallow, forest, soybean-cotton,
soybean-maize, and soybean-millet. Data from this study area were extracted from the MODIS
product MOD13Q1 and include vegetation indices “NDVI”, “EVI”, and original bands “NIR”, “RED”,
“BLUE”, and “MIR”. This product has 250 x 250 m spatial resolution and a 16 day maximum-value
composite (MVC) for each pixel location.

The input has a total of 603 samples divided into five classes: 68 “Cotton-fallow”, 138 “Forest”,
79 “Soybean-cotton”, 134 “Soybean-maize”, and 184 “Soybean-millet”. To test the effectiveness of
SP-TWDTW, we used the cross-validation technique, running the test 100 times splitting the com-
plete data into random training and test sets in each execution. The logistic weight of TWDTW
has midpoint β = 100 days and steepness α = 0.1. The Kriging, IDW and Nearest Neighbor(NN)
spatial interpolation methods were used, with their parameters being optimized through k-folds cross-
validation with k = 5.

Table I presents the overall accuracy of SP-TWDTW with the Kriging, IDW, and Nearest Neigh-
bor(NN) spatial interpolation methods. Overall accuracy (OA) is simply the proportion of the area
mapped correctly. It provides the user of the map with the probability that a randomly selected lo-
cation on the map is correctly classified [Olofsson et al. 2013]. An analysis was performed by varying
the spatial and temporal axis weights and the interpolation methods. The SP-TWDTW algorithm
with weight 0 for the spatial axis and 1 for temporal shows the OA of the TWDTW algorithm. It is
noteworthy that, in this case, the SP-TWDTW algorithm has the same accuracy as the TWDTW,
but does gain in response time. The original TWDTW algorithm implemented in R [Maus et al. 2019]
obtained a response time of 9851ms while the SP-TWDTW on the GPU took in 40ms, that is, 246
times faster than the CPU TWDTW implementation in R

Regardless of the interpolation method, for our case study dataset, when the spatial axis is set
with a higher value of weight than the time axis, the SP-TWDTW presented lower accuracy than the
TWDTW. This is explained by spatial closeness between the “Soybean-maize”, “Soybean-cotton” and

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

A Parallel and Distributed Approach to the Analysis of Time Series on Remote Sensing Big Data · 27

Table I. Overall accuracy with the confidence interval (95% confidence level) of the SP-TWDTW method varying the
spatial and temporal weights and the interpolation methods.

Weights Interpolation Methods OA (%)
Spatial Temporal Kriging NN IDW

0 1 98.01±0.17 97.72±0.25 97.72±0.24
0.1 0.9 97.78±0.27 97.94±0.19 97.94±0.17
0.2 0.8 97.99±0.17 98.11±0.12 98.11±0.10
0.3 0.7 98.01±0.15 97.94±0.18 97.92±0.18
0.4 0.6 97.63±0.18 97.78±0.15 97.75±0.16
0.5 0.5 97.11±0.18 97.09±0.21 97.08±0.21
0.6 0.4 92.11±0.33 92.24±0.35 92.17±0.34
0.7 0.3 87.16±0.22 87.18±0.19 86.99±0.20
0.8 0.2 86.71±0.18 86.77±0.22 86.70±0.20
0.9 0.1 86.43±0.19 86.45±0.16 86.41±0.16
1 0 86.14±0.22 86.05±0.19 86.09±0.20

Table II. User’s and Producer’s accuracy evaluation for each land usage type according to the TWDTW and SP-
TWDTW algorithms with the confidence interval (95% confidence level)..

Method Cotton-fallow Forest Soybean-cotton Soybean-maize Soybean-millet
UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

TWDTW 96.01±0.25 99.91±0.07 100±0.0 100±0.0 99.73±0.14 88.80±0.28 93.77±0.70 99.64±0.14 99.68±0.12 98.13±0.78
SP-TWDTW 96.16±0.24 99.77±0.14 100±0.0 100±0.0 99.57±0.24 88.35±0.45 94.41±0.41 99.75±0.11 99.79±0.07 99.07±0.33

“Cotton-fallow” crops. In addition, the time series pattern of these three classes is very similar, which
ends up generating confusion in the time series analysis by TWDTW and SP-TWDTW. Concerning
the interpolation methods, they performed similarly due to the uniform input dataset distribution.
For sparse data, the Kriging method would probably present better accuracy than the IDW [Li and
Heap 2014].

Table II presents the user’s and producer’s accuracy assessment for each land use type from the
TWDTW and SP-TWDTW time series analysis methods. User’s accuracy is the proportion of the area
mapped as a particular category that is actually that category "on the ground" where the reference
classification is the best assessment of ground condition [Olofsson et al. 2013]. Producer’s accuracy
is the proportion of the area that is a particular category on the ground that is also mapped as that
category [Olofsson et al. 2013].

The IDW spatial interpolation method was chosen fixing the spatial and temporal weights in 0.2 and
0.8 respectively. For “Forest” land usage, the SP-TWDTW did not perform worse because the data in
these land usages are spatially clustered and independent from other land classes. The accuracy for
SP-TWDTW was equal or better for “Soybean-maize” and “Soybean-millet”, improving the TWDTW
accuracy in a region that has already presented great results. Since the “Soybean-cotton” and “Cotton-
fallow” crops are spatially closed and mixed, the spatial weights impacted on the analysis with a lower
accuracy than TWDTW.

5.2 Evaluation of the Distributed Processing of Time Series Analysis

A horizontal scalability test was executed to measure the performance of the distributed architecture
proposed in Section 4.2 to run the TWDTW (CPU) algorithm when adding servers to the cluster.
Ideally, the system should have linear horizontal scalability, which is not always possible since: a) the
tasks distributed in the cluster have to be synchronized and b) the devices are subject to physical
constraints as in the case of those used for networking. The experimental cluster consists of 4 physical
machines. The configuration of each machine consisted of an Intel Core i7 3.4 GHz, with 16 GB of
RAM and 1 TB hard drives. The machines were connected to a 1 Gbit/s Ethernet network and a

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

28 · Sávio S. T. de Oliveira et. al.

6248P Dell PowerConnect switch.

The cluster was created with Apache Spark 2.3.3 and the algorithms were evaluated on Hadoop
Yet Another Resource Negotiator (YARN) platform 6 version 2.8.2. When Spark applications run
on YARN, resource management, scheduling, and security are controlled by YARN. To optimize the
execution of Spark applications on a Hadoop YARN model, parameters were tuned according to
Cloudera’s Guide 7. Specifically, we preserved the necessary memory space for OS and its daemon
services to limit the amount of physical memory that can be allocated for containers.

The dataset consists of 4 million up to 128 million synthetic time series with about 23 points, each
one varying in size from 640MB to 20GB. Six synthetic databases were generated with 4 million(4M),
8 million(8M), 16 million(16M), 32 million(32M), 64 million(64M) and 128 million(128M) time series
allowing an evaluation with an increasing dataset size. The data was stored in HDFS with a replication
factor of 3 and a block size of 128 MB.

Figure 4 shows the result of running the TWDTW (CPU) algorithm in the cluster. We measured
statistics for speedup and scale-up. For speedup, we fixed the input dataset and increased the number
of nodes in the clusters varying from 2 nodes to 4 nodes. The response time was measured with 1, 2,
and 4 servers to help in evaluating the platform scalability. Similarly, for scale-up, we increased both
the input dataset and the cluster size. Scale-up helps in understanding the behavior of the platform
if both data and cluster size increase.

Figure 4a shows the response time of running the TWDTW (CPU) algorithm in the distributed
environment. As shown in Figure 4a, in this experiment, we can see that the cluster size can influence
the response time and the system proposed for distributed processing achieves an almost linear scale
up to the number of servers and the input dataset size. With the increase of the cluster, the response
time has a decreasing trend. This scalable behavior was made possible by distributing the time series
data among the servers in the cluster allowing a distributed and parallel processing of the TWDTW
(CPU).

Figure 4b shows the speedup values indicating that the algorithm speedup performance was good
on running the TWDTW (CPU) algorithm. Speedup is better for larger datasets, since the task
scheduling and the cost of communication between machines, inherent in distributed processing, ends
up having a big impact on the total response time. With 128 million time series, the speedup almost
reaches the linear scale because the processing cost becomes dominant over the communication cost
and task scheduling.

Figure 5 displays the size-up test for the TWDTW (CPU) algorithm in a distributed environment.
The size-up shows how the running time increases with the input size for a fixed number of cores
[Japkowicz and Stefanowski 2016]. For the size-up test, the computational time was taken by keeping
the number of servers unchanged and varying the dataset size from 4 million to 512 million of time
series. The running time increased linearly with the input size, which is ideal for size-up test scenarios
[Japkowicz and Stefanowski 2016].

5.3 Discussion

The SP-TWDTWGPU implementation proved to be a promising solution for processing high temporal
resolution data, with a speedup of 10 times over the CPU TWDTW implementation and almost 11
times faster than it for high spatial resolution data. The TWDTW was implemented in C++ to
be able to compare fairly with SP-TWDTW since the C++ language allows for better performance.
SP-TWDTW execution time was 246 times faster than the CPU TWDTW in R, making it a good

6https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
7https://www.cloudera.com/documentation/enterprise/latest/topics/admin_spark_tuning.html

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

A Parallel and Distributed Approach to the Analysis of Time Series on Remote Sensing Big Data · 29

(a) Response time increasing the cluster size from 1 to
4 servers and the number of time series from 4 millions
(4M) to 128 millions (128M).

(b) Speedup varying the number of time series from 4
millions (4M) to 128 millions (128M).

Fig. 4. Scalability running the TWDTW (CPU) algorithm and increasing the number of servers and the number of
time series.

Fig. 5. Size-up performance evaluation running the TWDTW (CPU) algorithm with 4 servers and increasing the number
of time series.

alternative to the time series analysis in the Remote Sensing Big Data era. The SP-TWDTW also
presented better overall accuracy than the traditional TWDTW.

In general, the overall accuracy difference between TWDTW and SP-TWDTW was not so large
because the TWDTW already has great accuracy with the data of this geographic region. Perhaps,
in other geographic areas and other classes of land use the results may be different. This analysis
will be done in future work. However, in general, SP-TWDTW had greater accuracy than TWDTW
even in this region with these land classes. Regarding the spatial interpolation methods, increasing
the spatial weight for values higher than 0.4 brings on lower accuracy to the SP-TWDTW.

The scale-up, speed up, and size-up tests showed that the solution proposed in this paper was
able to perform distributed and parallel time series analysis in Remote Sensing Big Data context. It
successfully ran the TWDTW algorithm with up to 512 million time series. For datasets with less
than 16 million time series, it didn’t achieve a good speedup because communication cost and task
synchronization were dominant over the processing cost. Increasing the dataset size the processing cost
has become dominant and TWDTW in a distributed environment achieved almost linear speedup.

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

30 · Sávio S. T. de Oliveira et. al.

6. CONCLUSION

In the class of complex computational problems, the time series analysis is one of the problems with
increasing demand for computing power [Rakthanmanon et al. 2013]. Due to the complexity of the
algorithms and the large volume of data to be processed, new parallel and distributed approaches are
necessary. The TWDTW algorithm has been highlighted as one of the best solutions found in the
literature to perform the time series analysis of remote sensing images, but it does not explore parallel
architectures. Exploiting the fine-grained parallelism on TWDTW is a challenge because the data
dependence on it is high.

This work presented a solution to processing large volumes of time series data by exploring massive
parallel architectures. The solution, SP-TWDTW (Spatial Parallel TWDTW), uses the Manycore
(GPU) architectures and addresses the TWDTW data dependency on fine-grained parallelism, besides
managing the CPU and GPU memory space. Moreover, the SP-TWDTW analyzes the spatial and
temporal dimensions using interpolation methods. To support the Remote Sensing Big Data scenario,
a new architecture was introduced to process time series analysis in a distributed environment.

The GPU SP-TWDTW implementation has a speedup of 11 times over the CPU TWDTW im-
plementation for high temporal resolution data and almost 11 times for high spatial resolution data.
Using spatial interpolation methods, SP-TWDTW was able to increase the accuracy of TWDTW for
land use mapping in the Amazon region. The solution proposed in this work for distributed and par-
allel processing of time series analysis in Remote Sensing Big Data context proved to be promising. It
achieved almost linear speed up, size-up and scale up for large datasets to run the TWDTW algorithm
in a cluster of computers.

In future work, other accuracy tests with larger datasets in other geographic regions using satellite
images with higher resolution than MODIS will be performed to compare the TWDTW and SP-
TWDTW methods more accurately. In addition, the distributed time series analysis will be evaluated
in a cluster of computers, where each server will have a GPU locally to verify the horizontal and
vertical scalability of the platform in the execution of the SP-TWDTW algorithm. The ETL module
will be evaluated to ensure the performance for ingesting data into the storage. The Query Executor
will also be evaluated to verify its ability to efficiently filter spatially and temporally the time series
remote sensing data before sending this data to Core Executor. The SP-TWDTW will be applied to
other methods for time series classification and analysis.

Acknowledgement

This work was funded by Companhia Paranaense de Energia (Copel), P&D ANEEL-Copel Dis-
tribuição, project number 2866-04842017.

REFERENCES

Bagnall, A., Lines, J., Bostrom, A., Large, J., and Keogh, E. The great time series classification bake off: a
review and experimental evaluation of recent algorithmic advances. Data Mining and Knowledge Discovery 31 (3):
606–660, 2017.

Battude, M., Al Bitar, A., Morin, D., Cros, J., Huc, M., Sicre, C. M., Le Dantec, V., and Demarez, V.
Estimating maize biomass and yield over large areas using high spatial and temporal resolution sentinel-2 like remote
sensing data. Remote Sensing of Environment vol. 184, pp. 668–681, 2016.

Bégué, A., Arvor, D., Bellon, B., Betbeder, J., De Abelleyra, D., PD Ferraz, R., Lebourgeois, V., Le-
long, C., Simões, M., and R Verón, S. Remote sensing and cropping practices: A review. Remote Sensing 10 (1):
99, 2018.

Camara, G., Assis, L. F., Ribeiro, G., Ferreira, K. R., Llapa, E., and Vinhas, L. Big earth observation data
analytics: Matching requirements to system architectures. In Proceedings of the 5th ACM SIGSPATIAL international
workshop on analytics for big geospatial data. ACM, New York, NY, USA, pp. 1–6, 2016.

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

A Parallel and Distributed Approach to the Analysis of Time Series on Remote Sensing Big Data · 31

Chebbi, I., Boulila, W., Mellouli, N., Lamolle, M., and Farah, I. A comparison of big remote sensing data
processing with hadoop mapreduce and spark. In 2018 4th International Conference on Advanced Technologies for
Signal and Image Processing (ATSIP). IEEE, Sousse, Tunisia, pp. 1–4, 2018.

Chi, M., Plaza, A., Benediktsson, J. A., Sun, Z., Shen, J., and Zhu, Y. Big data for remote sensing: Challenges
and opportunities. Proceedings of the IEEE 104 (11): 2207–2219, 2016.

Costa, W. S., Fonseca, L. M. G., Korting, T. S., Simões, M., do Nascimento Bendini, H., and Souza, R.
C. M. Segmentation of optical remote sensing images for detecting homogeneous regions in space and time. Revista
Brasileira de Cartografia 70 (5): 1779–1801, 2018.

Cressie, N. and Wikle, C. K. Statistics for spatio-temporal data. John Wiley & Sons, 2015.
de Oliveira, S. S. T., M. L. Pascoal, L., Ferreira, L., de Castro Cardoso, M., Bueno, E., Vagner, J., and

Martins, W. S. Sp-twdtw: A new parallel algorithm for spatio-temporal analysis of remote sensing images. In XIX
Brazilian Symposium on Geoinformatics. GeoInfo, Campina Grande, PB, Brasil, pp. 46–57, 2018.

Gómez, C., White, J. C., and Wulder, M. A. Characterizing the state and processes of change in a dynamic forest
environment using hierarchical spatio-temporal segmentation. Remote Sensing of Environment 115 (7): 1665–1679,
2011.

Huang, W., Meng, L., Zhang, D., and Zhang, W. In-memory parallel processing of massive remotely sensed data
using an apache spark on hadoop yarn model. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing 10 (1): 3–19, 2017.

Jamali, S., Jönsson, P., Eklundh, L., Ardö, J., and Seaquist, J. Detecting changes in vegetation trends using
time series segmentation. Remote Sensing of Environment vol. 156, pp. 182–195, 2015.

Japkowicz, N. and Stefanowski, J. Big Data Analysis: New Algorithms for a New Society. Springer, 2016.
João Jr, M., Sena, A. C., and Rebello, V. E. Implementação e avaliação de técnicas de paralelização no algo-
ritmo de hirschberg para sistemas multicore. In Anais do XVIII Simpósio em Sistemas Computacionais de Alto
Desempenho. SBC, Porto Alegre, RS, Brasil, 2017.

Li, J. and Heap, A. D. Spatial interpolation methods applied in the environmental sciences: A review. Environmental
Modelling & Software vol. 53, pp. 173–189, 2014.

Liu, P., Di, L., Du, Q., and Wang, L. Remote sensing big data: theory, methods and applications, 2018.
Lu, M., Chen, J., Tang, H., Rao, Y., Yang, P., and Wu, W. Land cover change detection by integrating object-
based data blending model of landsat and modis. Remote Sensing of Environment vol. 184, pp. 374–386, 2016.

Ma, Y., Wu, H., Wang, L., Huang, B., Ranjan, R., Zomaya, A., and Jie, W. Remote sensing big data computing:
Challenges and opportunities. Future Generation Computer Systems vol. 51, pp. 47–60, 2015.

Maus, V., Câmara, G., Cartaxo, R., Sanchez, A., Ramos, F. M., and de Queiroz, G. R. A time-weighted
dynamic time warping method for land-use and land-cover mapping. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing 9 (8): 3729–3739, 2016.

Maus, V., Câmara, G., Appel, M., and Pebesma, E. dtwsat: Time-weighted dynamic time warping for satellite
image time series analysis in r. Journal of Statistical Software, Articles 88 (5): 1–31, 2019.

Mitas, L. and Mitasova, H. Spatial interpolation. Geographical information systems: principles, techniques, man-
agement and applications vol. 1, pp. 481–492, 1999.

Olofsson, P., Foody, G. M., Stehman, S. V., and Woodcock, C. E. Making better use of accuracy data in
land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote
Sensing of Environment vol. 129, pp. 122–131, 2013.

Olson, M. Hadoop: Scalable, flexible data storage and analysis. IQT Quart 1 (3): 14–18, 01, 2010.
Petitjean, F., Inglada, J., and Gançarski, P. Satellite image time series analysis under time warping. IEEE
Transactions on Geoscience and Remote Sensing 50 (8): 3081–3095, 2012.

Petitjean, F. and Weber, J. Efficient satellite image time series analysis under time warping. Ieee geoscience and
remote sensing letters 11 (6): 1143–1147, 2014.

Qu, J. J., Gao, W., Kafatos, M., Murphy, R. E., and Salomonson, V. V. Earth Science Satellite Remote
Sensing: Vol. 2: Data, Computational Processing, and Tools. Springer, 2006.

Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., Zakaria, J., and Keogh,
E. Addressing big data time series: Mining trillions of time series subsequences under dynamic time warping. ACM
Transactions on Knowledge Discovery from Data (TKDD) 7 (3): 10, 2013.

Ranjan, R. Streaming big data processing in datacenter clouds. IEEE Cloud Computing 1 (1): 78–83, 2014.
Shabib, A., Narang, A., Niddodi, C. P., Das, M., Pradeep, R., Shenoy, V., Auradkar, P., Vignesh, T.,

and Sitaram, D. Parallelization of searching and mining time series data using dynamic time warping. In 2015
International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, Kochi,
India, pp. 343–348, 2015.

Shepard, D. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd
ACM national conference. ACM, New York, NY, USA, pp. 517–524, 1968.

Stein, M. L. Interpolation of spatial data: some theory for kriging. Springer Science & Business Media, 2012.

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

32 · Sávio S. T. de Oliveira et. al.

Vatsavai, R. R. Machine Learning Algorithms for Spatio-temporal Data Mining. Ph.D. thesis, University of Minnesota,
Minneapolis, MN, USA, 2008. AAI3338985.

Verbesselt, J., Hyndman, R., Newnham, G., and Culvenor, D. Detecting trend and seasonal changes in satellite
image time series. Remote sensing of Environment 114 (1): 106–115, 2010.

White, T. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2009.
Xiao, L., Zheng, Y., Tang, W., Yao, G., and Ruan, L. Parallelizing dynamic time warping algorithm using
prefix computations on gpu. In High Performance Computing and Communications & 2013 IEEE International
Conference on Embedded and Ubiquitous Computing (HPCC_EUC), 2013 IEEE 10th International Conference on.
IEEE, Zhangjiajie Shi, China, pp. 294–299, 2013.

Xu, F., Lin, Y., Huang, J., Wu, D., Shi, H., Song, J., and Li, Y. Big data driven mobile traffic understanding
and forecasting: A time series approach. IEEE transactions on services computing 9 (5): 796–805, 2016.

Yin, H., Yang, S., Ma, S., Liu, F., and Chen, Z. A novel parallel scheme for fast similarity search in large time
series. China Communications 12 (2): 129–140, 2015.

Yu, J., Zhang, Z., and Sarwat, M. Spatial data management in apache spark: the geospark perspective and beyond.
GeoInformatica 22 (4): 1–42, 2018.

Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. Spark: Cluster computing with
working sets. HotCloud 10 (10-10): 95, 2010.

Zhu, H., Gu, Z., Zhao, H., Chen, K., Li, C.-T., and He, L. Developing a pattern discovery method in time series
data and its gpu acceleration. Big Data Mining and Analytics 1 (4): 266–283, 2018.

Journal of Information and Data Management, Vol. 10, No. 1, June 2019.

