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Abstract. A time series is a collection of observations sequentially taken over time. Time series appear in several
application areas such as finance, marketing, agriculture, weather, industrial and scientific data gathering. Similarity
searching on time series databases is an important asset to extract knowledge from them. In this article, we propose
Telesto, a novel indexing approach aimed at performing similarity search over time series, which is based on discretized
time series and generalized suffix trees. Initially, Telesto discretizes time series and represents them as strings, using as a
basis the Symbolic Aggregate Approximation (SAX) technique. Thereafter, these strings are indexed using a generalized
suffix tree. To provide both range and nearest neighbor query operations among discretized time series, Telesto extends
the suffix tree substring search algorithm by calculating distances between the discretized time series. Performance tests
showed that Telesto is scalable in response to increasing sizes of databases and queries, in addition to be very efficient
in similarity queries over large real-world time series databases.

Categories and Subject Descriptors: Core Database Foundations and Technology [Access methods and indexing]:
Databases
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1. INTRODUCTION

A time series is a collection of observations sequentially obtained over time, usually in the real domain.
Time series are found in several application areas, such as finance, marketing, agriculture, weather,
industrial and scientific data gathering. Due to the recent technological advances and the increasing
storage capacity of computers, the volume of data related to time series collected, stored and available
for analysis has increased constantly and substantially. As a result, it has been increasingly important
to perform search and retrieval operations efficiently over time series databases.

Similarity searching on time series databases is an important tool to extract knowledge from these
databases. It is widely used as a subroutine in applications based on clustering [Kalpakis et al.
2001], classification [Geurts 2001] and mining association rules [Luo et al. 2004]. Through similarity
searches, it is possible to find locations with similar behavior. For instance, through the analysis
of agrometeorological data, we can find sugar-cane producing regions and regions similar to them
to learn what features should be employed and nurtured to strengthen the performance of other
regions [Romani et al. 2010].

The problem of performing similarity queries over time series can be divided into two classes: whole
matching and subsequence matching [Das et al. 1998]. While whole matching compares complete
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series with same sizes, subsequence matching compares series with different sizes. In this article, we
focus on the second class of similarity queries, the subsequence matching, since it is more general and
time series usually have different sizes in real applications.

Time series in the domain of real numbers can be discretized to decrease data complexity and local
dispersion. In order to do so, the real domain data is converted into a discrete and low cardinality
domain. Many techniques have been proposed in the literature, such as the Discrete Fourier Trans-
form (DFT) [Faloutsos et al. 1994], the Discrete Wavelet Transform (DWT) [Chan and Fu 1999],
the Singular Value Decomposition (SVD) [Keogh et al. 2001b], the Adaptive Piecewise Constant
Approximation (APCA) [Geurts 2001] [Keogh et al. 2001b], the Piecewise Aggregate Approximation
(PAA) [Keogh et al. 2001b] and the Symbolic Aggregate Approximation (SAX) [Lin et al. 2003],
which is the most commonly used technique and, therefore, is used as a basis for our proposal.

The SAX technique is based on PAA and assumes normality of the resulting aggregated values.
SAX employs an approximate distance function that lower bounds the Euclidean distance [Lin et al.
2007]. When using SAX, initially the time series must be transformed into the PAA representation
and then it is discretized into a sequence of discrete symbols (i.e. string). Thus, the original problem
of similarity comparison between time series can be transformed into a string comparison problem.
This type of comparison can be efficiently solved using the generalized suffix tree, which extends the
suffix tree to simultaneously index more than one string [Gusfield 1997].

In this article, we propose Telesto, a novel indexing technique aimed at performing similarity queries
over time series. Telesto is based on discretized time series and generalized suffix trees. Initially, Te-
lesto discretizes time series and represents them as strings using SAX. Then, these strings are indexed
using a generalized suffix tree. Finally, Telesto extends the suffix tree substring search algorithm by
calculating distances between the discretized time series. This extension enables the creation of range
and nearest neighbor query operators that can be applied over discretized time series.

This article is organized as follows. Section 2 reviews related work that employ suffix trees for
analyzing time series, while Section 3 summarizes the main concepts used as the basis for developing
our work. Section 4 describes the proposed Telesto method, and Section 5 discusses performance tests.
Section 6 concludes de article and also highlights future work.

2. RELATED WORK

In the literature, there are few approaches that employ suffix trees for analyzing time series. Lin et
al. (2005) introduced the VizTree, a time series pattern discovery and visualization system based on
suffix trees. The proposed visualization approach works by transforming the time series into strings
using SAX, and encoding these strings into a modified suffix tree with properties of patterns mapped
onto colors and others visual properties.

In [Rasheed et al. 2011], it was proposed a noise resilient algorithm for periodicity detection using
suffix trees as the basic data structure. The algorithm calculates symbols and segment periodicity
and detects the partial periodicity in time series. The presented experiments have shown that their
proposal performs more efficiently when compared to other algorithms in presence of noise. That is,
when noise was added, mixed or even withdrawn, the algorithm did not suffer from such conditions.

However, the aforementioned approaches differ from our work on their purpose and on the charac-
teristics of the employed suffix tree. In detail, they focus on time series visual mining and time series
behavior forecasting, whereas our objective is to find time series similar to a given one. Furthermore,
they do not employ multi-scale data structures such as generalized suffix trees, making it too costly
to analyze simultaneously more than one string. On the contrary, we use generalized suffix trees as
a basis for our proposal. These differences motivated the development of a new access method that
allows indexing time series using generalized suffix trees.
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3. BACKGROUND

3.1 Time Series Similarity

Let T = {T1, T2..., Tn} be a database with n time series and Tq be a time series center of a query.
Given a distance function d(Ti, Tq) that denotes the dissimilarity between the time series Ti and Tq,
similarity queries in time series databases can be divided into two types [Das et al. 1998]:

(1) Whole matching, in which time series of the same size are compared (i.e. the size of Tq is
equal to the time series in database T1, T2..., Tn), the distances d(Ti, Tq) between the series Tq and
Ti ∈ T are calculated, and the nearest series are retrieved.

(2) Subsequence matching, in which time series with different sizes are compared, i.e. the size of
Tq is equal or smaller than the time series in database T1, T2..., Tn. Subsequence matching can be
transformed into a whole matching by using a sliding window whose size is equal to the size of
the query Tq in Ti ∈ T .

The main unary similarity queries most frequently used over time series databases are the range
and the nearest neighbor queries. The range query is defined as follows. Given rq as a range distance,
a range query retrieves the time series Ti ∈ T such as d(Ti, Tq) ≤ rq. On the other hand, the
nearest neighbor (NN) query retrieves the closest time series to Tq. The NN query is important to
study similarity measures, since the effectiveness of similarities measure is directly reflected on a NN
classifier [Ding et al. 2008]. In this work, we focus on the range and the NN queries using subsequence
matching in time series databases.

3.2 Simbolic Aggregate Aproximation (SAX)

The SAX representation allows time series of size l to be represented by strings of arbitrary size w
(w < l) [Lin et al. 2003]. For a given time series, SAX consists of the following steps. Firstly, the
time series is normalized using z-score, so that the data have standard normal distribution [Goldin
et al. 1995]. Next, the normalized time series is converted to the Piecewise Aggregate Approximation
(PAA) representation, decreasing the time series dimensionality [Keogh et al. 2001a]. Lastly, the PAA
representation is discretized into a string with an alphabet of size σ > 2. The size of the alphabet
refers to the SAX discretization level.

Let a vector on the real numbers’ domain Ta = t1, ..., tl be a normalized time series of size l. The
PAA representation of Ta can be described as the vector T̄a = t̄1, ..., t̄w of size w. The ith element t̄i
of T̄a can be calculated by Equation 1.

t̄i =
w

l

l
w i∑

j= l
w (i−1)+1

tj (1)

Figure 1 shows the PAA dimensionality reduction of the time series Ta of size l into a time series of
size w, which is performed as follows. The time series is divided into w windows of equal sizes. Then,
the mean value of the data in each window is calculated. Finally, the time series is represented by a
vector containing the mean values calculated using Equation 1.

The PAA representation T̄a is converted into a sequence of equiprobable symbols in an alphabet
Σ = {α1, ..., ασ} of cardinality σ. Normalized time series usually have Gaussian distribution, thus, we
can define a list of sorted breakpoints β1, ..., βσ−1 such that the area under a N(0, 1) Gaussian curve
from βi to βi+1 is equal to 1/σ (β0 and βσ are defined as −∞ e ∞, respectively). Then, the time
series T̄a is discretized into a string Sa = s1s2 . . . sw. The ith element si is defined using Equation 2.
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Fig. 1. A discretized time series using SAX (l = 120, w = 8 e σ = 3), adapted from [Lin et al. 2003].

si = αj , if βj−1 < t̄i < βj (2)

Given two discretized time series Sa = s1s2 . . . sw and Sq = sq1sq2 . . . sqw
, they can be compared

using the MINDIST function [Lin et al. 2003], which is an adaptation of the PAA distance [Keogh
et al. 2001a] and is described in Equation 3. The dist(αi, αj) function represents the distance between
two symbols and can be calculated using Equation 4.

MINDIST (Sa, Sq) =

√
l

w

√√√√ w∑
i=1

(dist(si, sqi))2 (3)

dist(αi, αj) =

{
0, if |i− j| ≤ 1
βmax(i,j)−1 − βmin(i,j), otherwise

(4)

Since the PAA distance lowerbounds the Euclidean distance [Keogh et al. 2001a], and the MINDIST
lowerbounds the PAA distance [Lin et al. 2007], by transitivity, the MINDIST lowerbounds the
Euclidean distance. This proof has appeared in [Lin et al. 2007]. Therefore, we can perform similarity
queries in discretized time series using the MINDIST function warranting that no false dismissals
occur [Faloutsos et al. 1994].

3.3 Generalized Suffix Tree

Let Σ = {α1, . . . , ασ} be an alphabet with σ characters. Let Σ∗ be the set of all strings generated
from Σ and let S ∈ Σ∗ be a string with m characters (|S| = m). Let S[i : j] (1 ≤ i ≤ j ≤ m) be
a substring between (and including) the ith and jth characters of S. Let all substrings S[1 : i] be
prefixes of S and let all substrings S[i : m] be suffixes of S, denoted by S[i]. Let $ /∈ Σ be a terminal
character that represents the end of a string. Finally, let T = {S1, S2..., Sn} be a set with n strings.

A generalized suffix tree for the set T indexes all the strings Si ∈ T in a single tree with the following
properties [Gusfield 1997]: (i) Each internal node, except the root, has at least two children. (ii) Each
edge represents, by its label, a substring of Si ∈ T . (iii) Two edges leaving from the same node cannot
represent substrings with a common prefix. (iv) The path to a node (internal or leaf) X, denoted by
path(X), represents a substring formed by the concatenation of the labels on the path from the root
to the node X. (v) For each leaf node L, labeled with k pairs [Xa, Yb], path(L) is composed exactly
of the suffixes SXa

[Yb].

Figure 2 shows an example of a generalized suffix tree for the set T = {S1, S2}, where S1 = abca$
and S2 = bcaba$. The leaf node highlighted in red has the pairs [1, 4] and [2, 5], which represent the
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suffixes S1[4] = a$ and S2[5] = a$, also highlighted in red, respectively (property (v)). For example,
the path to the node X is equal to the substring “bca” (property (iv)).

Fig. 2. Example of a generalized Suffix Tree

The trivial algorithm for the generalized suffix tree construction is described as follows [Gusfield
1997]. Initially, it creates a root node R[T ]. Then, for each string Si ∈ T = {S1, S2, . . . Sn}, it adds
up all the suffixes Si[k] of Si in the tree. In order to preserve the properties of the tree, in each
iteration, the suffix Si[k] is inserted into the path(Y ), where path(Y ) has the longest common prefix
with Si[k], and if path(Y ) = Si[k] a new leaf is inserted into the node Y , otherwise the node Y
is divided. For example, the step-by-step execution of the trivial algorithm to construct the suffix
tree of Figure 2 is described as follows. First, the root node R[T ] is created. Then the suffixes
S1[1] = abca$, S1[2] = bca$ and S1[3] = ca$ are inserted into R[T ], since there is no path in the
tree with the corresponding prefixes. Next, the suffix S1[4] = a$ is inserted into the node Y, where
path(Y ) = abca$, since they share the same prefix “a”. For this, the node Y is divided and the suffix
S1[4] = a$ is inserted. The remainder suffixes are inserted in the suffix tree in the same way.

Regarding the substring search in a generalized suffix tree, it is done deterministically in linear time
[Gusfield 1997]. Starting from the root node, it performs a substrings matching between the query
string Sq and the substrings in the tree, finding the path(Y ) = Sq. Then, all leaf nodes below the
node Y have all occurrences of Sq in T = {S1, S2, . . . Sn}. For example, the substring searching of
Sq = a$ in the suffix tree of Figure 2 is described as follows. The search starts from the root node
R[T ] and finds the path path(Y ) = a. Next, the search finds the path(Y ) = a$, reaching a leaf node
which indicates that Sq occurs at the suffixes S1[4] and S2[5].

4. THE PROPOSED TELESTO METHOD

In this section, we describe Telesto (acronym for Time Series Generalized Suffix Tree), a novel inde-
xing approach aimed at time series similarity queries, which is based on discretized time series and
generalized suffix trees. To build and perform range and NN queries, Telesto is divided into three
stages: pre-processing, construction and querying.

Figure 3 shows the pre-processing and the construction stages of the Telesto method. In the pre-
processing stage, the time series are discretized as follows. Let T = {T1, T2, . . . , Tn} be a database
with n time series. Initially, each series Ti ∈ T is retrieved from disk (Figure 3(a)) and mapped
into a string Si using SAX (Figure 3(b)). The result of this stage is a set of discretized time series
S = {S1, S2, . . . , Sn}. Then, the construction stage executes the discretized time series indexing
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using a generalized suffix tree (Figure 3(c)). The generalized suffix tree is constructed according to
the trivial construction algorithm described in Section 3.3.

Fig. 3. Telesto: pre-processing and construction stage.

The querying stage, depicted in Figure 4, is responsible for performing range and NN queries
between discretized time series through substrings matching. Let Tq = t1, t2, . . . , tm be a time series
query. In the first step, the time series Tq is mapped using SAX into a string Sq = s1s2 . . . sm (Figure
4 (a)); note that |Tq| = |Sq| = m. Then, Telesto performs the similarity query over the generalized
suffix tree (Figure 4(b)). To execute a range query, Telesto retrieves all series ti ∈ T that are at a
distance d(Tq, Ti) < rq (Figure 4(c)), where rq is the query radius. In the NN query, Telesto retrieves
the series closest to Tq.

Fig. 4. Telesto: querying stage.

In order to compare time series in SAX representation, i.e. to calculate the distance d(Ti, Tj)
between these series, Telesto uses the MINDIST(Si, Sj) distance function described in Section 3.2. The
range query operation proposed extends the substring search in generalized suffix tree as follows. Let
Sq = s1s2 . . . sm be a discretized time series query. The range query search for Sq finds all substrings
of size m in the generalized suffix tree. During each search, for each internal node X traversed in
the tree, there is a corresponding substring path(X) = Si[1 : k]. In the case that MINDIST(Si[1 :
k], Sq[1 : k]) > rq, the search is stopped, i.e. a pruning occurs and Si[1 : k] is discarded. In the case
when the search finds a substring Si[1 : m] withm characters and MINDIST(Si[1 : m], Sq[1 : m]) ≤ rq,
Si[1 : m] is inserted into the answer set. The NN query operation is based on the same basic range
query operation, however the query radius rq is variable from infinity and reduces to the distance
value of the string closest to Sq, as the search procedure traverses the generalized suffix tree.

Another important feature of Telesto’s querying stage is that it acts as a filtering phase, since it
uses the MINDIST distance, which guarantees the absence of false negatives (Section 3.2). On the
other hand, false positives can occur, which creates the need for a later refinement stage. Therefore,
Telesto generates a set of possible candidates. Consequently, each candidate must be tested in the
original domain.
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5. PERFORMANCE EVALUATION

The benefits of the Telesto method were investigated through performance tests executed using a
real-world time series database. These data were extracted from a series of satellite images captu-
red by AVHRR/ NOAA satellite (Advanced Very High Resolution Radiometer/National Oceanic and
Atmospheric Administration). These series correspond to monthly measures of the Normalized Dif-
ference Vegetation Index (NDVI), which indicates the soil vegetative vigor represented in the pixels
of the images [Rouse et al. 1973]. In the pre-processing stage, we used the SAX representation with
discretization level equals to 5, i.e. the time series were discretized in strings of an alphabet of size 5.
Each string has 108 characters and each character corresponds to a month in the extracted series.

In the performance tests, we used databases with 50, 100, 150, 200 and 250 thousand time series
and 10 query groups. Each group has randomly generated queries of 5 different sizes (12, 24, 36,
48 and 60 characters), such that the queries consist of time series corresponding to 1, 2, 3, 4 and 5
years, respectively. We performed both range and NN queries. For range queries, we used the error
ε = 0.005 to calculate the query radius rq, such that ε = rq/|Sq| and |Sq| is the query size.

The experiments were conducted on a computer with an Intel Core i7 2.67 GHz processor, 12 GB
of main memory, 2 SATA 1 TB hard disks and Linux Ubuntu system (32 bits). To compare the range
and NN queries operations, we implemented a method that performs sequential scan on the databases.
Both methods, Telesto and sequential scan, were implemented using the C++ programming language
(main memory only), considering the filtering stage. All tests were performed 5 times, so the values
presented and discussed in this section correspond to the average of these 5 executions.

Figure 5 shows the time spent (in seconds) by Telesto during the construction stage for distinct
database sizes. Telesto showed a linear growth in response to increasing data volumes (dotted line).
Therefore, we can conclude that the Telesto’s construction stage is scalable, since the increase in
volume did not impair its performance. Furthermore, the time spent to construct the index of the
biggest database was approximately 70 seconds, which can be considered small, since, as shown in
the next test, a single sequential scan for range query on that database spent on average 9 seconds.
Therefore for multiple queries the time spent in construction stage pays off the sequential scan.

Fig. 5. Telesto: time spent during the construction stage.

The second set of experiments evaluated the querying stage. First, we show in Figure 6 the time
spent to process range queries. The results depicted in Figure 6(a) evaluate the impact of the database
size increase and in Figure 6(b) evaluate the impact of the query size increase using a database of
size 250K. As can be observed, in both cases Telesto’s performance was far superior to sequential
scan. In fact, Telesto provided a performance gain that ranged from 116 to 176 times considering the
impact of database size increase, and ranged from approximately 180 to 220 times considering the
impact of query size increase. Another positive feature is that Telesto showed a linear growth in query
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cost in response to increased database sizes (Figure 6). Moreover, Telesto’s time spent during range
query processing was almost indifferent to the query size, except for the query size of 12 symbols, as
presented in Figure 6(b).

(a) Increasing database size (b) Increasing query size

Fig. 6. Time comparison of range query processing.

Figure 7 depicts the performance results for NN queries. While the results shown in Figure 7(a)
evaluate the impact of the database size increase, the results shown in Figure 7(b) evaluate the impact
of a query size increase using the database of size 250K. Telesto provided a performance improvement
of up to 20 times considering the impact of the database size increase, and up to almost 168 times
considering the impact of the query size increase. Similar to the range query performance results,
Telesto also showed a linear growth in NN query costs in response to increased database sizes (Figure
7(a)). However, the time spent during NN query processing was not indifferent to the query size,
because of the query range used is not fixed, as in range queries. We can conclude that Telesto is
scalable in the size of the query, and it is very efficient.

(a) Increasing database size (b) Increasing query size

Fig. 7. Time comparison of NN query processing.

6. CONCLUSIONS AND FUTURE WORK

In this article, we proposed Telesto, a novel indexing approach aimed at time series similarity search.
Telesto was described in terms of its main features: (i) pre-processing stage, which discretizes time
series into strings; (ii) construction stage, which indexes these strings using a generalized suffix tree;
and (iii) querying stage, which performs range and NN queries over the generalized suffix tree.
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Telesto was validated through performance tests using real-world time series databases. The results
showed that Telesto was very efficient in the processing of range and NN queries. Compared with the
sequential scan, Telesto provided a performance gain of up to 220 times in the range query processing
and of up to 168 times in the NN query processing. The results also showed that the time spent by
Telesto to process range queries was almost indifferent to the query size. Furthermore, Telesto showed
a linear growth in construction and query costs in response to increased database sizes. Therefore,
the increase in volume did not impair the performance of Telesto’s construction and querying stages.

We are currently investigating the persistent storage of Telesto, since it currently remains entirely in
the main memory. We also plan to investigate how the discretization levels of the SAX representation
(i.e. the size of its alphabet) influences the efficiency of Telesto, since in this article we only used the
SAX representation with discretization level equals to 5 in the pre-processing stage.
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