
k-Nearest Neighbors Queries in
Time-Dependent Road Networks

Lívia A. Cruz1, Mario A. Nascimento2 and José A. F. de Macêdo1

1 Federal University of Ceará, Brazil
{liviaac, jose.macedo}@lia.ufc.br

2 University of Alberta, Canada
{mario.nascimento}@ualberta.ca

Abstract. In this article, we study the problem of processing k-nearest neighbors (kNN) queries in road networks
considering traffic conditions, in particular the case where the speed of moving objects is time-dependent. For instance,
given that the user is at a given location at certain time, the query returns the k points of interest (e.g., gas stations)
that can be reached in the minimum amount of time. Previous works have proposed solutions to answer kNN queries
in road networks where the moving speed in each road is constant. Obviously, these solutions cannot be simply applied
to the problem we are interested in. Our approach uses the well-known A∗ search algorithm by applying incremental
network expansion and pruning unpromising vertices. We discuss the design and correctness of our algorithm and
present experimental results that show the efficiency and effectiveness of our solution.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—Spatial databases and
GIS; H.2.4 [Database Management]: Systems—Query processing; H.3.3 [Information Storage and Retrieval]:
Information Search and Retrieval—Search process

Keywords: k-Nearest Neighbors Queries, Query Processing, Spatial Pruning, Time-Dependent Networks

1. INTRODUCTION

The assessment and consideration of traffic conditions is key for leveraging intelligent transportation
systems. With the availability of inexpensive tracking devices, such as GPS-enabled devices, it is
possible to collect large amounts of trajectory data of vehicles. Using such data along with the
underlying road network information allows creating an accurate picture of the traffic conditions in
time and space. One possible use of this information is to compute travel time from an origin to a
destination, which is a major issue for the intelligent transportation domain. The main motivation
for this work is to use previously computed and time-dependent travel time in road networks in order
to answer time-dependent k-nearest neighbors queries.

Travel time on road networks heavily depends on the traffic and, typically, the time a moving object
takes to traverse a segment depends on departure time. The structure of a network can be modeled
by a graph where the vertices represent the network junctions, starting and ending points of a road
segment (e.g. a street or an avenue) and the edges connect vertices (depending on the application,
additional points can represent a change in curvature or in maximum speed of a segment). In this
work, the travel time is modeled by a time-dependent graph, where the cost (time) to traverse an edge
is a function of the departure time.

For example, consider Figure 1(a) where a partial network is shown. Figure 1(b) shows a graph

Research performed while the first author, supported by a CAPES scholarship, was visiting the Univ. of Alberta (under
the auspices of DFAIT’s Emerging Leaders of America Program, ELAP). The second author was partially supported
by NSERC, Canada.
Copyright c©2012 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012, Pages 211–226.

212 · L. A. Cruz, M. A. Nascimento and J. A. F. de Macêdo

(a) A partial road network. (b) A graph representing
the road network in (a).

(c) Travel time functions.

Fig. 1. A road network example, its equivalent graph and travel-time functions for their edges.

representing the network in Figure 1(a). The travel time is given by piece-wise linear functions, shown
in Figure 1(c). Each edge in the graph has its respective travel time function. There are two paths to
go from vertex b to c. One can take path 〈b, c〉, that goes from b to c directly, or 〈b, a, c〉, that passes
by a. The fastest path from b to c depends on the departure time ts. For ts = 10h, path 〈b, c〉 takes
30min. Using path 〈b, a, c〉 traveling from b to a takes 20min and the arrival time in a is 10h20min.
The time to traverse 〈a, c〉 at 10h20min is 25min, then path 〈b, a, c〉 takes 45min, for departure time
10h. Similarly, if ts = 16h, path 〈b, c〉 takes 50min and path 〈b, a, c〉 takes 30min. It is faster to go
directly to c at 10h, but at 16h the best choice is to go through a and then to c.

In this work, we consider time-dependency to answer kNN queries. A kNN query retrieve the k
points of interest that are closest. In time-dependent networks, a kNN query returns the k points of
interest with minimum travel-time from the query point. As a more concrete example, consider the
following scenario. Imagine a tourist in Paris who is interested to visit the touristic attraction closest
from him/her. Let us consider two points of interest in the city, the Eiffel Tower and the Cathedral
of Notre Dame. He/she asks a query asking for the touristic attraction whose the path leading up to

(a) The nearest neighbor at 10h. (b) The nearest neighbor at 22h.

Fig. 2. An example of kNN query. The fastest path from the query point to the nearest neighbor is in solid line. The
fastest path from the query point to the other point of interest is in dashed line.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

k-Nearest Neighbors Queries in Time-Dependent Road Networks · 213

it is the fastest at that time, the answer depends on the departure time. For example, at 10h it takes
10 minutes to go to the Cathedral. It is the nearest attraction. Although, if he/she asks the same
query at 22h, in the same spatial point, the nearest attraction is the Eiffel Tower.

Previous solutions for shortest paths, k-nearest neighbors and others common queries in static
networks no longer work when the edge costs (travel time) themselves depend on time. Design
of efficient and correct query processing strategies and algorithms is a challenge since some of the
commonly assumed graph-properties may not hold for time-dependent networks [George et al. 2007].
In this context, the main contributions of this article are:

(1) We propose an algorithm based in the well-known A∗ search and incremental network expansion
algorithms [Papadias et al. 2003] to process kNN queries in time-dependent networks;

(2) We propose an heuristic function to be used in our A∗ search that works well in time-dependent
networks;

(3) We propose an algorithm to include points of interest in a time-dependent network given the
travel-time functions in the original network;

(4) We prove the correctness of our solution;
(5) We perform an experimental evaluation that shows our solution outperforms the approach in

[Demiryurek et al. 2010b] by up to 50% in terms of I/O operations.

This article is organized as follows. In Section 2, we introduce some important definitions for under-
standing our proposed solution, explain the road network model used in our approach and formalize
the problem of processing kNN queries in time-dependent networks. In Section 3, a brief description
of related works is presented. In Section 4, we explain our approach and show the correctness of our
solution. The experimental evaluation and results are shown in Section 6. Finally, Section 7 concludes
this article.

2. PRELIMINARIES

In this section, we formalize the concept of time-dependent graph and explain how we model the
points of interest on a network. We also give other basic definitions as travel-time, time-dependent
fastest path and time-dependent distance, useful for stating the problem we address.

Definition 2.1. A time-dependent graph (TDG) G = (V,E,C) is a graph where: (i) V =
{v1, . . . vn} is a set of vertices; (ii) E = {(vi, vj) | vi, vj ∈ V, i 6= j} is a set of edges; (iii) C =
{c(vi,vj)(·) | (vi, vj) ∈ E}, where c(vi,vj) : [0, T]→ R+ is a function which attributes a positive weight
for (vi, vj) depending on a time instant t ∈ [0, T] and where T is a domain-dependent time length.

A TDG is a graph where the edge costs vary with time. For each edge (u, v), a function c(u,v)(t)
gives the cost of traversing (u, v) at departure time t and [0, T] is the domain of the functions in C.
For example, T = 24h means that c(u,v)(t) is defined for a full day.

Note that our definition allows different edge costs to bidirectional segments, in the sense that an
edge (u, v) and its opposite (v, u) may be such that c(u,v)(t) 6= c(v,u)(t). Furthermore, we assume that
C is a set of piecewise-linear functions that satisfy the FIFO property. Basically, the FIFO property
states that if an object A starts traversing an edge before an object B, then A has to finish traversing
that edge before B. The time-dependent shortest path problem has a polynomial time solution in
FIFO networks, however it is NP-hard in non FIFO networks [Orda and Rom 1990].

We represent any location, like points of interest (POIs) or query points, by a pair p = 〈(u, v), τ(u,v)〉,
such that (u, v) is an edge in G where p is on, τ(u,v) = d(u,p)

d(u,v) is the proportional distance from u to p
with respect to entire segment and d(pi, pj) is the Euclidean distance between pi and pj , if pi, pj are

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

214 · L. A. Cruz, M. A. Nascimento and J. A. F. de Macêdo

Algorithm 1: IncludePOI
Input: A TDG G = (V,E,C), a POI p = 〈(u, v), τp〉
Output: G = (V

′
= V ∪ {p}, E

′
, C

′
)

V
′
← V ∪ {p};1

E
′
← E \ {(u, v)} ∪ {(u, vp), (vp, v)};2

c(u,p)(t)← τp × c(u,v)(t);3
c(p,v)(t)← (1− τp)× c(u,v)(t);4

C
′
← C \ {c(u,v)(t)} ∪ {c(u,p)(t), c(p,v)(t)};5

if (v, u) ∈ E then6

E
′
← E

′
\ {(v, u)};7

c(v,p)(t)← (1− τp)× c(v,u)(t);8
c(p,u)(t)← τp × c(v,u)(t);9

C
′
← C

′
\ {c(v,u)(t)} ∪ {c(v,p)(t), c(p,u)(t)};10

end11

Return G = (V
′
, E

′
, C

′
);12

on the same edge, and undefined, otherwise. Note that to use the Euclidean distance, we suppose each
curvature change in the road is mapped to a vertex in the graph. This assumption implies potential
increase in the number of vertices needed to model the network. However, this is not a bottleneck
in our approach, since we propose a method to efficiently retrieve the vertex information. If the
edge (u, v) has an opposite edge (v, u), the same point could have two different representations, e.g.
p = 〈(u, v), τp〉 and p = 〈(v, u), 1 − τp〉, one for each direction. We consider that only one of them is
given and the other one is directly obtained from it.

We assume a process that generates a TDG from a road network. In this process, G can be
generated such that each POI from a set of POIs S is included as a vertex in G. However, a new
POI may arise and we would not like have to rebuild the entire network again. The followed process
show how to include a POI as a vertex in G. Given a TDG G = (V,E,C) and a set S of POIs, we
include each POI in G as a vertex. Algorithm 1 is a procedure that receives as input a TDG G and a

(a) Road network and a
restaurant R.

(b) TDG considering the point
of interest R.

(c) Travel time function to new edges.

Fig. 3. Time-dependent graph representing a network and points of interest.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

k-Nearest Neighbors Queries in Time-Dependent Road Networks · 215

POI p = 〈(u, v), τp〉, generates a vertex in G equivalent to p and calculates the cost function for new
edges. Figure 3 presents an example of how to include a POI as a vertex in the TDG in Figure 1(b).
Figure 3(c) presents how the travel-time functions of the same TDG change according to a new vertex
included. In this example, R = 〈(B,C), 1

3 〉 is a point of interest in the application domain. Note that
the travel time functions of edges (A,B) and (C,B), and their opposites edges, defined in Figure 1(c)
still apply.

First, we have to include R as a vertex in V . As R is a point on (B,C), (B,C) and is removed
from E to create two new edges (B,R) and (R,C). The travel time functions for (B,R) and (R,C)
are c(B,R) = 1

3c(B,C) and c(R,C) = 2
3c(B,C), respectively, and the old travel time function c(B,C) is

removed from C. Now, we have to check if (C,B) is an edge in E. In that case, we have to remove
(C,B) from E, c(C,B) from C, the edges in the other direction, ((C,R) and (R,B)) and calculate the
cost functions for the other direction. To calculate the new functions, we consider (1− pR) and c(C,B)

instead of pR and c(B,C). The new cost functions are c(C,R) = 2
3c(C,B) and c(R,B) = 1

3c(C,B). This
process assumes constant speed for objects travelling through an edge. This assumption is acceptable
since we assume to only have information about the travel time to go through an entire edge.

The temporal cost to traverse a path from a specific departure time in a TDG is called travel time.
The arrival time of a path is calculated assuming that stops are not permitted. They are formally
defined as follows.

Definition 2.2. Given a TDG G = (V,E,C), the arrival time to traverse an edge (vi, vj) ∈ E at
departure t ∈ [0, T] is given by AT (vi, vj , t) = t+ c(vi,vj)(t) mod T .

Definition 2.3. Given a TDG G = (V,E,C), a path p = 〈vp1 , . . . , vpi , vpi+1 , . . . , vpk
〉 in G and a

departure time t ∈ [0, T], the travel time of p is the time-dependent cost to traverse this path, given
by TT (p, t) =

∑k−1
i=1 c(vpi

,vpi+1)(ti), where t1 = t and ti+1 = AT (vpi
, vpi+1 , ti).

Definition 2.4. Given a TDG G = (V,E,C), u, v ∈ V and a departure time t, let P (v, u) be a set
of paths from u to v in G. A time-dependent fastest path from u to v, denoted by TDFP (u, v, t),
is a path p ∈ P (v, u) such that TT (p, t) ≤ TT (p

′
, t), for all p

′ ∈ P (v, u).

Definition 2.5. Given a TDG G = (V,E,C), u, v ∈ V and a departure time t, a time-dependent
distance from u to v at departure time t is given by TDD(u, v, t) = TT (p, t), where p is the TDFP
from u to v.

2.1 Problem Statement

We consider the problem of processing kNN queries in road networks where the travel time is time-
dependent, defined as follows:

Definition 2.6. Let G = (V,E,C) be a TDG and POI ⊆ V be a set of points of interest in G.
Given a query point q, a departure time t and an integer k > 0, a Time-Dependent kNN (TD-kNN)
query returns a set R = {vr1 , . . . vrk

} ⊆ POI such that ∀v ∈ POI \R, TDD(q, vri
, t) ≤ TDD(q, v, t).

In other words, a TD-kNN query returns a set of k points of interest that are closest from q than the
others remaining points considering a departure time t.

Previous works have proposed solutions for answering kNN queries in road networks where the
speed in each road is constant. Obviously, these solutions cannot be simply applied to the problem
we are interested in. Next we discuss works that consider problems that do have similar assumptions
and constraints as ours.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

216 · L. A. Cruz, M. A. Nascimento and J. A. F. de Macêdo

3. RELATED WORK

3.1 Time-Dependent Shortest Path

This problem has an intrinsically relation with the time-dependent kNN problem, since the nearest
POIs from the query depend on the cost (travel time) of the shortest (fastest) path to each POI object.
The usual solution to shortest path problem in static graphs is Dijkstra’s algorithm [Dijkstra 1959].
[Wagner and Willhalm 2007] presents a survey with many others ideas that have been proposed to find
point-to-point shortest paths. Unfortunately, these ideas would fail when time-dependent networks
are considered. Much less work has been proposed to the time-dependent case. The first algorithm
that considers a time-dependent variant of shortest paths is addressed in [Cooke and Halsey 1966].
This algorithm is a modified form of Bellman’s iteration scheme for finding the shortest route between
any two vertices in a network. Another approach was proposed by [Nannicini et al. 2008], it applies
bidirectional A∗ search with landmarks on a time-dependent network to calculate the fastest path
between two vertices.

3.2 kNN Queries in Road Networks

The problem of kNN queries in road networks was introduced in [Papadias et al. 2003]. In that paper,
the authors present two different solutions to this problem, the Incremental Euclidean Restriction
(IER) and the Incremental Network Expansion (INE) algorithms. IER uses the assumption that
the Euclidean distance between two points on the network is less than the network distance. This
assumption is used to retrieve kNN points, according to the Euclidean distance, and use their network
distance as an upper bound for the distance of kNN points according to the network distance. INE
is an adaptation of Dijkstra’s algorithm. With this algorithm, starting from the query object q all
network nodes reachable from q in every direction are visited in order of their proximity to q until all
k nearest data objects are located. [Kolahdouzan and Shahabi 2004] presented an approach based on
pre-computing the network’s voronoi polygons (NVP) [Erwig and Hagen 2000], indexed by a spatial
access method. Using NVPs one can immediately find the first nearest neighbor of a query object
and reduce the on-line cost in a kNN search. These approaches cannot be directly applied to solve
TD-kNN queries.

3.3 Time-dependent kNN Queries

The problem of kNN queries in time-dependent networks was introduced by [Demiryurek et al. 2010b],
where the authors compare two different baseline methods to solve this problem. The first approach
uses time-expanded graphs to model the network. Time-expanded graphs allows us to exploit pre-
vious solutions in static networks to solve TD-kNN queries. However, this solution has numerous
shortcomings, such as high storage overhead, slower response time and also incorrect results, as shown
by [Demiryurek et al. 2010b]. The second approach is an adaptation of the INE algorithm [Papadias
et al. 2003] that does a blind search while expanding the network. In [Demiryurek et al. 2010a] a
pre-computation process that builds two different indexing structures, the Tight Network Index (TNI)
and Loose Network Index (LNI) was proposed . Both are composed for cells that reference the points
of interest such that, if a query point q is in a tight cell of a point p, p is its nearest neighbor, and
if q is out of a loose cell of p, p is not its nearest neighbor. As in the NVP method, using TNI one
can immediately find the first nearest neighbor of a query object. However, it is not clear how this
process works well when travel time functions in edges with opposite directions can be different. That
is an important aspect in time-dependent networks, since the cost of a path can be determined by its
orientation.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

k-Nearest Neighbors Queries in Time-Dependent Road Networks · 217

4. TIME DEPENDENT NETWORK EXPANSION WITH A∗ SEARCH (TD-NE-A∗)

In this section, we describe our approach to process TD-kNN queries in time-dependent networks.
Our algorithm is based on incremental network expansion (INE), that was originally proposed for
static networks in [Papadias et al. 2003]. Starting from the query object q, INE visits all network
vertices reachable from q in order of their proximity until all k nearest neighbors objects are located.

We incorporate an A∗ search directly into INE’s expansion (hence the name TD-NE-A∗). To
solve the shortest path problem, the A∗ search works similar to Dijkstra’s algorithm [Goldberg and
Harrelson 2005]. It uses a distance d(vi, vk) plus a heuristic function H(vk) to determine the order
in which vertices are expanded in the search tree. The current distance plus a heuristic function on
a vertex vk is an estimate of the cost of a path between vi and the goal vertex that pass by vk. The
heuristic function H(vk) must be an admissible heuristic; that is, it must not overestimate the distance
from vk to the goal. If H(vk) satisfies an additional condition H(vk) ≤ d(vk, vj) + H(vj) for every
edge (vk, vj) of the graph, then H(vk) is called monotone, or consistent. In such a case, A∗ can be
implemented more efficiently because it approaches the solution in an incremental way without taking
any step back.

Instead of using an A∗ search to calculate each time-dependent distance from a query q to each
point of interest in a set of candidates, we incorporate an A∗ search directly in an incremental network
expansion. Thus our search has multiple and unknown targets. An incremental strategy avoids re-
computing costs previously calculated and visits only necessary edges. In our algorithm, the heuristic
function adds to each vertex an estimate of the potential for it to take part of the fastest path that
leads to a nearest point of interest. The idea behind our search is avoid continuing to expand nodes in
a path that is fast but is far from any point of interest in the network. We are motivated by the fact
that a vertex u may be the closest node to q, but it does not imply that we would find a next nearest
POI when expanding u. To explain how our method works, we need to introduce some definitions.

Definition 4.1. The lower bound graph of a TDG G = (V,E,C) is a graph G = (V,E,C)
where V and E are the same set of vertices and edges in G and C is the set of costs c(vi,vj)

=
mint∈[0,T]{c(vi,vj)(t)}, for all c(vi,vj) ∈ C. Similarly, an upper bound graph G = (V,E,C) has the
same set of vertices and edges in G and C is the set of edge costs c(vi,vj) = maxt∈[0,T]{c(vi,vj)(t)}, for
all c(vi,vj) ∈ C.

We define the LTDD(vi, vj) and UTDD(vi, vj) as the travel time of the fastest path between vi and
vj in G and G, respectively. Note that, as the cost functions in G and G are constants, LTDD(vi, vj)
and UTDD(vi, vj) are not dependent on a departure time. We set our heuristic function H(u) to be
equal to the travel time from u to its nearest neighbor in G. This is an optimistic value, since is the
best travel time of a path that leads u to some point of interest. Furthermore, this is an admissible and
consistent heuristic, as shown by the two followed lemmas, thus it is feasible to be used in the A∗ search.

Lemma 4.2. H(·) is an admissible heuristic.

Proof. To show that H(·) is admissible consider a query point q = 〈(u, v), τq〉 and let nnq be
the nearest neighbor of q at departure time t in G. Let u be a vertex already visited in the search
and nnu the nearest neighbor from u in G. Assume that H(u) is not admissible, i.e., we have
TDD(q, u, t) + H(u) = TDD(q, u, t) + LTDD(u, nnu) > TDD(q, u, t) + TDD(u, nnq, AT (q, u, t)).
The inequality LTDD(u, nnu) > TDD(u, nnq, AT (q, u, t)) is a contradiction because LTDD(u, nnu)
is a lower bound to all possible travel times from u to any point of interest. We can conclude that
H(u) does not overestimate the distance to next nearest neighbor object. Thus, it is admissible.

Lemma 4.3. H(·) is a consistent heuristic.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

218 · L. A. Cruz, M. A. Nascimento and J. A. F. de Macêdo

Proof. Given a TDG G = (V,E,C) and a set of points of interest S, to show that H is consistent
for any departure time t w.r.t S, we need to show that for any edge (u, v) ∈ E, H(u) ≤ c(u,v)(t) +
H(v). Let nnu be the nearest neighbor of u in G. Suppose that H(u) > c(u,v)(t) + H(v). Hence,
LTDD(u, nnu) = H(u) > c(u,v)(t) +H(v) > c(u,v) +H(v) = LTDD(u, p), for some vertex p ∈ S. In
that case, p is a point of interest nearest than nnu from u, a contradiction against the hypothesis that
nnu would be the nearest neighbor of u. Hence, it is admissible.

4.1 Offline Preprocessing

We consider two preprocessing steps in our approach. In both of them an algorithm to find the
nearest point of interest in a network that does not vary with time is used. The first one calculates
the heuristic function value for vertices in G. For each vertex v, the distance between v and its nearest
neighbor in G is calculated. This distance is attributed to H(v) to be used as the heuristic function.
The second step computes the nearest neighbor of v in G, denoted by UNN(v), and its distance from
v in G, denoted by UTDD(v, UNN(v)). These values are used to prune vertices that lead to points
of interest farther than a set of candidates.

Our preprocessing steps have the important advantage of using familiar solutions that run in poly-
nomial time on non time-dependent road networks (i.e., static networks). To execute them, we use the
algorithm proposed in [Papadias et al. 2003]. Each preprocessing step calls a 1NN search to find the
nearest neighbor for each vertex. In the worst case, this algorithm runs in time O(|V ||E|+|V |2 log |V |).
However, a kNN search started in a vertex find the 1NN of all vertices in the path from the source
to its nearest neighbor. Thus, we do not need to start one search for each vertex in the network,
improving the time of execution.

In some case of updates, the precomputed information has to be changed. We consider three cases
of updates: updates in the travel time functions; deletion of a POI object; inclusion of a POI object.

Update in the travel-time functions. When the value of the travel-time function change, a
preprocessing step in the G or G has to be run again only if the lower bound or the upper bound,
respectively, changes.

Deletion of a POI. When a POI is deleted from the network we have to run the preprocessing
step for all vertices that have the POI object removed as a nearest neighbor in G or G.

Inclusion of a POI. When a POI is included we have to run the preprocessing step again.

4.2 Query Processing

Algorithm 2 presents the pseudo-code of TD-NE-A∗ and works as follows. It takes three parameters
as input, the query point q = 〈(u, v), τq〉, the number of nearest neighbors k and the departure time
t. It works similarly to previous network expansion algorithms, but includes two strategies to guide
the search and pruning of unpromising vertices. First, it gets the edge (u, v) that represents the road
segment covering q. The vertices u and v are inserted in a priority queue Q that stores the set of
candidates for expansion in the next step. An entry in Q queue is a tuple (vi, ATvi , TTvi , Lvi), where
TTvi

= TT (q, vi, t), ATvi
= AT (q, vi, t) and Lvi

is given by TTvi
+ H(vi), i.e. a sum of the travel

time from q to vi in the path in which vi was found plus the minimum travel time to find a nearest
neighbor from vi. The Lvi

value represents an optimistic expectation for the travel time of a path
that leads vi to its nearest neighbor. The priority of elements in Q is given by the increasing order
of Lvi values. The motivation behind this is to check first the vertices that offer a greater chance to
find a point of interest quickly.

Another priority queue QU is maintained to store upper bound values. For each expanded vertex,
the value of UTDD(v, UNN(v)) is a pessimistic expectation for the travel time of a path that leads v
to its nearest neighbor, that represents an upper bound. For each distinct UNN(v) we maintain the

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

k-Nearest Neighbors Queries in Time-Dependent Road Networks · 219

Algorithm 2: TD-NE-A∗

Input: A query point q = ((u, v), τq), an integer value k, a departure time t
Output: The set of k nearest neighbors of q
TTv ← τq × c(u,v)(t);1
ATv ← (t+ TTv) mod T ;2
Lv ← Tv +H(v);3
En-queue (v,ATv, TTv, Lv) in Q;4
if (v, u) ∈ E then5

TTu ← (1− τq)× c(v,u)(t);6
ATu ← (t+ TTu) mod T ;7
Lu ← Tu +H(u);8
En-queue (u,ATu, TTu, Lu) in Q;9

end10
SNN ← ∅;11
while Q 6= ∅ ∧ |SNN | < k do12

(u,ATu, TTu, Lu)← De-queue Q;13
Mark u as de-queued;14
if TTu = H(u) then15

SNN ← SNN ∪ {u};16
end17
for v ∈ adjacency(u) do18

TTv ← TTu + c(u,v)(ATu));19
ATv ← (t+ TTv) mod T ;20
Lv ← TTv +H(v);21
if Lv ≤ QU (k) then22

if v is not in Q then23
En-queue (v,ATv, TTv, Lv) in Q;24
Mark v as en-queued;25

else26
Update Lv, if it is necessary;27
Re-order Q;28

end29
UUNN(v) ← TTv + UTDD(v, UNN(v));30
if UNN(v) is not in QU then31

En-queue (UNN(v), UUNN(v)) in QU ;32
else33

Update UUNN(v), if it is necessary;34
Re-order QU ;35

end36

end37

end38

end39
Return SNN ;40

lowest upper bound found in the search. QU is ordered by increasing order of UTDD(v, UNN(v))
values and is used to pruning process. More specifically, if Lv is greater than the kth upper bound
in QU , that means that we already have k candidates that have, in the worst case, a travel time less
than the best possible travel time in a path that passes by v. Thus v can be discarded. When a vertex
v is expanded, we check if UNN(v) is in QU . If it is not, we include UNN(v) and its upper bound
UUNN(v) in QU . If UNN(v) was already included in QU , we check if UTDD(v, UNN(v)) is smaller
than the current upper bound to it. In that case, we update the position and upper bound value of
UNN(v) in QU .

The time required for our query processing is mainly given by the I/O operations, executed to

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

220 · L. A. Cruz, M. A. Nascimento and J. A. F. de Macêdo

(a) A network, a query point Q =
〈(f, e), 1

4
〉, represented by a triangle

and points of interest b and d, rep-
resented by squares.

(b) Value of H function, nearest
neighbor in G, and the upper bound
travel time.

(c) Time dependent edges cost.

Fig. 4. A road network and its respective graphs considering points of interest.

retrieve the information about the adjacency lists of the vertices. The cost to maintain the queues is
given by the operations for removing, inserting and reordering entries in the queue. of entries in the
queue. Each insertion or removal on Q requires a time of O(log |V |), in the worst case. Furthermore,
each update requires that the priority queue be reordering, that spends a O(|V |) time, in the worst
case. In the same way, an insertion operation in QU requires O(log |POI|) and a reordering operation
requires O(|POI|) time. Since the operations executed to maintain the queues are done in main
memory, and in polynomial time, they are not a bottleneck in our approach.

4.3 Running Example

As an example, consider the graph in Figure 4, the travel time of its edges are shown in Figure 4(c).
Note that the travel times for edges (b, c) and (c, d) are not shown only because they are not used in
this example.

4.3.1 Offline Preprocessing. The result of our preprocessing step is shown in Figure 4(b). For
each vertex, a non-time-dependent (i.e. static) NN search is executed in graphs G and G. For
example, consider vertex f in figure 4(a). The distance between f and b in G is LTDD(f, b) = 6
and between f and d is LTDD(f, d) = 8, thus H(f) = 6. Furthermore, the distance between f

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

k-Nearest Neighbors Queries in Time-Dependent Road Networks · 221

and b in G is UTDD(f, b) = 8 and between f and d is UTDD(f, d) = 9, thus UNN(f) = b and
UTDD(f, UNN(f)) = 8.

4.3.2 Query Processing. The input for the algorithm are a query point Q = 〈(f, e), 1
4 〉, k = 1, and

the departure time t = 0. First, the algorithm calculates the travel times Te and Tf from q to f
and to e, the labels Lf and Le, and the arrival times ATf and ATe. Then it initializes the queues
Q = 〈(f,ATf = 1, Tf = 1, Lf = 7), (e,ATe = 3, Te = 3, Le = 7)〉 and QU = 〈(d, 8), (b, 9)〉, because
TT (q, e, t)+UTDD(e, d) = 8, d is the nearest neighbor from e in G, TT (q, f, t)+UTDD(f, b) = 9 and
b is the nearest neighbor from f in G. Now, each iteration removes a vertex from Q to be expanded.

The first vertex expanded is f , since its adjacency vertices not yet en-queued are a and g, the new
entries are (a,ATa = 4.5, TTa = 4.5, La = 7.5) and (g,ATg = 3.5, TTg = 3.5, Lg = 9.5). As Lg >
QU (k), the entry correspondent to g is not en-queued. As UNN(a) = b and TTa +UTDD(a, b) = 8.5,
an upper bound smaller than 9.5 is found, so we have to update to Qu = 〈(d, 8), (b, 8.5)〉.

The second vertex expanded is e, the entries to its adjacency vertices are (g,ATg = 6, TTg =
6, Lg = 12) , (d,ATd = 8, TTd = 8, Ld = 8) and (a,ATa = 4, TTa = 4, La = 7). Vertex g can be
discarded because Lg > QU (k) and a has to be updated because it was found by a fastest path than
before. Furthermore, QU is updated, its new configuration is Qu = 〈(d, 8), (b, 8)〉. At this point, the
state of queue Q is Q = 〈(a,ATa = 4, TTa = 4, La = 7), (d, TTd = 8, TTd = 8, Ld = 8)〉. The next
vertex expanded is a. Although its adjacency vertex b is a point of interest, it is discarded because
Lb = 8.5 > QU (k), meaning b can be found in a fastest path. After this, we have Q = 〈(d,ATd =
8, TTd = 8, Ld = 8)〉 and d is expanded and included into SNN . As k = 1 the algorithm finishes.

Next, we the correctness of our solution.

Theorem 4.4. Let SNN = {vNN1 , . . . , vNNk
} be the set of points of interest returned by TD-NE-

A∗(q, k, t). SNN is a set of the k nearest-neighbors from q = (a, b, τq) at departure time t.

Proof. To prove that, it is enough to show that when a point of interest r is removed from Q: (1)
its label Tr has the same value of travel time of the time-dependent fastest path from q to it and (2)
there is no point of interest that has a path from q faster than TDD(q, r, t).

(1) We will prove it by induction in the number of dequeued vertices. The base case is the first
vertex removed from Q; this case is trivial. Now, suppose that the i-th removed vertex the
statement is true, for all 1 ≤ i ≤ l − 1. Let v be the l-th dequeued vertex. Suppose that
Tv < TDD(q, v, t). Let z be the last vertex dequeued such that is in the fastest path from q
to v. Let w be the next vertex in the fastest path from q to v. We have Lw = TDD(q, z, t) +
c(z,w)(AT (q, z, t)) + H(w) = TDD(q, w, t) + H(w) < TDD(q, w, t) + TDD(w, v,AT (q, v, t)) +
H(v) < TDD(q, u, t) + TDD(u, v,AT (q, u, t)) +H(v) = Lv. In this case, Lw was removed before
Lv. This is a contradiction against the fact that z was a last removed node in the fastest path.
Thus, v was found by the fastest path and Tv = TDD(q, v, t).

(2) Let us, suppose by contradiction that a point of interest r was removed and there is another
point of interested r∗ such that TDD(q, r∗, t) < TDD(q, r, t) holds. Let v the last node enqueued
in the fastest path between q and r∗. According to (1) Tr = TDD(q, r, t). As r was removed
before v, Lr = TDD(q, r, t) ≤ Tv +H(v) = TDD(q, u, t) + TDD(u, v,AT (q, u, t)) +H(v), where
u is the node removed before v is enqueued. Hence, Lr ≤ TDD(q, u, t) + c(u,v)(AT (q, u, t)) +
H(v) = TDD(q, v, t) + H(v) ≤ TDD(q, v, t) + TDD(v, r∗, AT (q, v, t)) = TDD(q, r∗, t). Thus
Lr ≤ TDD(q, r∗, t), violating the hypothesis that the path between q and r∗ is faster than the
path between q and r. Thus TDD(q, r, t) = TDD(q, r∗, t) and (2) holds.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

222 · L. A. Cruz, M. A. Nascimento and J. A. F. de Macêdo

Fig. 5. An access method for time-dependent road networks.

5. ACCESS METHOD

We also propose an access method that facilitates the processing of TD-NE-A∗ in secondary storage,
for cases of larger networks. Before explaining it, we would like to draw attention to some points that
do not allow us to store a time-dependent network in the same way as static networks are stored.
The first one is that as the edge costs are time-dependent, we need much more space to storage them.
Actually, the storage space required to store the edge costs increases as the time granularity increases.
Therefore, we can not store every edge costs of the same adjacency list together without having to
partition the adjacency list. Another fact is that, in our algorithm, since a vertex is accessed only
for a given departure time, it will not accessed again. Thus, if we store all costs to the same edge
together, we could retrieve lots of unnecessary information when accessing the cost of an edge at a
specific departure time. Finally, after we check a specific departure time, we most likely need to check
a departure times close to it. Thus, we would like to maintain the information of departure times that
are closer to each other at the same disk page, if possible.

Based on these observations, we propose an access method that is scalable according to both time
granularity and the number of edges of the network. It is composed by three levels, the Time-Level,
the Graph-Level and the Data-Level. In the first one, we use an index to access only the necessary
information of a specific time and avoids retrieving the edge costs for every possible departure time.
The data pages in the time-level contain pointers to index structures in the graph-level. The graph-
level has an index structure for each time partition. Each index structure in the graph-level allows
accessing the adjacency list, at a specific departure time, according to the vertice identifiers (Nids).
The data pages of the structures in the graph-level contain pointers to a disk page in the data-level
that stores the adjacency list of a vertex. The adjacency lists are clustered by time, such that one
page has adjacency lists with costs of departure times that are closer.

Note that in our access method, the index structures are generic. We can use, for example, a B+

tree in both levels. In that case, the number of index pages accessed for each data page retrieved is
O(logF |T | + logF |V |), where F is the fan out of the trees, T is the number of linear functions to
compose an edge cost and |V | is the cardinality of vertices in the network. Note that, when the time
granularity is more coarse, the time-level index is small enough to stay in main memory. In that case,
there is no I/O to access the time-level.

6. EXPERIMENTAL EVALUATION

We compare our approach (TD-NE-A∗) to the approach proposed by [Demiryurek et al. 2010b] (TD-
NE). We conducted our experiments on linux-based PC with 3.00GHz CPU and 4 GB main memory

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

k-Nearest Neighbors Queries in Time-Dependent Road Networks · 223

(a) (b)

(c) (d)

Fig. 6. Performance when density of POIs increases.

and used C++ to implementing all approaches. We generated synthetic time-dependent road networks
with temporal resolution of 96 points in time, e.g., a point at every 15 minutes of a day. Each vertex
has an uniformly distributed degree with an average value of 4. We evaluated how our approach works
according to the network size (i.e., number of vertices), query size k and the density of POIs (i.e.,
the ratio of POIs cardinality to vertex cardinality). These parameters are shown in Table I. For each
experiment we vary a parameter and fix the others parameters to default values (in bold). In all of
these experiments, for each configuration of these parameters we generated 10 distinct time-dependent
road networks and executed 10 queries randomly selected for each network, for a total of 100 queries.
We calculated upper and lower 95% confidence limits for the relative gain, assuming the data to be
normally distributed.

We compare the algorithms according to the number of expanded vertices and the number of I/O
operations to access the disk pages in data-level, both with respect to the density of POIs, query size
and network size. We simulated the I/O operations in data pages (data-level), using LRU as cache
politics and 5% of the number of disk page in data-level as the cache size. We can verify, as expected,
that there is a correlation between the number of expanded vertices and the number of accessed disk
pages.

Table I. Parameters values of experiments.
Density of POIs 5% ,10%, 20%
Query size 1 , 10, 20, 30
Network size 1000, 2000, 4000, 10000

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

224 · L. A. Cruz, M. A. Nascimento and J. A. F. de Macêdo

(a) (b)

(c) (d)

Fig. 7. Performance when query size increases.

Effect of POIs density. We set the density of POIs to be 5%, 10% and 20% of the number of
points of interest (uniformly distributed). For each density, we generated 10 distinct time-dependent
networks with 2000 vertices and executed 10 randomly selected queries with k=20 on each one. Figure
6(a) illustrates the difference between the average of expanded vertices in both algorithms and Figure
6(c) presents the difference according to I/O operations. We can observe that in both algorithms
it is necessary to expand less vertices and access less data pages when the network becomes denser.
This is reasonable since the number of POIs grows for each evaluated subnetwork; it takes less effort
to find the answer. We can also observe that the gap between the algorithms increases when the
network is sparse. In these experiments TD-NE-A∗ pruned on average from 33,33% to 51% of the
nodes expanded by TD-NE. Figures 6(b) illustrates how density interferes the percentage of vertices
pruned. We can observe that the pruning power of TD-NE-A∗ decreases as the network becomes
denser. The reason for this is that the number of candidate POIs increases with the density. Thus the
quality of the heuristic function decreases and the number of false hits increases. Figure 6(d) show
that the relative gain of our approach with respect to I/O operations was more than 34% on average,
for all values of POIs density. This gain can be up to 50%, on average, when the network is sparse.
The error bars shows confidence intervals for our estimates.

Effect of query size. In order to evaluate the effect of query size, we generated 10 distinct
networks with 2000 vertices and 10% of points of interest. For each one of them, we executed 10
queries randomly selected with k = {1, 10, 20, 30}. Figure 7(a) compares the average number of
expanded vertices when k increases. The number of expanded vertices increases with k because more
vertices have to be checked to find more points of interest. In the same way, as shown in Figure 7(c),

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

k-Nearest Neighbors Queries in Time-Dependent Road Networks · 225

(a) (b)

(c) (d)

Fig. 8. Performance when network size increases.

the number of data pages accessed also increases when k increases. Furthermore, when k grows the
gap between the performance of TD-NE-A∗ and TD-NE also increases.

Figure 7(b) shows the average percentage of expanded vertices by TD-NE-A∗. For all values of
k, TD-NE-A∗ outperforms TD-NE in number of expanded vertices by more than 40%, on average.
Figure 7(c) shows that this gain is reflected when we consider the I/O cost. Observe that, although
the difference between the algorithms seems to be small when k = 1, the reason for this is that the
number of expanded vertices and data pages accessed themselves are small and the absolute value of
this difference is not relevant. However, the relative gain when k = 1 is more than 40%, as shown in
Figures 7(b) and 7(c). The errors bars indicate our heuristic becomes more trusted when the k grows.

Effect of network size. In this experiment, we generate 10 time-dependent networks with 1000,
2000, 4000 and 10000 vertices. Each one with 10% of points of interest. We executed 10 randomly
selected queries with k=20 on each network. Figure 8(a) illustrates the average behavior of both
algorithms when the network size increases. This experiment indicates that the size of network does
not affect significantly the average number of expanded vertices, although it affects the number of I/O
operations. As we use an uniform distribution of points of interest and the networks have a similar
structure, the number of POIs in a small network is, approximately, the same of a subnetwork with the
same size. Thus the small network can be seen as subnetwork and the number of expanded vertices
in a bigger network is, on average, the same in a small network. However, when the network size
increases, the vertices expanded are more scattered throughout the disk pages that potentially implies
in an increasing in the number of I/O operations. Figure 8(c) shows the number of I/O operations
remains constant for TD-NE-A∗ and increases linearly for TD-NE.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

226 · L. A. Cruz, M. A. Nascimento and J. A. F. de Macêdo

Figure 8(b) shows that the pruning power of TD-NE-A∗ grows with the network size. Figure 8(d)
shows the gain with respect to I/O operations grows with the network size and it varies from 32% to
52%. The error bars shows confidence intervals for our estimates.

7. CONCLUSION AND FUTURE WORK

In this paper we proposed to incorporate an A∗ search and pruning in an incremental expansion
to processing kNN queries in time-dependent road networks. To do that, we proposed an heuristic
function that works well in time-dependent networks. The idea behind our approach is to discard
vertices that are near from the query but far from any point of interest. Our approach adds to each
vertex an expectation to find a point of interest quickly in a path that pass by this vertex. Furthermore,
we use upper bound values of travel time to prune unpromising paths. Our experiments show that
TD-NE-A∗ require up 50% less I/O operations than TD-NE. We also propose a generic and scalable
access method to support our approach on a disk-based environment.

As future work, our preprocessing step as well as handling network updates efficiently will be done.
It also would be interesting for future research to develop similar approaches to solve other popular
queries that do not have solutions in time-dependent networks.

REFERENCES

Cooke, K. L. and Halsey, E. The shortest route through a network with time-dependent internodal transit times.
Journal of Mathematical Analysis and Applications 14 (3): 493–498, 1966.

Demiryurek, U., Kashani, F. B., and Shahabi, C. Efficient k-nearest neighbor search in time-dependent spatial
networks. In Proceedings of the 21st International Conference on Database and Expert Systems Applications: Part
I. Berlin, Heidelberg, pp. 432–449, 2010a.

Demiryurek, U., Kashani, F. B., and Shahabi, C. Towards k-nearest neighbor search in time-dependent spatial
network databases. In Databases in Networked Information Systems. Berlin, Heidelberg, pp. 296–310, 2010b.

Dijkstra, E. A note on two problems in connexion with graphs. Numerische Mathematik 1 (1): 269–271, 1959.
Erwig, M. and Hagen, F. The graph voronoi diagram with applications. Networks 36 (3): 156–163, 2000.
George, B., Kim, S., and Shekhar, S. Spatio-temporal network databases and routing algorithms: a summary of

results. In Proceedings of the 10th International Conference on Advances in Spatial and Temporal Databases. Berlin,
Heidelberg, pp. 460–477, 2007.

Goldberg, A. V. and Harrelson, C. Computing the shortest path: A* search meets graph theory. In Proceedings
of the Sixteenth Snnual ACM-SIAM Symposium on Discrete algorithms. Philadelphia, PA, USA, pp. 156–165, 2005.

Kolahdouzan, M. and Shahabi, C. Voronoi-based k nearest neighbor search for spatial network databases. In
Proceedings of the International Conference on Very Large Data Bases. Toronto, Canada, pp. 840–851, 2004.

Nannicini, G., Delling, D., LeoLiberti, and Schultes, D. Bidirectional A* search for time-dependent fast paths.
In Proceedings of the 7th International Conference on Experimental Algorithms. Berlin, Heidelberg, pp. 334–346,
2008.

Orda, A. and Rom, R. Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length.
Journal of the ACM 37 (3): 607–625, 1990.

Papadias, D., Zhang, J., Mamoulis, N., and Tao, Y. Query processing in spatial network databases. In Proceedings
of the International Conference on Very Large Data Bases. Berlin, Germany, pp. 802–813, 2003.

Wagner, D. and Willhalm, T. Speed-up techniques for shortest-path computations. In Proceedings of the 24th
Annual Conference on Theoretical Aspects of Computer Science. Berlin, Heidelberg, pp. 23–36, 2007.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

