
Siphoning Hidden-Web Data through Keyword-Based
Interfaces

Luciano Barbosa1, Juliana Freire2

1 AT&T Labs Research
lbarbosa@research.att.com

2 School of Computing, University of Utah
juliana@cs.utah.edu

Abstract. In this paper, we study the problem of automating the retrieval of data hidden behind simple search
interfaces that accept keyword-based queries. Our goal is to automatically retrieve all available results (or, as many as
possible). We propose a new approach to siphon hidden data that automatically generates a small set of representative
keywords and builds queries which lead to high coverage. We evaluate our algorithms over several real Web sites.
Preliminary results indicate our approach is effective: coverage of over 90% is obtained for most of the sites considered.

Categories and Subject Descriptors: Information Systems [Miscellaneous]: Databases

Keywords: Online Databases, Hidden-Web Crawler

1. INTRODUCTION

The volume of electronically available information is growing at a startling pace. Increasingly,
databases are made available on the Web, from product catalogs and census data to gene databases.
This information is often hidden, placed behind HTML forms [HTML] and Web services inter-
faces [SOAP 2003;], and it is only published, on demand, in response to users’ requests.

Information in the hidden Web is often hidden for good reasons. Placing data behind form or Web
services interfaces allows users to retrieve just the content they want, which can be more convenient
than sifting through a large file or a large number of files. It also prevents unnecessary overload on the
Web server for transferring large files. These interfaces, however, can be quite restrictive, disallowing
interesting queries and hindering data exploration.

This is a serious limitation, especially since most of the Web-accessible information is hidden, and
a significant portion of this information is of high-quality [Raghavan and Garcia-Molina 2001]. In a
1998 study, Lawrence and Giles [Lawrence and Giles 1998] estimated that 80% of all the data in the
Web could only be accessed via form interfaces. A more recent study by BrightPlanet [Bergman 2001]
estimates an even bigger disparity: the hidden Web contains 7,500 terabytes of information and is 400
to 500 times larger than the visible Web.

Many applications need, and others could greatly benefit from, a more flexible and prompt access
to hidden data. For example, a data integration application may need to pose queries that are not
directly supported by the search interface provided; for data mining, performance may be significantly
improved if the data is materialized locally; and by indexing high-quality hidden content, a topic-
specific search engine may return higher-quality answers.

Copyright c©2010 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010, Pages 133–144.

134 · L. Barbosa and J. Freire

Not surprisingly, retrieving and querying hidden-Web data is a problem that has attracted a lot
of attention (see e.g., [Davulcu et al. 1999; Raghavan and Garcia-Molina 2001; Gravano et al. 2003;
He and Chang 2003]). Scripts (or wrappers) can be handcrafted to retrieve data from a particular
site – these scripts can be created either manually (e.g., using a high-level languages such as Perl)
or semi-automatically using wrapper generators (see e.g., [Anupam et al. 2000; Davulcu et al. 1999]).
While scripts are effective and can be made efficient, they may require significant human input. In
addition, since scripts have to be designed specifically for a given Web site and search interface, this
approach has limited scalability.

An alternative, and more scalable approach is to use a hidden-Web crawler (HWC). The key problem
that must be addressed by a HWC is how to automatically provide meaningful value assignments to
the attributes of forms it encounters while crawling. Some form elements, such as pull-down lists,
actually expose the set possible input values, which can be automatically submitted by the crawler.
However, for open-ended attributes, such as text fields, knowledge of the domain is required and the
set of possible values must be supplied to the crawler. Consequently, HWCs still require significant
human input and their performance is highly dependent on the quality of the input data [Raghavan
and Garcia-Molina 2001]. While progress has been made on automatically filling out forms, existing
proposals [Raghavan and Garcia-Molina 2001; He and Chang 2003] focus exclusively on retrieving data
from structured data sources through multi-attribute form interfaces. For example, HiWe [Raghavan
and Garcia-Molina 2001] ignores forms with fewer than three attributes.

In this paper, we study the problem of automating the retrieval of data hidden behind simple search
interfaces that accept keyword-based queries. These interfaces are commonplace on the Web. Al-
though they have become popular for searching document collections, they are also being increasingly
used for structured databases [Bhalotia et al. 2002; Agrawal et al. 2002] – in addition to structured
(advanced) search, online databases often provide a simpler keyword-based search facility.

Keyword-based interfaces simplify querying because they do not require detailed knowledge of the
schema or structure of the underlying data. If they make it easier for humans, what about for HWCs?
We set out to investigate if and how it is possible to automatically retrieve all the available results
in a collection through a keyword-based interface. We developed sampling-based algorithms that
automatically discover keywords which result in high recall; and use these keywords to build queries
that siphon all available results in the database (or, as many as possible). We evaluated our algorithms
over several real Web sites. Preliminary results are promising: they indicate our approach is effective
and it is able to obtain coverages of over 90% for most of the sites considered.

Outline. The rest of the paper is organized as follows. In Section 2 we give an overview of the main
problems involved in retrieving data behind search interfaces and describe our approach to siphon
these data. Experimental results are discussed in Section 3. Related work is reviewed in Section 4.
We conclude in Section 5 with directions for future work.

2. USING SAMPLING TO RETRIEVE HIDDEN DATA

In order to automatically retrieve data (results) through a keyword-based interface, it is necessary to
determine which queries to issue and which keywords to use. A naïve solution would be to issue a
query for each word in the dictionary. This solution, however, leads to unacceptable performance due
to the large number of unnecessary queries with possibly overlapping results. The ideal would be to
determine a small number of queries that retrieve all the results.

Instead of blindly issuing queries, we propose a sampling-based approach to discover words that
result in high coverage. The intuition is that words in the actual database or document collection1

1We use database and document collection interchangeably in the remainder of this paper.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

Siphoning Hidden-Web Data through Keyword-Based Interfaces · 135

Algorithm 1 SampleKeywords(URL,form)
1: page = get(URL);
2: // retrieve the first set of results
3: initialKeywordList = generateList(page);
4: word = nextHigherOccurrency(initialKeywordList);
5: resultPage = submitQuery(form,word);
6: while resultPage == errorPage do
7: word = nextHigherOccurrency(initialKeywordList);
8: resultPage = submitQuery(form,word);
9: end while

10: // initialize keyword list
11: acceptStopword = checkStopword(form);
12: if acceptStopword then
13: keywordList = generateListWithStopWords(resultPage);
14: else
15: keywordList = generateList(resultPage);
16: end if
17: // iterate and build list of candidate keyword/occurences
18: numSubs = 0;
19: while numSubs < maxSubs do
20: // randomly selects a word
21: word = selectWord(keywordList);
22: resultPage = submitQuery(form,word);
23: // adds new keywords, and updates the frequency of existing keywords
24: if acceptStopword then
25: keywordList += genListWithStopWords(resultPage);
26: else
27: keywordList += genList(resultPage);
28: end if
29: numSubs++;
30: end while
31: return keywordList;

Algorithm 2 ConstructQuery(keywordList,form)
1: numSubs = numWords = totalBefore = totalCurrent = 0;
2: query = queryTemp = null;
3: while (numSubs < maxSubs) && (numWords < maxTerms) do
4: // selects word with highest frequency
5: word = nextElement(listOfOccurrency);
6: queryTemp = addWordToQuery(query,word);
7: page = submit(form, queryTemp);
8: totalCurrent = getNumberOfResults(page,form);
9: if (totalBefore * minimumIncrease) <= totalCurrent then

10: query = queryTemp;
11: totalBefore = totalCurrent;
12: numberWords++;
13: end if
14: numSubs++;
15: end while

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

136 · L. Barbosa and J. Freire

are more likely to result in higher coverage than randomly selected words. Our approach consists
of two phases: sample the collection to select a set of high-frequency keywords (Algorithm 1, Sam-
pleKeywords); and use these high-frequency keywords to construct a query that has high coverage
(Algorithm 2, ConstructQuery).

As described in Algorithm 1, probe queries are issued to learn new keywords from the contents
of the query results and their relative frequency with respect to all results retrieved in this phase.2
The first step is to retrieve the page where the search form is located, select and submit a keyword
(lines 1–16). Once a results page is successfully retrieved, the algorithm builds a list of candidate
keywords by iteratively: submitting a query using a selected word (line 22); and using the results to
insert new high-frequency words into the candidate set, as well as to update the frequencies of existing
keywords (lines 23–28).

The candidate (high-frequency) keywords are input to Algorithm 2, which uses a greedy strategy
to construct the query with the highest coverage. It iteratively selects the keyword with highest
frequency from the candidate set, and adds it to the query if it leads to an increase in coverage. Note
that although the query construction phase can be costly, once a high-coverage query is determined,
it can be re-used for later searches, e.g., a hidden-Web search engine can use the query to refresh its
index periodically.

These algorithms involve multiple choices: how to set the number of result pages retrieved; how to
select keywords; when to stop. In what follows, we discuss our choices, the trade-offs, and the issues
involved in a practical implementation.

Selecting keywords. The initial keyword can be selected from many sources. For example, from
the set of keywords constructed by a focused crawler [Chakrabarti et al. 1999] on a topic related to the
search interface. It has been shown, however, that the choice of initial term has little effect on the final
results and on the speed of learning, as long as the query returns some answers [Callan and Connell
2001]. In our implementation, we select a word from the initial page, where the form is located. As
described above, the SampleKeywords algorithm proceeds to find additional keywords by iteratively
submitting queries using keywords obtained in previous iterations. Since our goal is to retrieve as
many results as possible, a simple strategy is to also issue queries using stopwords (e.g., a, the), since
their frequency in the collection is likely to be high. As we discuss in Section 3, higher coverages are
indeed obtained by the algorithm if stopwords are indexed.

The response page for a query may contain information that is not relevant to the actual query
(e.g., ads, navigation bars that are part of the site template), and this information may negatively
impact the keyword selection process. Thus, it may be beneficial to remove these extraneous pieces of
information before selecting the candidate words and computing their frequencies. A simple strategy
is to discard the HTML markup. More sophisticated solutions are possible. A smart and generic
wrapper, such as the response analysis module of HiWe [Raghavan and Garcia-Molina 2001], can be
used to extract only the results list in the page. In Section 3, we discuss how these choices influence
the effectiveness of our approach.

Stopping condition. While building the keyword sample, an important question is how big the
sample needs to be in order to achieve high coverage – how many iterations should the Algorithm 1
go through. As we discuss in Section 3, the ideal number of iterations depends on the collection.

For constructing the coverage query, there is also a choice of when to stop. Algorithm 2 iterates
until it gathers maxTerms keywords, or maxSubmissions probe queries are submitted (see Algorithm 2,
line 3). The best choices for these parameters are collection-dependent.

Since the cost of running both algorithms is proportional to the number of requests issued, it

2This algorithm is a variation of the algorithm proposed in [Callan and Connell 2001].

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

Siphoning Hidden-Web Data through Keyword-Based Interfaces · 137

is desirable to keep the number of requests to a minimum. Thus, it is crucial that good stopping
conditions be determined.

Determining the number of results. Often, search interfaces return the total number of answers
in the results. Heuristics can be developed to locate and extract this information (e.g., extract the
number close to the string results). However, in some sites, the number of results returned is only
an approximation. Google, for example, returns a rough estimate of the total number of results for
a given query. If this approximation deviates too much from the actual number, the quality of the
selected keywords is likely degrade.

Detecting error pages. While issuing the probe queries, it is possible that they lead to errors and no
results are returned. To prevent error pages from negatively impacting the selection of keywords, it is
important that they be automatically identified. In our implementation, we follow the simple heuristic
proposed in [Doorenbos et al. 1997]: issue queries using dummy words (e.g., ewrwdwewdwddasd) and
record the results in an error template. As queries are issued, their results can be checked against the
error template (see Algorithm 1, line 6).

Detecting interface characteristics. In order to get the highest coverage for a given collection
or database, the ideal would be understand the characteristics of the search interface (e.g., indexing
choices, allowed queries, collection size) and tailor the various choices of the siphoning algorithm
to the collection. However, this is often an unreasonable assumption, especially in non-cooperative
environment, where Web sites do not provide this information; and for large-scale tasks such as
crawling the hidden Web. Instead, techniques are needed to automatically infer these properties. For
example, in order to detect whether stopwords are indexed, a set of probe queries with stopwords can
be issued and if they yield an error page (Algorithm 1, line 11), one can safely assume stopwords are
not indexed.

Table I. Description of sites used in the experiments
Site Size Description

(number of results)
nwfusion.com – Network World Fusion 60,000 News information about information

technology
apsa.org – American Psychoanalytic Association 34,000 Bibliographies of psychoanalytic litera-

ture
cdc.gov – Centers for Disease Control and Pre-
vention

461,194 Health-related documents

epa.gov – Environment Protection Agency 550,134 Environment-related documents
georgetown.edu – Georgetown University 61,265 Search interface to the site
chid.nih.gov – Combined Health Information
Database

127,211 Health-related documents

www.gsfc.nasa.gov – NASA Goddard Space
Flight Center

24,668 Astronomy-related documents

www.ncbi.nlm.nih.gov/pubmed – NCBI PubMed 14,000,000 Citations for biomedical articles

3. EXPERIMENTS AND EXPERIENCES

In order to assess the effectiveness of our approach, we ran some preliminary experiments using real
Web sites. We selected sites from different domains and of different sizes. Since we wanted to measure
coverage, we restricted our experiments to sites for which we were able to determine the total collection
size. Some of the sites actually publish this information. For the others, we obtained the collection

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

138 · L. Barbosa and J. Freire

Table II. Coverage obtained for different numbers of iterations
Site 5 iterations 10 iterations 15 iterations Use stopwords
nwfusion.com 94.8 94.4 94.4 true
apsa.org 86.6 88.5 91.6 true
cdc.gov 90.4 90.4 90.4 true
epa.gov 94.2 94.2 94.2 true
georgetown.edu 98.3 97.9 97.9 true
chid 35.9 22.8 22.8 true
gsfc.nasa.gov 99.9 99.9 99.9 false
pubmed 33.8 34.6 48.9 false

Table III. Keywords selected for coverage query
Site With stopword Without stopword
nwfusion the,03,and definition, data, latest, news, featuring
apsa of,the,and,in,a,s,j psychoanal, amer, review, psychoana-

lytic, int, new, study, family
cdc cdc,search,health,of,the,to health, department, texas, training, pub-

lic, file, us, services
epa epa,search,region,for,to,8 epa, environmental, site, data
georgetown georgetown,the,and,of,to university, georgetown, description, infor-

mation
chid chid,nih,hiv,for,aids,the,prevention,of,to,health aids, health, disease, author, number, ed-

ucation, english
nasa n/a nasa
pubmed n/a nlm, nih, cells, cell, effects, expression,

virus, after, proteins, human

sizes from the site administrator. The description of the sites is given in Table I.3 In what follows
we analyze several features of our siphoning strategy, and discuss how different choices for tuning the
algorithm influence the results.

Coverage. The coverage of a given keyword sample k1, k2, . . . , kn is computed as follows: if the
search interface accepts disjunctive queries, the coverage of the sample is simply the number of results
returned for the query k1 OR k2 OR . . . OR kn over the size of the database; otherwise, if only conjunc-
tive queries are allowed, the number of results is computed using the inclusion-exclusion formula [Linial
and Nisan 1990]. Coverage obtained for the sites considered using different numbers of iterations for
SampleKeywords (Algorithm 1) are shown in Table II. In this experiment, and in the other exper-
iments below, the settings for ConstructQuery (Algorithm 2) are as follows: maxSubmissions is 15 –
this avoids overloading the sites with requests; and maxTerms is 10 – this prevents the generation of
long queries that cannot be effectively (or efficiently) be processed by the site. Table II also indicates
which sites index stopwords.

Two points are worthy of note in Table II. For 6 out of the 8 sites, coverage of over 90% was
obtained with as few as 5 iterations. These results indicate that our approach is promising, and
although simple, it can be effective in practice.

For 2 sites, chid and nwfusion, the coverage decreases with the increased number of iterations. As
we discuss below, in Collection idiosyncrasies, not always a keyword with high frequency leads to high
coverage.

Effectiveness of stopwords in probe queries. Table III shows the list of keywords used in the

3There was a discrepancy between the collection size published in the Web site (11 million) and the size given to us by
the site administrator (14 million). In order to be conservative, we use the latter in our experiments.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

Siphoning Hidden-Web Data through Keyword-Based Interfaces · 139

1. Preventing Crytposporidiosis.

Subfile: AIDS Education
Format (FM): 08 - Brochure.
Language(s) (LG): English.
Year Published (YR): 2003.
Audience code (AC): 084 - HIV Positive Persons. 157 -
Persons with HIV/AIDS.
Corporate Author (CN): Project Inform, National HIV/AIDS
Treatment Hotline.
Physical description (PD): 4 p.: b&w.
Availability (AV): Project Inform, National HIV/AIDS
Treatment Hotline, 205 13th St Ste 2001, San Francisco, CA,
94103, (415) 558-8669, http://www.projectinform.org.
Abstract (AB): This information sheet discusses
cryptosporidiosis (Crypto), a diarrheal disease caused by a
parasite that can live in the intestines of humans and animals.
This disease can be very serious, even fatal, in people with
weakened immune systems. The information sheet describes,
the symptoms, transmission, diagnosis, treatment, and
prevention of Crypto, and gives examples of people who might
be immuno-compromised or have a weakened immune system,
such as people with AIDS or cancer, and transplant patients on
immunosuppressive drugs. The information sheet also explains
how crypto affects such people.
Major Descriptors (MJ): Disease Prevention. Disease
Transmission. Guidelines. Hygiene. Opportunistic Infections.
Sanitation.
Verification/Update Date (VE): 200304.
Notes (NT): This material is available in the following
languages: AD0031721 Spanish.
Accession Number (AN): AD0031720.

Fig. 1. Sample document from chid.nih.gov

query that obtains the coverage results of Table II. This table shows two lists of keywords for each site:
one with and one without stopwords. The lists of keywords reveal some of the properties of the Sam-
pleQuery algorithm and give some insight about its effectiveness. The lists without stopwords indeed
contain words that are very relevant to the corresponding sites. A good example is gsfc.nasa.org,
where the keyword nasa, found in the first few iterations of the algorithm, is enough to retrieve 99.9%
of the documents in the site. These lists also reveal some of the characteristics of the indexers for the
sites, e.g., apsa.org indexes single-letter words, and epa.gov indexes numbers.

Number of requests. Since we had no intuition for how many requests (iterations) were needed
to build a good keyword sample, we tried different values. For most sites, the sample converges fast,
after only 5 iterations. Using 15 iterations, the candidate set generated led to coverages of over 90%
for all sites except for chid and pubmed (see Table II). For pubmed, a higher number of iterations led to
a significantly improved coverage, from 48.9% after 15 iterations to 79.8% after 50 iterations. Factors
that contribute to this behavior include: the collection size – pubmed is orders of magnitude larger
than the other collections; the heterogeneity of the documents – there are documents about several
different subjects within the biomedical area; and the lack of descriptions of the articles in the query

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

140 · L. Barbosa and J. Freire

Fig. 2. Selecting keywords: document descriptions vs. title

results – only the titles of articles are available (see below for details). In addition, pubmed does not
index stopwords.

Collection idiosyncrasies. The lowest coverage value was obtained for the chid collection. As
Figure 1 illustrates, documents in this collection have some structure (a set of fields), and some of
these fields are optional (e.g., Notes). In addition, different fields are indexed differently – some are
indexed filtering out stopwords, while others are not. For example, the Notes field is indexed with
stopwords, whereas Abstract is not. This poses a problem for our algorithm, since when it verifies if
the database accepts stopwords, it assumes that all items in the collection have the same property.
Consequently, the sample with stopwords will only be effective for a subset of the items which contain
the Notes field. As shown in Figure 3, keyword samples without stopwords lead to a much increased
coverage for chid: more than twice the value of the coverage of the lists with stopwords.

This also explains the reduction in coverage shown in Table II. As the SampleKeywords algorithm
iterates, it builds the candidate set and continuously updates the frequences of the keywords in the set.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

Siphoning Hidden-Web Data through Keyword-Based Interfaces · 141

When stopwords are considered, their frequences are likely to grow at a faster pace than the frequences
of the other keywords. Since ConstructQuery selects the keywords with highest frequencies from the
candidate set, at later iterations it is more likely to pick stopwords. In the case of chid, only the
Notes field, which does not appear in all documents, indexes stopwords. As a result the stopword-rich
queries constructed based on the candidate sets for later iterations have lower coverage.

Selecting keywords. As discussed in Section 2, different strategies can be used to extract keywords
from the query results. We experimented with four configurations, varying whether stopwords are
indexed or not, and how the keywords are extracted. For the latter, we wrote specialized filters that
select keywords either from the main entry of the result (e.g., the title of a document) or from its
description (e.g., the document summary). The coverage results (for 15 iterations of Algorithm 1) are
shown in Figures 2 and 3. Note that, in these figures, the bars with value zero correspond to invalid
configurations.

Figure 2 shows the difference in coverage between selecting keywords from the title of the documents
and from document descriptions. Using the descriptions often leads to slightly larger coverage,
regardless of the presence or absence of indexing of stopwords. This is expectable, since a description
is likely to contain more relevant information than a title. When the collection indexes stopwords,
as shown in Figure 3, using stopwords leads to higher coverage for all collections, except chid, as
explained above.

We also assessed the usefulness of using a wrapper to filter out extraneous information from the
results page and extract only the actual results. As shown in Figure 4, the use of a wrapper leads to
slightly, but not significantly, better coverage. A possible explanation for these non-intuitive results
is that these collections have content-rich pages. The effectiveness of wrappers is more accentuated
for pubmed, whose result pages follow a template that contains a large percentage of extraneous infor-
mation.

4. RELATED WORK

This work is, to the best of our knowledge, the first to consider the problem of automatically siphoning
data hidden behind keyword-based search interfaces.

In [Raghavan and Garcia-Molina 2001], Raghavan and Garcia-Molina described HiWe, a task-
specific hidden-Web crawler. Although they propose techniques to automatically fill out forms, their
approach requires human input, and they only consider multi-attribute forms for structured data
sources – single-element forms, such as keyword-based search interfaces, are ignored in the crawls. In
addition, although they acknowledge the importance of coverage as a measure of crawler performance,
no coverage analysis is provided for HiWe. Instead, they focus on submission efficiency. Note that in
contrast with keyword-based interfaces, attributes in structured forms have well-defined (and some-
times strict) domains. Thus, an important measure of crawling effectiveness is submission efficiency,
i.e., the percentage of submissions that use correct values. Techniques such as the statistical schema
matching proposed by He and Chang [He and Chang 2003] can greatly improve submission efficiency
for multi-attribute forms. In [Benedikt et al. 2002], Benedikt et al propose techniques to automatically
crawl a dynamic Web site, including filling out forms. Their focus, however, is on testing (verifying)
the correctness of Web sites.

The problem of reconstructing Web databases through limited query interfaces was considered
in [Byers et al. 2001]. Byers et al [Byers et al. 2001] study a subset of this problem, namely finding
efficient covers for spatial queries over databases that are accessible through nearest-neighbor inter-
faces, and that return a fixed number of answers. The focus of [Byers et al. 2001] is on efficiency, i.e.,
how to minimize the number of queries required to reconstruct the database, and the approach relies
on the availability of specialized wrappers to access the underlying databases.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

142 · L. Barbosa and J. Freire

Fig. 3. Selecting keywords: with vs. without stopwords

In [Callan and Connell 2001], Callan and Connell’s proposed a technique to automatically create
descriptions (i.e., a set of representative words) of document databases that are sufficiently accurate
and detailed for use by automatic database selection algorithms (e.g., [Callan et al. 1995; Gravano
et al. 1994]). They show that accurate descriptions can be learned by sampling a text database
with simple keyword-based queries. The problem of retrieving all the results in a hidden collection
or database also requires that a representative set of words be learned, but with the goal achieve
the highest possible coverage of the collection. Note that the quality of selected terms is measured
differently in the two problems. Whereas terms for descriptions must be meaningful (e.g., terms such
as numbers, or short words with fewer than 3 characters are discarded), for siphoning hidden data,
the best term is simply a term that is present in the largest number of items, this term can even be a
stopword. Our SampleKeywords algorithm adapts and extends the approach proposed in [Callan and
Connell 2001].

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

Siphoning Hidden-Web Data through Keyword-Based Interfaces · 143

Fig. 4. Wrapper effectiveness: ratio of results retrieved with and without a wrapper

5. CONCLUSION

In this paper we examined the problem of siphoning data hidden behind keyword-based search inter-
faces. We have proposed a simple and completely automated strategy that can be quite effective in
practice, leading to very high coverages.

The fact that such a simple strategy is effective raises some security issues. As people publish data on
the Web, they maybe unaware of how much access is actually provided to their data. Our preliminary
study suggests some simple guidelines that can be followed to make it harder for information to be
hijacked from search interfaces, e.g., avoid indexing stopwords. However, an interesting direction for
future work is to better characterize search interfaces, and devise techniques that guarantee different
notions and levels of security.

Although our results are promising, we have just scratched the surface of the problem. There are
several open problems that we intend to investigate. One such problem is how to achieve coverage for
collections whose search interfaces fix the number of returned results.

As discussed in Section 3, the effectiveness of the algorithm depends both on the choice for the
parameters used in the algorithm (e.g., the number of iterations) as well as on features of the collection
(e.g., the indexing, size, nature of contents – homogeneous vs. heterogeneous). In order to provide a
comprehensive solution to the problem, techniques are needed to automatically obtain this information
and dynamically tune the algorithm.

Our initial experiments focused on more document-oriented collections. We are currently experi-
menting with more structured collections, specifically, with the sites catalogued in [UIUC]. A prelim-
inary exploration of these sites indicates that many do provide keyword-based interfaces; and some
actually index stopwords (e.g., job listing sites).

Acknowledgments. The National Science Foundation partially supports Juliana Freire under grant
EIA-0323604.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

144 · L. Barbosa and J. Freire

REFERENCES

Agrawal, S., Chaudhuri, S., and Das, G. DBXplorer: A system for keyword-based search over relational databases.
In Proceedings of the International Conference on Data Engineering. San Jose, USA, pp. 5–16, 2002.

Anupam, V., J. Freire, Kumar, B., and Lieuwen, D. Automating Web navigation with the WebVCR. In Proceedings
of the International World Wide Web Conferences. Amsterdam, The Netherlands, pp. 503–517, 2000.

Benedikt, M., J. Freire, and Godefroid, P. Veriweb: A platform for automating web site testing. In Proceedings
of the International World Wide Web Conferences. Honolulu, USA, 2002.

Bergman, M. K. The deep web: Surfacing hidden value (white paper). Journal of Electronic Publishing 7 (1), 2001.
Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., and Sudarshan, S. Keyword searching and browsing
in databases using BANKS. In Proceedings of the International Conference on Data Engineering. San Jose, USA,
pp. 431–440, 2002.

Byers, S., J. Freire, and Silva, C. T. Efficient acquisition of web data through restricted query interfaces. In
Proceedings of the International World Wide Web Conferences, Poster session. Hong Kong, China, pp. 184–185,
2001.

Callan, J., Lu, Z., and Croft, W. Searching distributed collections with inference networks. In Proceedings of the
ACM SIGIR Conference on Research and Development in Information Retrieval. Seattle, USA, pp. 21–28, 1995.

Callan, J. P. and Connell, M. E. Query-based sampling of text databases. Information Systems 19 (2): 97–130,
2001.

Chakrabarti, S., van den Berg, M., and Dom, B. Focused crawling: A new approach to topic-specific web resource
discovery. Computer Networks 31 (11-16): 1623–1640, 1999.

Davulcu, H., J. Freire, Kifer, M., and Ramakrishnan, I. A layered architecture for querying dynamic web
content. In Proceedings of the ACM SIGMOD Int’l Conference on Management of Data Conference. Philadephia,
USA, pp. 491–502, 1999.

Doorenbos, R. B., Etzioni, O., and Weld, D. S. A scalable comparison-shopping agent for the world-wide web.
In Proceedings of the First International Conference on Autonomous Agents. Marina del Rey, USA, pp. 39–48, 1997.

Gravano, L., Garcia-Molina, H., and Tomasic, A. The effectiveness of GlOSS for the text-database discovery
problem. In Proceedings of the ACM SIGMOD Int’l Conference on Management of Data Conference. Minneapolis,
USA, pp. 126–137, 1994.

Gravano, L., Ipeirotis, P. G., and Sahami, M. Qprober: A system for automatic classification of hidden-web
databases. ACM Transactions on Information Systems 21 (1): 1–41, 2003.

He, B. and Chang, K. C.-C. Statistical schema matching across web query interfaces. In Proceedings of the ACM
SIGMOD Int’l Conference on Management of Data Conference. San Diego, USA, pp. 217–228, 2003.

HTML. Hypertext markup language (HTML). http://www.w3.org/MarkUp.
Lawrence, S. and Giles, C. L. Searching the World Wide Web. Science 280 (5360): 98–100, 1998.
Linial, N. and Nisan, N. Approximate inclusion-exclusion. In Proceedings of the ACM Symposium on Theory of

Computing. Seattle, USA, pp. 260–270, 1990.
Raghavan, S. and Garcia-Molina, H. Crawling the Hidden Web. In Proceedings of the Int’l Conference on Very

Large Data Bases. Roma, Italy, pp. 129–138, 2001.
SOAP. SOAP version 1.2 part 0: Primer. W3C Recommendation, 2003. http://www.w3.org/TR/2003/REC-soap12-

part0-20030624.
UIUC. The UIUC Web integration repository. http://metaquerier.cs.uiuc.edu/repository.
WSDL. Web service definition language (WSDL). http://www.w3.org/TR/wsdl.html.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

