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Abstract.  Graph mining is concerned with mining frequent subgraph patterns over a collection of graphs, aiming to 
find novel and useful knowledge. It has being used to analyze data from different domains, sometimes using 
algorithms tailored for a specific area of knowledge. In this paper, we propose a graph-mining algorithm and its 
application in the biomedical domain. We introduce the ADI-bio structure, which organizes data from a database 
with information of a disease’s patient, and also the ADI-Minebio algorithm, which performs a search on the 
proposed ADI-bio structure to find frequent subgraphs. Our approach is based on the ADI (adjacency index) 
structure and the ADI-Mine algorithm, but specifies a different structure and hence a new way of analyzing data 
through this structure. We also present a performance study to show the feasibility of our approach. 

Categories and Subject Descriptors: H.2.1 [Information Systems]: Data Mining and Knowledge 
Discovery  
 

Keywords: graph, graph mining, biomedical data, adjacency index 

1. INTRODUCTION 

Graphs are important data structures composed of nodes (i.e. vertices) and links (i.e. edges), and are 
typically used to model data from complex applications such as bioinformatics, social networks 
analysis, text retrieval, chemical compounds, protein structures and XML documents [Cook and 
Holder 2007], [Han and Kamber 2006]. Graph mining, or graph-based data mining, is concerned with 
mining frequent subgraph patterns over a collection of graphs, aiming to find novel and useful 
knowledge. It provides a way to analyze data when the application involves patterns that are more 
complex than frequent itemsets and sequential patterns [Han and Kamber 2006], and possibly the 
knowledge to be mined is spread in interrelated transactions. 

In this paper, we propose ADI-Minebio, a graph-mining algorithm aimed at analyzing data from a 
database with information of treatments of diseases and side effects caused by these treatments. Side 
effects are usually other diseases that also need a specific treatment. Therefore, we seek to investigate 
relationships between treatments for the original disease and treatments for the side effects originated 
from the original disease or subsequent side effects. We organize this information in graphs and use 
the proposed ADI-Minebio algorithm to extract meaningful substructures from these graphs. 
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The problem of mining biomedical data arose from a need of medical experts from the Medical 
Faculty of Ribeirão Preto from the University of São Paulo, which investigate the Sickle Cell Anemia 
(SCA) and its related diseases. The motivation is to aid experts to find patterns among treatments and 
side effects (i.e. new diseases), by developing both a database with information of interest and a 
related graph-mining algorithm. Our current work is included in an environment called Information 
Extraction and Decision Support System in Biomedical domain (IEDSS-Bio), which is under 
development and addresses supporting the expert in making decisions, by extracting relevant 
information from biomedical documents, storing the information in a data warehouse, and mining 
interesting knowledge from the data warehouse [Matos et al. 2010]. It is worth to note that the 
database and the data warehouse are not completely loaded with real data, since the extraction of 
information from scientific papers is still been performed. Therefore, we use only synthetic data to 
assess our proposals. In this paper, our synthetic data of interest is stored in relational tables and our 
algorithms transform these tables in a graph database.  

Regarding our proposal, the ADI-Minebio algorithm searches for frequent subgraphs in the graph 
database using a new index structure also proposed in this paper, called ADI-bio, which is specially 
organized to structure data from a database with information of patients of a given disease. Our 
approach is based on the ADI (adjacency index) structure, which provides an efficient way to search 
for frequent subgraphs in large databases that cannot be held in main memory, and also on the ADI-
Mine algorithm [Wang et al. 2004], a graph-mining algorithm that improves the gSpan algorithm [Han 
and Yan 2002] by using the ADI structure. The main differentials of the proposed ADI-Minebio 
algorithm is that it uses a different index structure and introduces a new way of analyzing data based 
on this index, providing an adequate way of working with graph data from the biomedical domain (i.e. 
relationships among treatments and their side effects). Our performance tests showed the feasibility of 
our approach when applied to discover new knowledge from a graph database storing information 
about treatments and diseases. 

The reminder of this paper is organized as follows. Section 2 describes the theoretical foundation 
and the basis of our proposals, Section 3 presents the proposed ADI-bio and ADI-Minebio algorithms, 
Section 4 discusses performance results used to assess our proposals, Section 5 surveys related work 
and Section 6 concludes the paper and presents future work. 

2. THEORETICAL FOUNDATION 

In this section, we describe the adjacency index (Section 2.1) and the ADI-Mine Algorithm (Section 
2.2), which are used as a basis for our proposals. 

2.1 Adjacency Index 

An adjacency index (ADI) is an index structure that supports mining graph patterns over large 
databases that cannot be held into the main memory [Wang et al. 2004]. It indexes the database on 
three levels: the first level represents the edges, the second level represents the graph identifications 
and the third level represents adjacency information. Figure 1 depicts two graphs G1 and G2, as well 
as shows how they are indexed by ADI. 
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Fig. 1.    An example of the ADI Structure. 

The first level indexes all the edges present in all graphs through a list in the ADI structure. In 
ADI, an edge e = (u, v) is stored as a tuple (l(u); l(u:v); l(v)), where l(u), l(u:v), l(v) are the label of the 
first vertex, the label of the edge and the label of the second vertex, respectively. The mappings of all 
edges are stored sorted in an edge table. For instance, in Figure 1, the first tuple of the edge table 
represents an edge between the vertices A and B. Furthermore, each edge appears only once in the 
edge table, independently on how many times it appears in the graphs. 

The second level is a linked list of all graphs that have an edge stored in the edge table. In detail, 
for each edge e of the edge table, there is a linked list of graphs represented by their identification, 
such that a graph will be present in this list only if it has the edge e. For instance, in Figure 1, both G1 
and G2 contain the edge represented by (A, b, C). Note that each graph appears only once in a linked 
list of an edge e, independently on how many times e appears in the graph. 

The third level consists of the adjacency information. In this level, all the edges of a graph are 
stored in blocks, such that each block represents a graph. Also, the edges are linked with adjacent 
edges, enabling the visualization of the connections between nodes. For instance, in Figure 1, the edge 
of block 1 encoded by (1, 2) is adjacent to the edge encoded by (2, 3) through the vertex encoded by 2. 

Depending on the available main memory, the three levels of ADI may be stored on disk or in the 
main memory. If the graph database is small, the whole index can be held into the main memory. 
Otherwise, the levels of the index are stored on disk according to the following order: first the third 
level, then the second level, and finally the first level. The clustering of edges in blocks in the third 
level speed up the storage and the retrieval of graph data on disk.  

2.2 The ADI-Mine Algorithm 

The ADI-Mine algorithm [Wang et al. 2004] adapts the gSpan algorithm [Han and Yan 2002] to search 
for frequent subgraph patterns using the ADI structure. Therefore, like the gSpan algorithm, the ADI-
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Mine algorithm is based on the depth-first search (DFS) for navigating through connected graphs and 
on the search for isomorphic graphs using the minimum DFS code notation.  

In detail, using as input a graph database and a minimum support, the ADI-Mine algorithm 
produces as output a set of frequent graphs patterns described as follows. The algorithm first removes 
all the edges present in the edge table that do not satisfy the minimum support. Then, the algorithm 
tracks each remaining edge in the edge table and adds this edge to the set of frequent graphs patterns. 
Also, for each edge, the algorithm recursively investigates its adjacent edges to identify which ones 
are also frequent, using as a basis the third level of ADI. Frequent adjacent edges are also included in 
the frequent graphs patterns, except when they generate isomorphic graphs.  

The identification of isomorphic graphs is performed by the minimum DFS code notation, a 
technique composed of three phases: (i) creating a DFS tree;  (ii) generating the DFS code for this 
tree; and (iii) organizing the generated code in lexicographic order. A DFS tree corresponds to the 
path from the root to its rightmost vertex, which is named rightmost path. Figure 2 shows a graph 
composed of the vertices {v0, v1, v2, v3}, such that only the vertices {v0, v1, v3} form the DFS tree. 
The edges in the rightmost path, represented by dark lines, are called forward edges, while the 
remaining edges are known as back edges.  

v3

A

D

C

B

b

a c

v1

v2

v0

 

Fig. 2.    An example of a graph and its DFS tree. 

The DFS code corresponds to the labeling of all the edges of a graph. It is constructed using the 5-
tuple (i, j, li, l(i,j), lj), where i and j represent vertices from the DSF tree, li is the label of the vertex i, l(i,j) 
is the label of the edge that connects i to j, and lj is the label of the vertex j. The DFS code for the DFS 
tree of Figure 2 is shown in Table 1.  

Table 1. The DFS code for the DFS tree of Figure 2. 

# Edge  The DFS Code 

0 (v0, v1, A, b, C) 

1 (v1, v3, C, c, D) 

2 (v1, v2, C, a, B) 

 

The organization of the DFS code in lexicographic order is performed considering the linear order 
of the graph edges. Given two edges ei,j and ex,y, ei,j < ex,y when one of the following conditions is 
satisfied: (i) if both ei,j and ex,y are forward edges, then j < y or  j = y and i > x;  (ii) if both ei,j and ex,y 
are backward edges, then i < x or  i = x and j < y;  (iii) if ei,j is a forward edge and ex,y is a backward 
edge, then i < y; and (iv) if ei,j is a backward edge and ex,y is a forward edge, then i > y. The 
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lexicographic order of the DFS codes shown in Table 1 is {(v0, v1, A, b, C), (v1, v3, C, c, D), (v1, v2, 
C, a, B)}. Two graphs are isomorphic when they are represented by the same lexicographic order.  

3. GRAPH MINING FROM A BIOMEDICAL DATABASE 

In this section, we define the problem of graph mining (Section 3.1), we also discuss the construction 
of a graph database from relational tables (Section 3.2), describe the proposed ADI-bio structure 
(Section 3.3) and introduce the proposed ADI-Minebio graph-mining algorithm (Section 3.4). 

3.1 Problem Definition 

We define our goal in mining a biomedical database as to discover a set of frequent subgraphs that 
represent patterns involving treatments of diseases and side effects caused by these treatments. In fact, 
side effects are usually other diseases that also need a specific treatment. Therefore, we seek to 
investigate relationships between treatments for the original disease and treatments for the side effects 
originated from the original disease or from subsequent side effects.  

Formally, let D be a disease, TD be one of the treatments used for a patient with D, SE be one of the 
side effects caused by TD, and TSE be one of the treatments used for SE. Our goal is to find existing 
relationships between TD and TSE, which is represented by the following sequence D  TD  SE  
TSE, where  represents the relationship of treatment-effect. Also, it is possible that a side effect SE1 
and its treatment TSE1 be related to another side effect SE2 and its related treatment TSE2, and so on, 
composing a sequence of treatments and side effects, such that D  TD  SE1  TSE1  SE2  TSE2 
….  SEn  TSEn.  

Table 2 shows a sample of data related to treatments and side effects of the SCA disease and its 
related diseases, whose investigation represent the main motivation of our work. This disease-
treatment-effect table contains the following data: (i) identification of the paper from which the 
information has been extracted; (ii) name of the disease (or the side effect) that is analyzed in the 
paper; (iii) name of the treatment for this disease (or for the side effect); and (iv) name of the side 
effect caused by the treatment. An example of sequence of treatment and side effects to be analyzed 
is: Sickle Cell Anemia (SCA)  Hydroxyurea (Hydro)  Constipation  Hydration (Hydt)  
Vomiting (Vo)  Dexametasona (Dex).  

The representation of the disease-treatment-effect table as a graph follows the baselines described 
in this section, and is discussed in Section 3.2. 
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Table 2. An example of data from the disease-treatment-effect table. 

# Paper  Disease Name Treatment Name Effect Name 

1 Sickle Cell Anemia (SCA) Standard BFM (BFM) Hepatomegaly (Hep) 

1 Sickle Cell Anemia (SCA) Hydroxyurea (Hydro) Hepatomegaly (Hep) 

1 Sickle Cell Anemia (SCA)  Hydroxyurea (Hydro) Constipation (aCo) 

… … … … 

2 Sickle Cell Anemia (SCA)  Standard BFM (BFM) Hepatomegaly (Hep) 

2 Sickle Cell Anemia (SCA)  Hydroxyurea (Hydro) Vomiting (Vo) 

… … … … 

3 Sickle Cell Anemia (SCA)  Standard BFM (BFM) Hepatomegaly (Hep) 

3 Sickle Cell Anemia (SCA)  Hydroxyurea (Hydro) Constipation (aCo) 

3 Sickle Cell Anemia (SCA)  Hydroxyurea (Hydro) Vomiting (Vo) 

… … … … 

23 Constipation (aCo)  Hydration (Hydt) Vomiting (Vo) 

24 Constipation (aCo)  Hydration (Hydt) Vomiting (Vo) 

… … … … 

35 Vomiting (Vo)  Dexametasona (Dex) Jitters (Jitt) 

… … … … 

41 Vomiting (Vo) Dexametasona (Dex) Jitters (Jitt) 

 

3.2 The Process to Build a Graph Database from Relational Tables 

Our graph database contains information about treatments and side effects of these treatments, and is 
represented as a directed labeled graph. While its vertices correspond to diseases and side effects (e.g. 
the target disease D or its side effects SE1, SE2, …, SEn) or correspond to treatments for a given disease 
or side effect (e.g. TD, TSE1, TSE2, …, TSEn), its edges represent relations between diseases/side effects 
and treatments. Furthermore, the label of each edge represents the frequency of occurrence of this 
edge in the disease-treatment-effect table. For instance, Figure 3 shows the graph database that 
represents the information depicted partially in Table 2.  

 

 
Fig. 3. The disease-treatment-effect graph database for the information depicted in Table 2. 
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The construction of the graph database starts with the vertex whose label is the disease that is the 
focus of analysis, i.e. the disease from which we wish to discover relationships among effects and 
treatments. In our example, this disease is the SCA disease (i.e. D = SCA), which is represented in the 
leftmost vertex in the graph of Figure 3. The treatments of SCA (i.e. TD1 = BFM and TD2 = Hydro) 
compose the next vertices, which are linked to the SCA vertex. Then, vertices are created for the side 
effects of treatments (e.g. TSE1 = Hep, TSE2 = aCo and TSE3 = Vo for the treatment Hydro). For each side 
effect introduced in the graph, we obtain additional information (i.e. its treatments and side effects) in 
other rows of the table, if its name is present in the column Disease Name in the disease-treatment-
effect table. The label of the edges represents frequencies of a treatment-disease, such as the label 12 
in the edge that connects the vertices SCA and BFM indicates that the information that the disease 
SCA is treated by the treatment BFM occurs twelve times, three of them shown in rows of Table 2. 

Therefore, for a given disease, the resulting graph database contains: (i) a set of treatments of this 
disease; (ii) a set of side effects caused by the treatments; and (iii) a set of treatments that can be used 
to combat these side effects, which are obtained from other scientific papers that report experiences 
involving patients with these new diseases. 

3.3 The Proposed ADI-bio Structure 

In this section, we propose a new structure for the adjacency index, called ADI-bio, which is specially 
designed according to the characteristics of the graph database. ADI-bio is composed of two levels. 
The first level stores edges and frequencies of edges, while the second level stores the adjacency 
information. Figure 4 shows an example of the ADI-bio structure for the graph depicted in Figure 3.  

 

 

Fig. 4. An example of the ADI-bio structure.  
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The components of the ADI-bio structure are detailed as follows. 

- Edge Table: contains each distinct edge of the graph database, whose label value satisfies the 
minimum support. The Edge Table is organized in alphabetical order.  

- Adjacency Information: for each edge e = (u, v) of the Edge Table, the Adjacency Information 
contains a linked list that begins with the vertex u. The inclusion of the remaining components 
in the list should respect the following formation rules:   

o Include each vertex found in a branch from u, following a depth-first search in the graph, 
until the end of the branch or until finding a vertex that has already been included in some 
subgraph of the Adjacency Information. For instance, for the edge (aCo, Hydt), the 
vertices aCo, Hydt and Vo are included in the Adjacency Information, generating the 
subgraph G1, which is represented by 2 lists. The first list contains all adjacent vertices to 
aCo, and the second list contains all adjacent vertices to Hydt. There is no list for the 
vertex Vo as the minimum support is set to 10 and, according to Figure 3, the frequency 
of the edge (Vo, Dex) is 6.   

o Do not include a vertex that has already been inserted into a subgraph.  In this case, this 
vertex is ignored and the next edge from the Edge Table is analyzed according the same 
described rules. For instance, the construction of the subgraph G3 regarding the edge 
(Hydro, aCo) is performed as follows. First, the vertices Hydro and aCo are included in 
G3. Then, the vertices Hydt and Vo are ignored, as they already compose the subgraph 
G1. In the sequence, the edge (Hydro, Hep) is analyzed, and the vertex Hep is included in 
G3. Finally, as the next edge of the Edge Table also refers to Hydro (i.e. the edge (Hydro, 
Vo)), the vertex Vo is also included in G3. As a result, G3 is represented by the list 
<Hydro, aCo, Hep, Vo>.  

The algorithm to construct the ADI-bio structure is shown in Algorithm 1. It uses as inputs a graph 
database and a minimum support and generates as output the ADI-bio structure, named adibiofreq, 
which contains only the frequent edges. The algorithm works as follows. An auxiliary variable adibio, 
which has the same structure as adbiofreq, is created in line 1 to store all the vertices and edges that 
are found during the execution of the algorithm. The Adjacency Information of adibio is initialized in 
line 3. Then, the graph database is traversed (lines 4 to 15) and each element is added to the Adjacency 
Information of adibio if it is a vertex (lines 5 and 6) or is added to the Edge Table of adibio if it is a 
new edge (line 8 and 9). In the latter case, the frequency counter of this new edge is initialized to 1 
(line 10) or is incremented by 1 if the Edge Table of adibio already contains the new edge (line 12). 
The adibiofreq structure is created in line 16, using as a basis the adibio structure. While adibio 
structure contains all the edges of the graph database and its adjacent edges, adibiofreq stores only the 
frequent edges and their correspondent adjacent edges. Finally, the Edge Table of adibiofreq is sorted 
in alphabetical order (line 17) and the Adjacency Information of adibiofreq is reorganized (line 18), 
using as a basis the formation rules.  
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Algorithm 1: ADIbio (GBD, mins_up) 
 
 
 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Input: GBD {graph database}, mins_up {minimum support}  
Output: adibiofreq {linked list of records containing the fields edgeTable and 
                    adjacencyInformation} 
var adibio: linked list of records containing the fields  
            edgeTable and adjacencyInformation 
initialize the adjacency information (i.e. adibio.adjacencyInformation) 
for each element e of GDB do  
  if e is a vertex  
    store e in the adjacency information 
  else  
    if e is a new edge then 
      insert e into edge table (i.e. adibio.edgeTable) 
      adibio.edgeTable(e).countEdge  1  
    else 
      adibio. edgeTable(e).countEdge  countEdge + 1 
    endif 
  endif    
endfor   
create the structure adibiofreq, composed of frequent subgraphs from adibio 
sort the edge table of adibiofreq 
reorganize the adjacency information of adibiofreq 
return adibiofreq 

 

The Adjacency Information of the adibiofreq structure is used to find frequent subgraphs, as 
discussed in Section 3.4.  

3.4 The Proposed Algorithm for Extracting Frequent Subgraphs 

Aiming at extracting subgraphs from the graph database, our algorithm uses the concepts of DFS code 
and minimum DFS code.  It also uses the ADI-bio data structure to find the frequent subgraphs. Each 
row of the Edge Table represents a frequent subgraph. The remaining subgraphs are found through the 
adjacent edges for each edge present in the edge table, using the Adjacency Information.  

    The ADI-Minebio algorithm is shown in Algorithm 2. It uses as input the adibiofreq structure 
generated by Algorithm 1 and generates as outputs a list of all frequent subgraphs and a list of 
adjacent edges. The ADI-Minebio algorithm works as follows. In lines 1 and 2, it defines two 
variables: (i) LF, which stores all the frequent subgraphs, and lAdjacency, which maintains the edges 
that compose a subgraph. In lines 3 to 9, the algorithm traverses the Edge Table and for each edge e, it 
performs the following steps: it adds e to lAdjacency (line 4); it obtains the minimum DFS code of the 
subgraph in lAdjacency (line 5); it adds lAdjacency to LF, since lAdjacency is a frequent subgraph 
(line 6); it finds Fe, which is a list of adjacent edges from lAdjacency (line 7); and finally it calls the 
procedure subgraph-mine to generate a new subgraph by performing an extension of the edge e using 
its adjacent edges (line 8).   

To exemplify this first part of Algorithm 2, consider the processing of the first edge of the Edge 
Table of Figure 3 (i.e. e = (aCo, Hydt). The following partial results are obtained: (i) the list of 
adjacent edges lAdjacency = <(aCo,Hydt)>; (ii) the list of the frequent subgraphs LF = 
<{(aCo,Hydt})>; (iii) and the list Fe of all edges that are adjacent to e, i.e. Fe = <(Hydt,Vo)>. 

    The subgraph-mine procedure is responsible for creating new extensions of frequent subgraphs by 
using the edges from the Edge Table that are adjacent to the edges of these subgraphs. For each edge 
from Fe (line 13), the following steps are performed: lAdjacency is reset (line 14); the edge is added to 
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lAdjacency, generating a new subgraph (line 14); and the DFS code of lAdjacency is computed (line 
16).  The new subgraph generated is considered only if its DFS code is minimum and the existent list 
of frequent subgraphs does not contain it (lines 17 to 22). If this test evaluates to true, the new 
subgraph is added to LF (line 23). Finally Fe is updated with new adjacent edges (line 24). The 
subgraph-mine procedure is executed recursively (line 25), until all adjacent edges have been 
considered.  

Using the same previous example, the algorithm finds the edges adjacent to the edge (Hydt, Vo). In 
this case, there are no adjacent edges. As a result, the subgraph-mine procedure ends and Algorithm 2 
processes the next edge present in the Edge Table, i.e. the edge (BFM, Hep). In the sequence, the edge 
(BFM, Hep) is added to the list of adjacent edges, its minimum DFS code is computed and the edge is 
also added to the list of frequent subgraphs. As there are no edges adjacent to the edge (BFM, Hep), 
Algorithm 2 continues by evaluating the next edge, i.e. the edge (Hydro, aCo). 

Considering the edge (Hydro, aCo), the following adjacent edges are found: (Hydro, Hep), (Hydro, 
Vo), (aCo, Hydt). In lines 14 to 16, the algorithm generates the new subgraph {(Hydro, aCo), (Hydro, 
Hep)}, and in line 14, it updates the list of frequent edges to Fe = <(Hydro, Vo), (aCo, Hydt)>, since 
there are no adjacent edges to (Hydro, Hep). Using Fe, the subgraph {(Hydro, aCo), (Hydro, Hep), 
(Hydro, Vo)} is built, and again the list Fe is updated, producing Fe = <(ASC Hydt)>. The next subgraph 
generated is: {(Hydro, aCo), (Hydro, Hep), (Hydro, Vo), (aCo, Hydt)}, and the list is updated with the 
edge (Hydt,Vo), which is adjacent to the edge (aCo, Hydt). In the sequence, the last subgraph generated 
for (Hydro, aCo) is {(Hydro, aCo), (Hydro, Hep), (Hydro, Vo), (aCo, Hydt) (Hydt, Vo)}. Finally, the 
processing of the edge (Hydro, aCo) ends, since there are no more adjacent edges. The same process is 
repeated for the following edges: (Hydro, Hep); (Hydro, Vo), (Hydt, Vo), (aCo, BFM) e (aCo, Hydro). 
Algorithm 2: ADI-Minebio (adibiofreq) 
 
 
 
 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

Input: adibiofreq {linked list of records containing the fields edgeTable 
                   and adjacencyInformation}  
Output: LF {list of frequent subgraphs},  
        lAdjacency {list of adjacent edges} 
var LF: list  
    lAdjacency: list  
for i=0; i<=adibiofreq.edgeTable.lenght; i++ 
  lAdjacency.add(adibiofreq.edgeTable(i)) 
  compute the minimum DFS code of the subgraph from lAdjacency 
  LF.add(lAdjacency)  
  find Fe, the list of adjacent edges from lAdjacency 
  call subgraph-mine(adibiofreq.edgeTable(i), lAdjacency, Fe, LF) 
endfor 
 
Procedure subgraph-mine 
Parameters: edge, lAdjacency, Fe, LF 
for i=0; i<=Fe.length-1; i++ 
    lAdjacency = new list 
    add Fe[i] in lAdjacency  
    compute D, the DFS code of lAdjacency  
    if DFS code is not minimum 
      return;  
    endif 
    if minimal DSF code is in LF  
      return; 
    endif 
    LF.add(lAdjacency) 
    update Fe using the new adjacent edges 
    call subgraph-mine(Fe[i+1],lAdjacency, Fe, LF) 
 endfor 
 returnS: Rodrigo, precisa acertar o que deve ser em itálico no algoritmo 
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3.5 Further Considerations 

The ADI-Minebio algorithm enables the specialist to discover new clues and make assumptions of 
occurrences that are not directly related to the data obtained from experiments with patients suffering 
from certain disease. For instance, consider the subgraph that includes the path SCA  Hydro  aCo 
 Hydt in the graph of Figure 3. This subgraph represents the combination of treatments and side 
effects in patients with the SCA, which is interpreted as: “patients that were treated with Hydroxyurea 
may also need hydration”. 

In our experiments, we focused on the SCA disease. However, our approach can be used for any 
other type of disease. Furthermore, although the algorithm has been developed to support a biomedical 
issue, it can be used in any application whose data is organized similarly to the database presented 
here (Table 2). Our algorithm is adequate for processing any table T(Id, A, B, C), such that A is the 
object upon which we wish to perform analysis (in our example, A = disease), C has the same nature 
(domain) of A, and also exists a relationship between values of the attributes A and B, and among 
values of the attributes B and C. These relationships should be represented by the following sequence: 
A1 B1 C1  B2  C2  ... Bn. 

4. PERFORMANCE EVALUATION  

In this section, we present and discuss the performance evaluation carried out to validate the proposed 
ADI-bio structure and the proposed ADI-Minebio algorithm.  In the tests, we investigate three different 
issues. Firstly, we address the impact of increasing number of vertices and edges in the performance for 
building the ADI-bio’s data structure. Secondly, we investigate the impact of increasing number of 
vertices in the performance of the ADI-Minebio algorithm. Finally, we analyze how the minimum 
support impairs the performance of the ADI-Minebio algorithm. 

We used the J2SE 6.0 based on the Eclipse Galileo IDE to implement the proposals. Regarding the 
datasets, we used synthetic data about treatments and side effects of the SCA. It is worth to note that the 
database and the data warehouse of this disease are not completely loaded with real data, since the 
extraction of information from scientific biomedical papers is still been performed. Therefore, we used 
only synthetic data to assess our proposals. However, to generate the synthetic data, we followed the 
characteristics of some real data. We found experimentally, using an automatic tool developed as a 
component of the IEDSS-Bio environment (Section 1), that the number of treatments by disease and the 
number of side effects by treatment extracted from biomedical scientific papers varies from 4 to 7 and 
from 1 to 7, respectively. We used these findings in the generation of our synthetic data.   

The minimum support and the number of vertices and edges of the generated graphs are specified in 
each test described in this section. The performance tests were carried out on a computer with a 3. 2 GHz 
Pentium core 2 duo P8700 processor, 4 GB of main memory, a 7200 RPM SATA 750 GB hard disk, 
Windows Vista operating system. We gathered the elapsed time in milliseconds and seconds. 

Figure 5 shows the time spent to build the ADI-bio data structure, considering graphs containing 
from 1,000 up to 1,000,000 vertices and from 666 up to 660,000 edges (Table 3). In this test, we used the 
value of 1% for the minimum support. For smaller numbers of vertices and edges (i.e. up to 100,000 
vertices and 66,000 edges), which generated up to 16,500 frequent edges, the ADI-bio data structure 
provided a linear growth in the building cost. But, the use of larger numbers of vertices and edges and, 
consequently, the increase in the frequent edges, impaired the time construction of the ADI-bio data 
structure.  
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Table 3: Characteristics of the synthetic datasets:  
number of vertices, number of edges and number of frequent edges 

Dataset # Vertices # Edges # Frequent Edges 

1 1,000 666 166 

2 10,000 6,600 1,650 

3 50,000 33,000 8,250 

4 100,000 66,000 16,500 

5 250,000 165,000 41,250 

6 500,000 330,000 82,500 

7 750,000 495,000 123,750 

8 1,000,000 660,000 165,000 

 

 

Fig. 5. Time spent to build the ADI-bio data structure. 

Figure 6 shows the time spent to find frequent subgraphs patterns using the ADI-Minebio, considering 
graphs containing from 50,000 up to 100,000 vertices. The characteristics of the graphs are as follows. 
They had 70% of their vertices connected and 65% frequent edges. Also, we used the value of 1% for 
the minimum support. The performance results demonstrated that the ADI-Minebio algorithm provided 
good results, which were slightly superior to a linear growth. For instance, an increase of twice in the 
number of vertices (i.e. from 50,000 to 100,000 vertices) produced only an increase of four times in the 
elapsed time (i.e. from 50 seconds to about 200 seconds). 
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Fig. 6. Time spent to identify frequent subgraphs patterns 

Table 4 shows the impact of increasing values of minimum support in the performance of the ADI-
Minebio algorithm. We used the values of 90, 100 and 110 as the minimum support for a graph database 
containing 250,000 vertices. The increase in the minimum support generated a smaller number of 
frequent subgraphs. Therefore, a challenge faced by the ADI-Minebio algorithm was to detect this fact 
and to spend less time to produce the list of frequent subgraphs. As can be noted, the proposed algorithm 
greatly overcame this challenge, since it provided a reduction of 61% in the elapsed time for a reduction 
of only 31% in the number of frequent patterns. 

Table 4. Performance results for increasing values of minimum support. 

Minimum Support Elapsed Time (s) # Patterns 

90 69 5,390 

100 55 4,916 

110 27 3,704 

 

5. RELATED WORK 

There are different types of algorithms for mining graphs. They are based on two approaches: based 
on Apriori [Agrawal and Srikant 1994] and based on pattern growth methods [Pei 2002]. While AGM 
[Inokuchi et al. 2000] and FSG [Kuramochi and Karypis 2001] are examples of algorithms based on 
Apriori, the algorithms gSpan [Han and Yan 2002], Mofa [Borgelt and Berthold 2002], CloseGraph 
[Han and Yan 2003], SPIN [Huan et al. 2004], and Metagraph [Deepti et al. 2008] use techniques 
based on pattern growth methods. Furthermore mining graphs are usually applied in different fields of 
knowledge. Thus, mining graphs algorithms may be tailored for specific areas of knowledge due to the 
characteristics of their data, as is the case reported in [Chen et al. 2009], [Lam and Chan 2008], [Lam 
and Chan 2008a], [Heydari et al. 2009] and [Song and Chen 2006]. Another graph-mining algorithms 
more related to our proposals are described in more details below.  
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FOGGER [Zeng, 2009] is a graph-mining algorithm based on the gSpan algorithm that addresses 
specifically the problem “frequent connected graph generator mining”. It tackles this problem using an 
extended ADI data structure, called ADI++, for quickly checking subgraph isomorphism. The 
FOGGER also uses two pruning techniques to avoid branches of the DFS code enumeration tree and 
showed to be very efficient and scalable for increasing graph data volumes. On the other hand, our 
proposals address the complete set of frequent subgraphs, which is not tackled by the graph generator 
FOGGER. 

The approach reported in [Wang et al. 2004] deals with a set of undirected graphs and works 
separately with each undirected graph. On the other hand, our approaches consider a single directed 
graph containing all subgraphs. We compute the frequencies of edges occurrences when the database 
is traversed to build the ADI-bio structure, thus facilitating the computation of the subgraphs 
frequency. In the approach of Wang et al. (2004), these frequencies are found in the ADI-Mine 
algorithm, after ADI structure is built. 

Zou and Holder (2010) also investigate the issue of frequent subgraph mining. In the same way of 
our proposals, they consider a dataset as a single graph, but considering large graphs that are too large 
to whole fit in main memory. For this purpose, sampling approaches are employed and the sampling 
method called “random areas selection sampling” provided the best results. On the other hand, the 
single graph addressed by our proposals is manipulated by an optimized ADI data structure, called 
ADI-bio, to efficiently search for patterns of treatments and side effects in medical applications. 

6. CONCLUSIONS AND FUTURE WORK 

In this paper, we focused on mining graphs in the biomedical domain, considering information related to 
treatments of diseases and side effects caused by these treatments. We introduced two main  
contributions, as described as follows. 

- We proposed the ADI-bio structure, which is specially organized to index data from a graph 
database with information of patients of a disease. 

- We also proposed the ADI-Minebio algorithm, which searches for frequent subgraphs in the graph 
database organized according to the ADI-bio structure. 

The advantages of our proposals were investigated through performance tests considering synthetic 
data from the Sickle Cell Anemia. In the tests, we investigated three different issues: (i) the impact of 
increasing number of vertices and edges in the performance for building the ADI-bio’s data structure; 
(ii) the impact of increasing number of vertices in the performance of the ADI-Minebio algorithm; and 
(iii) how the minimum support impairs the performance of the ADI-Minebio algorithm. For an 
increasing number of vertices, which ranged from 1,000 up to 1,000,000 vertices, the performance 
results showed that the ADI-Minebio algorithm provided good results, which were slightly superior to a 
linear growth. The results also demonstrated that the ADI-Minebio algorithm provided a great reduction 
in the time spent for detecting frequent subgraphs as the minimum support increased.  

We plan to apply the ADI-Minebio algorithm to a database containing real data from the biomedical 
domain. We also plan to include information about the number of patients enrolled in the experiment as 
a quantitative aspect of the algorithm, as well as to extend the proposed algorithm to consider this aspect. 
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