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Abstract. With the increasing popularity of location-based social media applications and devices that automatically
tag generated content with locations, large repositories of collaborative geo-referenced data are appearing on-line.
Efficiently extracting user preferences from these data to determine what information to recommend is challenging
because of the sheer volume of data as well as the frequency of updates. Traditional recommender systems focus on
the interplay between users and items, but ignore contextual parameters such as location. In this paper we take a
geospatial approach to determine locational preferences and similarities between users. We propose to capture the
geographic context of user preferences for items using a relational graph, through which we are able to derive many
new and state-of-the-art recommendation algorithms, including combinations of them, requiring changes only in the
definition of the edge weights. Furthermore, we discuss several solutions for cold-start scenarios. Finally, we conduct
experiments on data collected from the Panoramio photo sharing site and provide empirical evidence that many of the
proposed algorithms outperform existing location-aware recommender algorithms.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous; H.2.4 [Information Storage
and Retrieval]: Information filtering

Keywords: Algorithms, Design, Experimentation

1. INTRODUCTION

With the affordable prices of GPS-enabled mobile devices and the success of social networks, location-
based social media has become increasingly popular in recent years. Users can upload content, e.g.,
photos, videos, and text, and annotate that content with geographical identification metadata, typ-
ically known as geotags. Geotags act as geographic indexes helping users to organize and retrieve
location-specific information. Foursquare1, as an example, is a location-based service where users
endorse and share tips about visited points of interest (POI). It reached 725 thousand registered users
and 22 million check-ins (i.e. endorsed POIs) in 20102.

Recommender systems (RS) are among the best known techniques for helping users filter out and
discover relevant information in large data sets. In the typical scenario, RS algorithms exploit user-
item matrices representing user preferences for items, e.g., the rating history of purchased books in
Amazon, with the aim of recommending the items most likely to be relevant to the user. While most
of the RS work to date has ignored the locations where users demonstrated interest for an item, there

1http://foursquare.com/
2http://mashable.com/2010/03/29/foursquare-growth-numbers/
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are many scenarios in which the geographic context of an item has a direct influence on the preferences
of the user for that item. Ye et al. [Ye et al. 2011], for example, showed that Foursquare users prefer
POIs that are nearby the POIs they already visited in the past, while [Matyas and Schlieder 2009]
showed that Panoramio users who took pictures in nearby locations in the past, tend to share similar
preferences of geographic regions in the future. Efficient extraction and representation of location-
specific user preferences are thus essential to decide on what item to recommend.

Location-aware recommender systems suggest relevant geotagged items for a given user within a
declared geographic area. Relevance here can assume different notions, depending on the geographic
constraints imposed by the user. For example, a user may be interested in objects nearby his previous,
current, or future location within a given radius. For example, a first time user visiting the Stanford
University campus in Palo Alto, US, might be interested to know what is worth visiting inside the
campus, while a second time visitor may want to know what else is worth visiting. Each of these
scenarios can lead to various definitions of user preference, hence it is important to know which
definition works best for each scenario. The literature concerning location-aware recommender system
is still sparse, where the methods are ad-hoc and can not be easily changed to meet the different
recommendation scenarios outlined above (e.g. [Matyas and Schlieder 2009; Sandholm and Ung 2011;
Del Prete and Capra 2010]).

In this paper we propose a relational graph for capturing the geographic context of users that suits all
the aforementioned recommendation scenarios. We introduce several strategies to represent location-
specific user preferences in the graph and show how to derive many recommendation algorithms,
including ensembles of them, by only changing the definition of the edge weights. Our contributions
are as follows:

(1) We propose a new model for geotagged data that is able to capture both the geographic context
of users and their preferences for objects within the declared geographic context.

(2) We introduce new similarity measures that take into account the spatial decisions of users.
(3) We propose a recommendation algorithm based on a relational neighbor graph, that derive many

recommendation algorithms and ensembles of them, as special cases, by only requiring changes in
the definition of the edge weights.

(4) Finally, we conduct experiments on data collected from Panoramio in various recommendation
scenarios, including cold-start ones, and provide empirical evidence that many of the proposed
algorithms outperform existing location-aware recommender algorithms.

The rest of the paper is organized as follows. Section 2 describes related work. Section 3 introduces
the problem setting. Section 4 presents our relational graph representation of the data, weighting
schemes for capturing user geographic preferences, and a recommendation algorithm based on rela-
tional neighbors. Section 5 presents the experimental setting and evaluation, and Section 6 concludes
the paper and discusses future work.

2. RELATED WORK

Related work falls into three broad categories: relational classification and similarity measures,
location-aware methods, and methods focusing on improving the computational scalability of the
model building and execution phases.

Relational Classification and Similarity Measures. Relational classification has been applied to
areas where entities are linked in an explicit manner, like hypertext documents, such that the class
of a target instance only depends on the class of its related instances [Preisach and Schmidt-Thieme
2006]. In [Marinho et al. 2009] we presented a relational neighbor classification approach in the
ECML/PKDD Discovery Challenge 2009, which was about tag recommendations. Similarly to that
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work, in this paper we formulate the recommendation problem in a relational neighbor framework
where geographic contexts link entities represented by user/location pairs.

In [Matyas and Schlieder 2009] a new similarity measure for computing location recommendations
based on a non-overlapping hierarchical taxonomy of locations is presented. The key idea is that
co-activity in locations can be better captured if you zoom out to larger and larger locations. Similar
to our work they use a panoramio data set to evaluate their algorithm. However, their model assumes
a cold-start user is making the query, i.e. a user who has no trace in the geographic context of the
query. The reliance on a place taxonomy is also more restricting than our general model.

Jeh and Widom define SimRank in [Jeh and Widom 2002]. The SimRank similarity measure is as
the name suggests highly influenced by the more famous PageRank [Brin and Page 1998] algorithm.
The general idea is that “two objects are similar if they are referenced by similar objects” [Jeh and
Widom 2002]. This definition recursively propagates similarity through a relational graph to leverage
structural context in addition to the more traditional use of object content and attribute informa-
tion. In our work akin to the model used in [Matyas and Schlieder 2009], we also have a recursive,
relation-based definition of similarity but in the form of hierarchical geographic contexts. For faster
computation we simplify the similarity model to not be recursive between leaf-nodes within the same
geographic context in our graph. Our evaluations show that this can be done without any loss of accu-
racy if the user who requested the recommendation already has an activity trace within the geographic
context for which the recommendation is sought. Minkov and Cohen [Minkov and Cohen 2010] also
explore relational properties among objects to compute similarity scores. They focus on the problem
of effectively searching in graphs comprised of interrelated objects of various types. They propose
effective random-walk based procedures to evaluate the Personal PageRank measure [Brin and Page
1998], a measure that takes into account the scope of the query in addition to the well-known random
surfer assumption of the original PageRank algorithm.

Location-aware Methods. In [Ye et al. 2011] a standard user-based collaborative filtering approach
is extended with a novel mechanism of geographic influence based on a statistical model of how likely
a user is to check-in to two places based on their distance. The geographic model is a distributional
assumption (power law) fitted to real data sets from two popular check-in services. It is worth noticing
that this model does not consider the geographic context of the user as we do.

In [Berjani and Strufe 2011] interactions between users and POIs are modeled in a matrix such that
standard matrix factorization techniques can be applied. Similarly to [Ye et al. 2011], this work also
does not consider the location where users are requesting recommendations.

A number of studies have looked at timestamped GPS traces to predict future locations within very
restricted geographic regions [Cao et al. 2010; Zheng et al. 2010; Burbey and Martin 2008]. Markov
models and tensor factorization models are fit to the data and non-personalized predictions of the
most likely next location or the most likely activity given a location and time are produced. There
is a lot of novel work on automatically detecting geographic context in these papers but the general
approach cannot be replicated easily in our scenario since we do not have the same luxury of rich traces
as we mainly focus on implicit feedback as input. Relying on GPS traces is furthermore a privacy
concern and has scalability and power consumption implications. We produce more personalized
recommendations given user-user similarities as opposed to just looking at the most popular or most
frequent behavior. Furthermore large Markov models and tensor factorization algorithms tend to be
very costly to compute, which would therefore need to be done in an off-line setting whereas we also
target real-time recommendations.

Bayesian networks have also been studied to model and learn patterns in location, time and weather
contexts for individual users in [Park et al. 2007]. However, compared to our model these models
tend to be complex and require expert human knowledge to construct, and furthermore they are
not tractable. [Brunato and Battiti 2003] applies a center of mass model to detect and recommend
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locations and POIs. This work was before the check-in systems era so now we could just more easily
query the check-in services for this information. In [Horozov et al. 2006] user-user based CF with
location pre-filtering is employed in an explicit voting scenario. The cold start problem is solved by
generating random recommendations using pseudo users. We address the problem by incorporating
out-of geo context similarities for in-context recommendations which is less ad-hoc.

In our previous work in [Sandholm et al. 2010] we studied popularity inferred recommendations
based on location, friends and tag prefiltering using both explicit and implicit feedback. In this work
we extend that model to provide personalized recommendations similar to the work in [Sandholm
and Ung 2011] but with a new model that incorporates location, and distance metrics directly in the
evaluation graph as opposed to relying on ad-hoc and costly pre and post filtering.

The GeoFolk system [Sizov 2010] was designed to take both geographic context and text features
into account for various information retrieval tasks such as tag recommendation, content classification
and clustering. Experiments show that combining both textual and geographic relevance leads to
more accurate results than using the two factors in isolation. Although our methods and use case
targets are quite different from this work, the empirical evidence of the influence geographic context
has on information retrieval is promising and serves as motivation for our work.

Computational Scalability. Popular and accurate recommender system methods such as those based
on matrix factorization can incur very high model building as well as execution overhead, in particular
as more contextual factors beyond users and items are taken into account. As a result there have been
many attempts at improving the computational scalability of pre-existing methods.

In [Sandholm and Ung 2011; Ye et al. 2010; Del Prete and Capra 2010] the general issue of complex
and high-latency model building and execution for location-based recommendations is addressed. To
achieve real-time performance [Sandholm and Ung 2011] and [Del Prete and Capra 2010] pre-filter
based on location and [Ye et al. 2010] pre-filters based on friends to reduce the complexity of the
models. As opposed to pre- or post-filtering context we make contextual parameters an inherent
part of our graph model to allow interesting combinations of various types of context in an efficient
way. Moreover, clustering photos into regions of interest, as we do, decrease drastically the number
of recommendable items that need to be kept in memory, which enable real time recommendations.
Furthermore, the number of discovered clusters is often small. Notice that even in top touristic places,
such as Rio, there is usually only a few hundred regions of interest to be recommended.

Rendle et al. [Rendle et al. 2011] propose a more generic matrix factorization-based model for fast
context-aware recommendation, although the geographic context is never tried. As pointed out before,
matrix factorization-based models can provide fast recommendations after the model is trained, but
the training phase can still be expensive, especially on large datasets. Our method, in contrast,
achieves scalability by not utilizing any complex training phase.

3. PROBLEM SETTING

The recommendation scenario is as follows. A user specifies the geographic region of interest, e.g., a
city or a region in that city, and the recommender engine suggests items within the declared geographic
region that are likely to be relevant to the user.

So, let U be the set of users, G the set of regions denoting geographic contexts, and I the set of
geotagged items. Notice that what is meant by a region is application dependent since regions can
assume different geographic shapes, such as point coordinates, circles, lines, and polygons. In this
paper we only consider implicit feedback data3, i.e., the set S ⊆ U×G×I of ternary relations between

3Although our framework can trivially support explicit feedback as well.
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users, geographic contexts, and geotagged items. The task is then to find a prediction scoring function

ŝ : U ×G× I → R (1)

that predicts a preference score for items within certain geographic regions, given a target user. Now,
for a given user u ∈ U , and a given geographic context g ∈ G, the topN recommendations can be
computed by

topN(u, g) :=
n

argmax
i∈Ig

ŝ(u, g, i) (2)

where n denotes the topN items to be recommended and Ig the set of items within the geographic
context g. For convenience, we also define Iu,g := S ∩ ({u}×{g}× I) as the set of items of user u ∈ U
in a given geographic context g ∈ G.

4. A RELATIONAL APPROACH

Relational classification refers to an active area of machine learning where classifiers usually consider,
additionally to the typical attribute-value data of objects, relational information. A scientific paper,
for example, can be connected to another paper that has been written by the same author or because
they share common citations. It has been shown that in many classification problems, relational
classifiers outperform purely attribute-based classifiers [Chakrabarti et al. 1998; Lu and Getoor 2003;
Preisach and Schmidt-Thieme 2006]. In particular, Macskassy and Provost [Macskassy and Provost
2003] showed that simple relational neighbor-based techniques, besides requiring low computational
costs, perform competitively to, and in some cases even outperforms, more complex relational methods
such as Probabilistic Relational Models and Relational Probability Trees. The basic idea is that the
classification of a target instance solely depends on the class labels of related instances of the same
type. Since geotagging data is inherently relational, we propose to capture the geographic context
of users and items by a relational graph, which, as a side effect, gives us many tools from relational
classification that can be directly applied to the location-aware recommendation problem.

In order to easily use neighborhood-based classification methods, similarly to [Macskassy and
Provost 2003; Preisach and Schmidt-Thieme 2006], we adopt a homogeneous view of the relations
in the data. In a homogeneous view we have only one entity type, such that, there is a set of target
entities x ∈ X and relations R ⊆ X ×X between them. However, as we saw in Section 3, geotagging
data forms a set S of ternary relations between three different types of entities. Therefore, we first
need to convert these ternary relations into the desired homogeneous relations.4 We do this as follows.

4.1 Graph Definition

First let V := {(u, g) | ∃i ∈ I : (u, g, i) ∈ S} denote the set of all distinct user/geographic context
combinations in S. We now propose to interpret S as a graph G := (V,E), where V is the set of
vertices and E ⊆ V × V the set of edges. We assume that there is an edge between two vertices if
they share the same geographic context, i.e.,

{(v, v′) ∈ E | gv = gv′}

For convenience, let gv := g and uv := u denote the geographic context and the user of node v ∈ V
respectively. In other words, we assume that users who share the same geographic region are related
to some extent.

Now suppose that John is a first time visitor in Rio de Janeiro, Brazil, and wants to know from
other people who already have been in Rio which places are worth visiting there. To continue our

4Relational classification is possible with heterogeneous node types as well as has been demonstrated in [Jeh and Widom
2002] and [Minkov and Cohen 2010] but the added complexity defeats our goal of fast model building and evaluation.
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Fig. 1. Example of relational graph for capturing geographic context.

example, we denote the pair John/Rio by a colored node in the graph of Fig. 1, i.e., the target node
for which we want to compute recommendations. John is denoted as u1 and Rio as g1 respectively,
and the other nodes connected to it contain the users who already have been in Rio. For computing
recommendations, we just need to go through the items of the neighbors and define some selection
criterion on which items to recommend.

This idea assumes that entities related to each other, in this case users sharing the same geographic
context, are similar and tend to select the same items. Notice that the strength of the similarity
depends on the size of the geographic region being considered. If the declared geographic context is
a small region, say the Copacabana beach in Rio de Janeiro, then it is more likely that users within
this area will be more strongly related to each other than users sharing larger geographic contexts,
such as the whole country of Brazil. We can alleviate these effects by defining appropriate weights to
each relation, as we will see next.

4.2 Weighting Schemes

In this section we present several weighting strategies for the edges of the relational graph. And as
we will see in the next section, each weighting scheme leads to a specific recommendation algorithm,
without, however, the need to change the overall algorithm.

Uniform Weighting. Here the same weight value is assigned to each edge (1 in our case), denoting
that each neighbor is of the same importance to the target user. Therefore, the weight w for any edge
(v,′ v) ∈ E, is defined as wuni(v, v′) := 1. The computational cost for assigning uniform weights to
the relations of a target node v is in the order of O(|Nv|), i.e., a linear scan in the neighbors of v, here
denoted by Nv.

Correlation Weighting. For an edge (v, v′) ∈ E where the vertices v and v′ represent profile vectors,
each component of the vector is a geotagged item and the values denote the preference of a user for
an item, i.e.,

~mv := (i1, ..., i|I|)

We can either construct this vector solely based on the items of the geographic context of interest,
or we could consider the items of all geographic contexts. The assumption is that users who have
selected the same items within the same geographic contexts are more similar than users who did not.
If a user declared interest for some geographic context for which he has not yet selected any item, it
will not be possible to compute any correlation similarity with other users, unless we build the profile
vectors considering the items of other geographic contexts.

The edge weight between two nodes is finally computed by applying a correlation measure between
the desired nodes’ profile vectors. We have chosen the well known cosine similarity as correlation mea-
sure, which is typically used by implicit feedback-based collaborative filtering algorithms [Desrosiers
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Fig. 2. Example of geographic similarity. The items of users u1, u2, u3 are represented by triangles, circles and
rectangles respectively. Centroids are represented by “X” and distances by dashed lines. Thus, u3 would be regarded as
more similar to u1 than u2.

and Karypis 2011]:

wcor(v, v′) :=
〈~mv, ~mv′〉
‖~mv‖‖~mv′‖

(3)

The computational cost for assigning cosine similarities to the relations of a target node v is in the
order of O(Z · |Nv|) since we need to compute |Nv| similarities, each requiring Z operations.

Geographic Similarity. We can use the geographic distances between users’ items to define the
strength of their relation. The assumption is that users who select items nearby the items of other
users should be closely related. Therefore, for defining the weight between two nodes (v, v′) ∈ E
through geographic similarity, we first calculate the geographic centroids of the set of items of users
uv and uv′ . For computing the geographic centroid of a given user u ∈ U , we sum up the coordinates
of each geotagged item of user u within the declared geographic context g, i.e., the items in the set
Iu,g, and divide the resulting sum by the number of items in the set

1

|Iu,g|
∑

i∈Iu,g

p(i)

where p(i) returns the latitude/longitude coordinate used to geotag item i ∈ I. Now, the geographic
distance between u(v) and u(v′) centroids is given by any of the many existing functions for calculating
geodetic distances between latitude/longitude coordinates, e.g. the Haversine formula. Here we denote
such a function by d(x, y) where x and y are two coordinates. Finally, we only need to turn the distance
into a similarity and bound it to the range [0, 1], which is done as follows

wgeo(v, v′) := 1−
d
(
cuv

, cuv′

)
dmax

(4)

where dmax is the maximal possible distance between any points in the region of interest and cu is
the geographic centroid of the set of items of user u. In other words, when the distance between the
items of two users is small, their similarity tend to 1, and is 0 when the distance equals dmax. Fig. 2
illustrates this idea. Notice that for this to work, we are assuming that users tend to form geographic
clusters among the selected items. This was empirically observed in [Ye et al. 2011] by showing that
Foursquare users tend to check-in to POIs that are nearby the POIs they have already visited.

The computational cost of this weighting scheme is in the same order as the correlation weighting
above.

Partonomy-Based Similarity. The different granularities between geographic contexts can be rep-
resented by a hierarchical partonomy, i.e., a graph G := (G,E) where vertices are represented by
geographic contexts and each edge e ∈ E represents a part-of relation between two geographic re-
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gions [Matyas and Schlieder 2009]. For example, a POI is a part of a city, a city is a part of a state, a
state is a part of a country, etc. Matyas et al. [Matyas and Schlieder 2009] proposed several similarity
measures for capturing user similarities with respect to specific levels of a weighted geographic parton-
omy. The idea is that if two users are not found to be similar in a lower level of the hierarchy, they
may, eventually, be found to be similar in a higher level. For example, even if two users did not visit
the same places in some city, they still can be considered to be similar if they have visited the same
city. We can use these measures, together with a partonomy, to weigh the relations in our relational
graph. Here we just present the best performing measure reported in [Matyas and Schlieder 2009].

The similarity of two users u, u′ ∈ U with respect to node g ∈ G is calculated as follows

siminf(u, u′, g) :=

∑
(c∈Ag∩Bg)

information(c)∑
(c∈Ag∪Bg)

information(c)
(5)

where Ag and Bg denote the sets of children nodes of g in which user u and u′ selected items respec-
tively. The similarity is weighted by the function information, which can be seen as the inverse of the
popularity of a node. The assumption is that users sharing less popular nodes are more similar than
users sharing more popular ones [Matyas and Schlieder 2009].

Now, for computing the similarity between two users u, u′ ∈ U with respect to a certain partonomy
layer l, the following formula is used

simtwo-layer(u, u′) :=

∑
(g∈Gl)

siminf(u, u′, g) · wnode(g)∑
(g∈Gl)

wnode(g)
(6)

where Gl is the set of nodes in the l-th layer of the partonomy and the weight wnode(g) of node
g reflects the importance of node g across its siblings in the partonomy. This measure was named
two-layer similarity in [Matyas and Schlieder 2009] because when computing the similarity between
two users in a certain layer, the measure uses the layer immediately below.

Returning the discussion to the weighting of the edges in our relational graph, we can now define
the weight of a certain edge (v, v′) ∈ E in terms of the two-layer similarity, i.e.,

w(v, v′) := simtwo-layer(uv, uv′) (7)

This similarity can be quite expensive to compute, given all the necessary steps described above
for weighting the partonomy. Even assuming that the weighted partonomy is given, the complexity
for computing the weight between v and all its neighbors is still higher than for the other similarities.
The computational cost is in the order of

O(|Nv||Gl||Cl| · Z)

where Cl is the set of children nodes of the l-th layer, since for each neighbor, we need to go through
all the locations g in the l-th layer of the partonomy, for each location go through all its children, and
finally for each child we need to perform Z operations.

4.3 Recommendation Algorithm

Now, we have all the components for deriving a location-aware recommendation procedure. Algo-
rithm 1 describes the overall recommendation process. It receives as input a weighted graph G, a
user/geographic context pair denoted by v, for which we want to generate recommendations, and the
number n of recommendations to be returned. The algorithm iterates through the neighbors of v (line
3), denoted by Nv, and for each neighbor, it iterates through the items within the geographic context
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of interest (line 4) and accumulates weights in the array scores, that is indexed by items. Finally, it
sorts the scores in descending order of weights and presents the top-n geotagged items that the target
user has not already selected.

Note that if we define all weights to 1, we end up recommending the most popular items within the
geographic context of interest. Or if we decide to weigh edges according to the similarities presented
in Section 4.2, we end up with many flavors of collaborative filtering-based algorithms.

Assuming that the weighted relational graph is given, the complexity of this algorithm only depends
on the computation of a weighted sum of geotagged items, which means |Nv| passes in the set of items
I. Hence, the complexity is given by O (|I||Nv|).

Algorithm 1 Graph-based Location Recommendations
1: Input: G(V,E), v ∈ V , n
2: Output: list of topN recommendations
3: for all v′ ∈ Nv do
4: for all i ∈ Iuv′ ,gv′ do
5: scores[i]← scores[i] + w(v, v′)
6: end for
7: end for
8: topN← n

argmax
i∈I\Iuv,gv

scores[i]

5. EXPERIMENTS

In this section we describe the dataset we have used; the evaluation protocol adopted; and the results
for each dataset. We considered three different recommendation scenarios.

In the first scenario, we hide all the geotagged items of each test user in a geographic context, and
use the remaining data for trying to predict the removed items. This corresponds to a cold-start
scenario where a user has not selected any item in the geographic context of interest. We will refer to
this scenario as leave-all-out.

In the second scenario, we remove some geotagged items for each test user, 4 photos in this case,
and use the remaining data for trying to predict the removed items. This scenario represents those
users who already selected some items in a given location but want to know what other items are
worth selecting in this location. We will refer to this scenario as leave-some-out

In the third scenario, we have a mix of both scenarios, i.e., some fraction of the users are first
time users and the other fraction already have selected some items in the location of interest. This
corresponds to a more realistic scenario, and to the best of our knowledge, this is the first time
location-aware algorithms are evaluated in this kind of scenario. We will refer to this scenario as
leave-some/all-out

5.1 Data Collection and Preparation

Panoramio is a photo-sharing website from Google where users can upload, geotag, and retrieve photos
of landmarks. Each photo in Panoramio is georeferenced using latitude and longitude information.
Similarly to [Matyas and Schlieder 2009], we assume that if a user takes a picture at some specific
location, then he has some interest in that location. As geographic context of interest we have chosen
the city of Rio de Janeiro, which is one of the top touristic places in the world, so, it has a large set
of photos.
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Table I. Panoramio data for Rio de Janeiro
|U | |I|

Training 1,062 4,906
Test 186 3,590

In order to retrieve the set of photos taken in Rio, we did a spatial search for photos inside the
bounding box of Rio using the data access API of Panoramio. We then iterated through each photo in
the result set, and retrieved the users who took these photos. For each of these users, we then retrieved
the other locations where they took photos, as well as the users and photos in those locations. Then
we removed the cities with too little activity from users who also visited Rio. Approximately the top
three cities in all the crawled states were kept in the evaluation set. We used the gazetteer of HP
Gloe5 to obtain the place names.

In order to use the two-layer-similarity weighting scheme presented in Section 4.2, we built a
geographic partonomy, and similarly to [Matyas and Schlieder 2009], we worked with three countries
(Brazil, Chile, and USA) as high level nodes, states and cities as intermediary nodes, and geographic
clusters as leaf nodes. Our data set contains 35,920 photos (4,906 from Rio) and 7,048 users in total.

In Panoramio the geographic items are represented by latitude and longitude coordinates, hence,
it is very difficult for two users to take a picture in the exact same location. Therefore, we adopted
the same approach as in [Matyas and Schlieder 2009], where the authors used geographic clusters to
represent geographic items. So, instead of recommending individual point coordinates, we recommend
regions where users may be interested in taking photos. For computing the clusters, we used the
DBSCAN [Ester et al. 1996] algorithm with the following parameters: MaxRadius = 1 Km and
MinPoints = 3. The MaxRadius parameter was set to 1 Km, as we assume that a radius of 1 Km from
a given photo is sufficient to establish a geographic similarity between photos, e.g., photos taken at
the University of Stanford campus. We tested to set MaxRadius = 500 meters without any significant
differences in performance, so we do not show those results here. Also, the minimum number of points
to form a cluster was set to 3, in order to establish popularity of a given POI. We computed 1,187
clusters, 221 of which are in Rio.

5.2 Evaluation Protocol

For testing the algorithms, we considered the dense part of the data, i.e., only the users who have
taken at least 5 photos in Rio (see Table I). For the leave-some-out and leave-some/all-out scenarios,
we generated 5 random splits of training/test sets and took the average precision and recall on top-10
recommendation lists over all splits. We have a hit every time a hidden photo is found to belong to
some of the recommended geographic clusters. Whenever CF is not able to fill the recommendation list
up to 10, we fill up the list with the most popular items that are not already in the recommendation
list.

5.3 Algorithms

We have used several weighting schemes for our relational graph, which resulted in the following
recommendation algorithms:

—Most popular (MP): Recommends the most popular geographic clusters in Rio. For doing that,
we just apply Uniform Weighting (see Section 4.2) to the graph in Algorithm 1.

—Intra-Cluster (IC): Uses the geographic similarity defined in Section 4.2 for defining intra-cluster
similarities between users. The idea is as follows. The weight of any edge (v, v′) ∈ E is now

5http://www.hpgloe.com/
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calculated by summing up wgeo(v, v′) for all clusters where uv and uv′ have photos, and dividing
the resulting sum by the total number of clusters. After that, we again just need to plug the
weighted graph into Algorithm 1 for computing recommendations.

—Collaborative Filtering (CF): This is the geographic version of the classic user-based collabo-
rative filtering algorithm. We use the correlation weighting scheme defined in Section 4.2 where
profile vectors’ components are the geographic clusters where users took pictures, within and out
of the context of interest.

—Two-Layer (TL): This is the algorithm originally introduced in [Matyas and Schlieder 2009] but
recast as a relational neighbor recommender. We weigh the relational graph with the two-layer
similarity and plug it into the recommendation algorithm.

—Correlation + Two-Layer (CF-TL): We found empirically that TL works best for cold-start
scenarios, while CF outperforms the other algorithms for non cold-start scenarios (see Figures 3
and 4). This gave us the insight to propose a weighting combination strategy where we weigh each
relation differently according to the case presented. If the target user is a cold-start user, we weigh
his relations with the two-layer similarity, if not, we use the correlation weighting. The flexibility
for combining different weighting schemes in such an easy way is one of the main advantages of our
approach.

5.4 Results

Fig. 3 depicts the results for the leave-some-out scenario. Notice that when there is enough data
available, CF outperforms all the other methods. The Intra-Cluster recommender, although worse
than CF and TL, is better than MP in all cases. This indicates that the geographic similarity indeed
is able to capture some preferences of the user, under the assumption that users tend to like the items
of other users that are nearby the items they have selected in the past.

Fig. 3. Evaluation on leave-some-out scenario.

Fig. 4 shows the results for the leave-all-out. Notice that TL is the winner in this scenario. This is in
line with the results of [Matyas and Schlieder 2009], where they showed that geographic partonomies
can help to improve the recommendations in cold-start scenarios. Notice that since we remove all the
photos of all test users in the context of interest, we just have one possible split of training/test, and
thus cannot compute standard deviations and plot error bars.

In Fig. 5 we show the results of the leave-some/all-out scenario when 50% of the test users are
cold-start users. In this case, the combination method CF-TL is slightly better, both in precision
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Fig. 4. Evaluation on leave-all-out scenario.

and recall, than the other methods. But when 70% of ther users are cold-start users (see Fig. 6) the
superiority of CF-TL becomes more evident. We also evaluated this scenario when 30% of the users
are cold-start users, but since there was no significant differences in performance in comparison to
50% of cold-start users, we do not show those results here.

Fig. 5. Evaluation on the leave-some/all-out scenario when half of the users are cold-start users.

6. CONCLUSIONS AND FUTURE WORK

In this paper we introduced a relational graph for capturing the geographic preferences of users with
the purpose of generating personalized recommendations in services with geotagged content. We also
presented several weighting schemes for representing different types of user preferences in the proposed
graph. Furthermore, we propose a recommendation algorithm template that is sufficiently generic to
derive many traditional and new location-aware recommendation algorithms, including combinations
of them, by only requiring changes in the definition of the edge weights. Assuming the graph is given,
the algorithm requires modest computational effort since it runs linearly in the number of neighbors.
We have tested the proposed algorithms on a geotagged photo collection collected from Panoramio
and showed how our model easily suits many different recommendation scenarios.
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Fig. 6. Evaluation on the leave-some/all-out scenario when 70% of the users are cold-start users.

We also gained insights about which notion of similarity works best for a set of scenarios. In
cold-start scenarios a geographic partonomy seems to be a good alternative, whereas when there is
enough data available the plain location-aware collaborative filtering algorithm yields the best result.
In response to this finding, we proposed to combine a partonomy-based similarity measure with the
cosine similarity by weighting individual relations in the graph according to the type of the user, i.e.,
cold-start versus non cold-start. By doing this, we achieved better recall and precision in particular
in scenarios where there are many cold-start users.

As future work, we plan to incorporate temporal aspects in the model, such that the items to be
recommended match the temporal context of the user. For example, it may not make as much sense to
recommend ski resorts in New York during the summer as it would to make the same recommendation
during the peak winter season. Another natural extension of our work would be to assign the weights
in our graph based on the strength of the social ties between the users, e.g. based on their declared
or implied social networks. Finally, we plan to investigate machine learning approaches for learning
optimal weights based on the location-aware recommendation task at hand.
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