
Evaluating Logic-Based Scoring Functions
on Uncertain Relational Data

Sebastian Lehrack and Sascha Saretz

Brandenburg University of Technology Cottbus,
Institute of Computer Science,

Postfach 10 13 44, D-03013 Cottbus, Germany,
{slehrack, ssaretz}@informatik.tu-cottbus.de

Abstract. Nowadays, for many retrieval scenarios a strict query evaluation just returning a Boolean truth value is not
sufficient anymore. We often rather need the support of a gradual query fulfilment expressed by a score value out of the
interval [0, 1]. ProQua is a new probabilistic database system which combines such information retrieval concepts with
traditional database technologies. In contrast to other state-of-the-art probabilistic database systems ProQua facilitates
logic-based similarity conditions within its SQL-like query language by a generic similarity operator. In this work we
formalise logic-based scoring functions as the underlying concept of the supported similarity conditions and introduce
respective evaluation techniques implemented by relational query plans. Additionally, we report on their experimental
verification on a probabilistic TPC-H database.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages

Keywords: logic-based scoring functions, probabilistic databases, ProQua, similarity conditions

1. INTRODUCTION

A classical relational database system evaluates a query against a database tuple either to the truth
value true on match or to the truth value false on mismatch. Nowadays, there are many retrieval
scenarios where such a strict evaluation is not adequate anymore. It is known that Boolean truth
values cannot satisfy user expectations about vague and uncertain conditions [Agrawal et al. 2003].
Thus, there is a need for incorporating the concepts of impreciseness and proximity into the a database
query language.

Our new probabilistic database system ProQua1,2 is designed as a combination of such information
retrieval concepts and database technologies. Recently, leading database researchers emphasised this
combination as an important and challenging research field in the last Claremont report3 [Agrawal
et al. 2008].

An established technique for handling vagueness is the usage of similarity predicates like ‘age around
300 ’ or ‘finding site is close to the temple of Artemis’ within a logic-based query language. This type
of query language supports complex similarity conditions formulated by similarity predicates and the
logical operators AND (∧), OR (∨) and NOT (¬). Data tuples fulfill similarity conditions to certain
degrees which can be represented by score values out of the interval [0, 1]. By means of score values

1ProQua stands for probabilistic and quantum logic-based database system.
2Online demo: http://dbis.informatik.tu-cottbus.de/ProQua/
3The Database Research Self-Assessment Meeting takes place every five years.

Sebastian Lehrack was supported by the German Research Foundation grants SCHM 1208/11-1 and SCHM 1208/11-2.
Copyright c©2012 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012, Pages 348–363.

Evaluating Logic-Based Scoring Functions · 349

Arte
tid aid type sond age

t1 art1 vase fragment 3 300
t2 art2 spear head 10 500
t3 art3 vase fragment 4 300

ArteExp
tid expert rep aid culture conf

t4 Peter B art1 roman 0.3
t5 Peter B art1 greek 0.4
t6 Cathy C art1 roman 0.4
t7 John A art2 egyptian 0.6

ArteMat
tid method year aid culture conf

t8 XRF 1997 art1 roman 0.3
t9 XRF 1997 art1 greek 0.3
t10 ICS-MS 2008 art2 punic 0.8
t11 XRF 2010 art2 egyptian 0.5

Fig. 1. Tables Arte, ArteExp and ArteMat of the running scenario

we are able to compute a ranking of all data objects giving the desired query result.

Besides similarity conditions known from information retrieval (IR) probabilistic databases have been
established as a new type of database systems [Suciu et al. 2011]. In such a database a tuple belongs
to a data table or a query answer with a specific occurrence probability expressing the uncertainty
about the given data or the confidence in the answer, respectively. In other words, in a probabilistic
database several possible database instances, also called possible worlds, are managed and queried
simultaneously. Thereby, the “real world” is assumed to be unknown. To handle this uncertainty we
define a probability measure over the set of all possible worlds.

To the best of our knowledge, ProQua is the first and only probabilistic database system which
offers complex logic-based similarity conditions on uncertain relational data as an integrated query
language concept. In this work we will formalise logic-based similarity conditions by logic-based scoring
functions. In particular, we syntactically and semantically introduce logic-based scoring functions and
develop evaluation techniques implemented by relational query plans. Thus, the main contributions
of this article are:

(1) the formalisation of the syntax and the semantics of logic-based scoring functions (Sec. (3)),

(2) the definition of construction rules for logic-based scoring functions based on the ProQua query
language QSQL2 (Sec. (4)),

(3) the development of evaluation techniques for logic-based scoring functions in form of relational
query plans (Sec. (5)),

(4) the implementation of our methods into the probabilistic database system ProQua and

(5) the experimental verification against a probabilistic TPC-H database.

Running scenario: We demonstrate our basic ideas by means of a running example. It is moti-
vated by the redevelopment of the CISAR project4 [Henze et al. 2007] which is a web-based information
system for archaeology and building history. ProQua technologies will be widely used in its successor
project OpenInfRA.

4http://www.dainst.org/en/project/cisar/

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

350 · Sebastian Lehrack and Sascha Saretz� �
select aid, type, culture
from (select aid, culture

from ArteExp
where rep ~ ’A’

union
select aid, culture
from ArteMat
where year ~ 2012

) origin
inner join

(select *
from Arte
where age ~ 300

) prop
on (origin.aid = prop.aid)

where age ~ 300� �

πaid,type,culture

σage≈300

./

∪

πaid,culture

σrep≈A

ArteExp

πaid,culture

σyear≈2012

ArteMat

σage≈300

Arte

Fig. 2. Running scenario query as QSQL2 query (left) and abstract tree (right)

In our simplified example scenario we work with the deterministic table Artefacts (Arte) and the
two probabilistic tables Artefacts classified by Experts5 (ArteExp) and Artefacts classified by Material
(ArteMat), see Fig. (1). In the table Arte we store information about several artefacts which were
found during an archaeological excavation. Thereby, the sondage number (attribute sond) of an
artefact describes its geographical area of finding .

Moreover, several experts gave an expertise about the originating culture (attribute culture) for each
artefact, see table ArteExp. Each expert is also rated by her/his scientific reputation. We express this
reputation by a mark from {A, ..,E} contained in the attribute rep. Thereby, the mark A represents
the best possible rating and the mark E stands for the lowest possible rating. All expert estimations
are additionally annotated by a confidence value (column conf) embodying the probability that the
considered artefact belongs to the specified culture.

Besides these subjective expert valuations we also take more objective methods into account. These
archaeometrical methods (e.g. XRF and ICS-MS6) rely on material analysis which were conducted in
the year stored in the identically named attribute. In combination with the artefact finding site and
the artefact age, the material composition gives us a valuable hint for the desired culture specification
also quantified by a confidence value (column conf).

Based on the introduced data tables we run following query: Determine all artefacts with their
possible cultural origins whereby their ages should be around 300 years. Additionally, we require
that the reputation of an expert is as high as possible and a considered material analysis is as new as
possible. To answer this query we use ProQua in conjunction with its query language QSQL2 [Lehrack
et al. 2012], see Fig. (2). Please be aware that the similarity predicate age ≈ 300 appears twice in
the given query. This situation can easily occur when an automatic query generation took place or
views were used.

ProQua: Next, we briefly elucidate the main idea behind ProQua by sketching the interrelations
among the core concepts of the ProQua system, see Fig. (3). The starting point is a QSQL2 query
as given in Fig. (2). In the first step we map the different syntactical components of a QSQL2 query
to (i) a logic-based scoring function ψ and (ii) an algebra query Q applied on probabilistic data. The
first part of this mapping will be described in Sec. (4). Both query types are grounded in their own
semantical model. On the one hand a logic-based scoring function is interpreted by a probabilistic
view of a vector space retrieval model [Lehrack and Schmitt 2011; Schmitt 2008], see Sec. (3). On
the other hand, we apply the well-known possible-world-semantics for handling an algebra query on
probabilistic data. Respecting these semantical models the outcome of a logic-based scoring function
is determined as result of a normalised similarity domain calculus query (see Sec. (5)). Practically, a

5Please note that the columns tid and conf do not belong to the actual data tables.
6XRF and ICP-MS stand for the x-ray fluorescence and the inductively coupled plasma mass spectrometry method.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

Evaluating Logic-Based Scoring Functions · 351

vector space
retrieval model

4

syntax semantics

(b)

QSQL2
query

1

algebra query
on probabilistic data

3
possible-worlds-
semantics

5
(a)

(a)

(b)

(d)

normalised similarity
domain calculus query

6

U*-database +
probability computation

7

combined
query plan

8

evaluation

logic-based
scoring function

2
(c)

(c)

* * *

*

Fig. 3. ProQua model: (a) syntax mapping, (b) query semantics, (c) evaluation techniques and (d) ranking semantics

logic-based scoring function ψ is evaluated by a relational query plan qp(ψ) which will be developed
in Sec. (5). In contrast, the evaluation of an algebra query Q is performed by a query plan qp(Q). It
relies on a novel representation system for probabilistic database called U*-database. By employing
the ranking semantics of expected scores (see [Li et al. 2011; Ilyas and Soliman 2011]) we finally
generate a combined query plan which produces the desired query result (see Sec. (5.4)).

The main contributions of this work are marked by a star (∗) in Fig. (3) and will be presented in
Sec. (3), (4) and (5). In the next section we will define four query classes based on the expressiveness
of a query language. Conducted experiments will be presented in Sec. (6). Finally, we will finish our
work by a discussion of related approaches in Sec. (7) and by our conclusions in Sec. (8). Due to the
limited space, we defer all proofs and a comprehensive description of all queries investigated by our
experiments (see Sec. (6)) to an extended version of this article [Lehrack 2012b].

2. QUERY TYPES

In the following section we present a classification of different query types which help us to clarify
and compare our query language QSQL2 against existing approaches (see Sec. (7)). For setting up
our classification we identify two independent criteria, namely (i) the expressiveness of the supported
conditions and (ii) the nature of the underlying relational data basis. More concretely, we indicate
(i) the capability of incorporating the concepts of impreciseness and vagueness in terms of similarity
conditions (i.e. classical Boolean conditions (BC) vs. similarity conditions (SC)) and (ii) the capability
of expressing different possible database states derived from tuple and attribute uncertainty (i.e.
classical certain data bases (CD) vs. uncertain data bases (UD)). By applying these criteria orthogonally
we obtain the following four query classes. They all are exemplified by a characteristic query taken
from our running scenario.

(1) Boolean conditions on certain data (BConCD): The class BConCD contains queries formed by
Boolean conditions (i.e. the result is given by either the truth value true or false) on deterministic
relational data. These queries are processed by traditional relational query languages as SQL
[Date 1997]. Referring to our scenario a typical query of BConCD is formulated as “Determine all
artefacts which have a sondage number between 7 and 12 or an age between 250 and 350 years”.
This kind of query produces a homogeneous result set of artefacts matching the defined condition.

(2) Similarity conditions on certain data (SConCD): The class SConCD stands for queries which
support vagueness and impreciseness by similarity conditions. The result of such a query is given
by a list of tuples ordered by score values from the interval [0, 1]. These score values express the
degree of query fulfilment. For instance, a SConCD-query is given by “Determine all artefacts
whereby their sondage numbers should be around 10 or their ages should be around 300 years”.
We will develop the query plan qp(ψ) for evaluating SConCD-query in Sec. (5).

(3) Boolean conditions on uncertain data (BConUD): The queries of the class BConUD are
typical for probabilistic databases. As an example query we give “Determine all artefacts which

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

352 · Sebastian Lehrack and Sascha Saretz

are probably created by roman people”. Once again the resulting tuples are ranked. But in this
case occurrence probabilities are used for the final ranking instead of score values.

(4) Similarity conditions on uncertain data (SConUD): If we combine both criteria, then we
achieve a query class with an expanded expressiveness. A SConUD-query is formulated as “De-
termine all artefacts which are probable created by romans and have an age around 300 years”.
The final ranking is now determined by a given ranking semantics, e.g. expected scores or ex-
pected ranks [Li et al. 2011]. If we presume the expected scores semantics, then we can employ a
relational query plan as presented in Sec. (5.4) to compute the final result of a SConUD-query.

3. SYNTAX AND SEMANTICS OF LOGIC-BASED SCORING FUNCTIONS

In the following, we specify the syntax and the underlying semantics of a logic-based scoring function.
Thus, we give the theoretical foundation for our practical evaluation techniques outlined in the next
sections. At first, we define the syntax of a logic-based scoring function as a first-order logical formula
extended by similarity predicates.

Definition 3.1 Logic-based scoring function (syntax). LetR1, . . . , Rk be relations over the attributes
A1, . . . , Ar. Then, the syntax of a logic-based scoring function ψ : Domψ → [0, 1] is defined by the
grammar

ψ ::= Aθc | A1θA2 | R(A1, . . . , Al) | ψ ∧ ψ | ψ ∨ ψ | ¬ψ | ∃A : ψ | ∀A : ψ

whereby R(A1, . . . , Al) represents a relational predicate, c stands for a constant and θ forms a Boolean
or a similarity predicate (i.e. θ ∈ {=, <,>,≈, . . .}). We also call ψ a condition applied on a tuple t
from the domain Domψ = Dom(A1)× . . .×Dom(Ar). If ψ involves similarity predicates as A ≈ c or
A1 ≈ A2, then we denote ψ as similarity condition.

The outcome of a logic-based scoring function is defined by an underlying semantical model, e.g.
Boolean logic7, fuzzy logic or probability theory. Roughly speaking, a semantical model has to give
the interpretations of all Boolean and similarity predicates (Aθc,A1θA2) and the evaluation rules for
the logical operators/quantifiers (∧,∨,¬,∃A,∀A).

3.1 Geometric retrieval model as underlying semantics

In order to set a semantical model for a logic-based scoring function we utilise a probabilistic in-
terpretation of a geometric retrieval model which is based on the squared cosine similarity measure
[Schmitt 2008]. To be more precise, the core idea of the underlying retrieval model is employing a
mathematical framework, also known from quantum mechanics and quantum logic, for database query
processing. In this article we just lay out the main principles by means of a brief informal survey. For
a mathematical description we refer to [Schmitt 2008], [Schmitt et al. 2009] and [Lehrack and Schmitt
2011].

Following, we explain the general correspondences between query processing concepts and the ge-
ometric retrieval model as given in Fig. (4). In principle, the retrieval model relies on the theory of
vector spaces and determines the evaluation of a single tuple against a given similarity condition. Our
short discourse starts by considering a vector space being the domain of all tuples. The direction of
a tuple vector of length one encodes all attribute values of the queried tuple. Moreover, a complex
similarity condition itself is embodied by a specific vector subspace of the domain vector space denoted
as condition space.

The evaluation result is then defined by the minimal angle between tuple vector and condition space.
The squared cosine of such an angle is a value out of the interval [0, 1] and can therefore be interpreted

7We recall that Boolean logic does not support similarity predicates.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

Evaluating Logic-Based Scoring Functions · 353

query processing vs. vector space retrieval model
value domain ↔ vector space

tuple to be queried ↔ tuple vector
condition ↔ vector subspace

score value ↔ squared cosine of the
angle between tuple vector and
vector subspace

Fig. 4. Correspondences between query processing and the geometric retrieval model

as a similarity measure. That means, if the tuple vector belongs to the condition space (i.e. an angle
of 0◦), the condition outcome equals to a complete match (i.e. a score value of 1). Contrarily, a right
angle of 90◦ between tuple vector and condition space describes a complete mismatch (i.e. a score
value of 0).

In [Lehrack and Schmitt 2011] we developed a probabilistic view of this geometric retrieval model. It
provides the required interpretation and evaluation rules for a logic-based scoring function as specified
in Def. (3.1). Precisely, we proved that we can interpret atomic similarity conditions as independent
probability measures combined by a product probability space. In consequence, we easily apply
standard probability aggregation rules, if all involved subconditions represent independent events.

Definition 3.2 Logic-based scoring function (semantics). Let ψ be a logic-based scoring function.
Then, the score value ψ(t) for a tuple t ∈ Domψ is recursively determined by

ψ ≡ Aθc : ψ(t) := psfθ(t[A], c), (1)
ψ ≡ A1θA2 : ψ(t) := psfθ(t[A1], t[A2]), (2)

ψ ≡ R(A1, . . . , Al) : ψ(t) := 1 if t[A1, . . . , Al] ∈ R, 0 otherwise (3)
ψ ≡ ψ1 ∧ ψ2 : ψ(t) := ψ1(t) ∗ ψ2(t), (4)
ψ ≡ ψ1 ∨ ψ2 : ψ(t) := ψ1(t) + ψ2(t)− (ψ1 ∧ ψ2)(t), (5)

ψ ≡ ¬ψ1 : ψ(t) := (1− ψ1(t)), (6)

ψ ≡ ∃A : ψ1 : ψ(t) := max
t̂∈Domψ,t̂[B]=t[B],
B=attr(t)\{A}

{ψ1(t̂)} (7)

ψ ≡ ∀A : ψ1 : ψ(t) := ¬(∃A : ¬ψ1(t)) (8)

whereby the auxiliary function attr(t) returns the attributes of t and psfθ(·, ·) represents a predicate
scoring function for evaluating the predicate θ. We require that an attribute is queried by at most
one constant in all similarity predicates, i.e. ((A ≈ c1 and A ≈ c2 are involved in ψ) ⇒ c1 = c2) and
((A1 ≈ A2 and A1 ≈ A3 are involved in ψ)⇒ A2 = A3).

The last requirement of Def. (3.2) assures the independence of the involved predicates, see [Lehrack
and Schmitt 2011]. Please note that the predicate scoring functions psfθ(·, ·) are not pre-defined.
In general, any predicate scoring function returning similarity values which can be computed by the
scalar product of normalised vectors is supported. That is, the similarity values of psfθ(·, ·) must
form a semi-positive definite correlation matrix. For instance, we can adapt the Levenshtein distance
function for strings and equi-distance functions for bounded numeric domains. We give the logic-based
scoring function ψe derived from our running scenario as an example in the next section.

4. CONSTRUCTING LOGIC-BASED SCORING FUNCTIONS

In this section we discuss the construction of a logic-based scoring function ψ based on a given
QSQL2 query. Thereby, we restrict our considerations to QSQL2 syntax components embodying the
core functionality of QSQL2. The presented components are equivalent to the standard relational

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

354 · Sebastian Lehrack and Sascha Saretz

rule QSQL2 query components scoring function
R1 R ψ := R(A1, . . . , Am)

R2 select B1,..,Bm ψ := ∃ C1, . . . , Cr : (ψE1 ∧ sc),
from E1 whereby attr(E1) = {B1, . . . , Bm, C1, . . . , Cr}
where sc

R3 select B1,..,Bm ψ := ∃ C1, . . . , Cr : ((ψE1 ∧ ψE2 ∧ jc) ∧ sc),
from (E1 inner join E2 whereby attr(E1) ∪ attr(E2) = {B1, . . . , Bm, C1, . . . , Cr}
on jc) where sc

R4 E1 intersect E2 ψ := ψE1 ∧ (ψE2)<BE2,1,...,BE2,m|BE1,1,...,BE1,m>

R5 E1 union E2 ψ := ψE1 ∨ (ψE2)<BE2,1,...,BE2,m|BE1,1,...,BE1,m>

Fig. 5. Syntax mapping rules for constructing a logic-based scoring function: R represents a relation with the attributes
A1, . . . , Am, E stands for an arbitrary QSQL2 expression, B symbols an attribute, sc embodies a similarity condition
and jc describes a join condition.

operators8: projection, selection, join, intersection and union. In order to generate a logic-based
scoring function we recursively apply the syntax mapping rules as given in Fig. (5):

(R1) A relation R used in a QSQL2 query corresponds to a relation predicate R(A1, . . . , Al) in ψ
whereby A1, . . . , Am are unique variables derived from the attributes of R. To achieve unique
variable labels we distinguish the attributes of a relation occurring more than once in the considered
query by an index. For example, if we consider a self-join R(A1, A2) ./ R(A1, A2), then we build
the two relation predicates R(A1,1, A2,1) and R(A1,2, A2,2).

(R2) A typical select-from-where block (SFW block) consists of three parts: (1) a list of output
attributes B1, . . . ,Bm given in the select-clause, (2) a (recursive) data basis E1 formulated in the
from-clause and (3) a complex similarity condition sc declared in the where-clause:
(1) output attributes: We convert the list of output attributes B1, . . . ,Bm into an existential

quantifier using exactly the attributes which are not occurring in the output list, i.e. if
B1, . . . ,Bm,C1, . . . ,Cr are the attributes of the data basis E1, then we choose the attributes
C1, . . . ,Cr for building the existential quantifier. This mapping is motivated by the correspon-
dences between the algebra operator projection and the existential quantifier of the relational
domain calculus [Maier 1983].

(2) data basis: The (recursive) data basis is given as an arbitrary QSQL2 expression E1. Its
corresponding function ψE1 is also integrated recursively.

(3) similarity condition: The similarity condition sc is conjunctively connected to the data
basis. As result, we collect all similarity conditions which can be distributed over different
where-clauses of several SFW blocks.

(R3) We already explained the handling of the outer SFW block of rule (R3) in the last rule (R2).
Thus, we now only give the mapping of the inner join components. Both recursive functions ψE1

and ψE2 are conjunctively connected to the respective join condition jc, because all three parts
must be fulfilled to generate a joined resulting tuple.

(R4) An intersection operation is directly mapped to the corresponding logical operator ∧. Thereby,
the operation (ψE2)<BE2,1,...,BE2,m|BE1,1,...,BE1,m>

represents a string substitution, i.e. we replace the
output attributes BE2,1, . . . ,BE2,m of E2 in ψE2 by the output attributes BE1,1, . . . ,BE1,m of E1.

(R5) We transform a union operation into the respective logical operator ∨ and apply the already
discussed string substitution again.

For exemplifying our syntax mapping we give the scoring function ψe based on our running example
query (see Fig. (2)):

8As the approaches [Re and Suciu 2008], [Widom 2008] and [Koch 2008] ProQua is currently focused on queries without
the algebra operator difference. Please be aware that we still can use negations within a where-clause.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

Evaluating Logic-Based Scoring Functions · 355

input: logic-based scoring function
output: normalised logic-based scoring function

(1) transform ψ into disjunctive normal form ĉ1 ∨ . . . ∨ ĉm where ĉi are
conjunctions of literals

(2) simplify ψ by applying idempotence and invertibility rules
(3) if there is an overlap on an attribute queried by similarity predicates

between some conjunctions ĉi then
(3a) let l be a literal of an attribute common to at least two conjunctions
(3b) replace each conjunction ĉi in ψ with (l ∧ ĉi) ∨ (¬l ∧ ĉi)
(3c) simplify ψ by applying idempotence, invertibility and absorption, and

obtain ψ = (l ∧ ĉ1) ∨ . . . ∨ (l ∧ ĉm1) ∨ (¬l ∧ ĉm1+1) ∨ . . . ∨ (¬l ∧ ĉm2)

(3d) replace ψ with (l ∧ ψ1) ∨ (¬l ∧ ψ2) where
ψ1 = ĉ1 ∨ . . . ∨ ĉm1 , ψ2 = ĉm1+1 ∨ . . . ∨ ĉm2

(3e) continue with step (3) for ψ1 and ψ2

(4) transform innermost disjunctions to conjunctions and negations by
applying de-Morgan-law

Fig. 6. Syntactical normalisation algorithm norm(·)

ψe := ∃ sond, age : [(∃ expert : (ArteExp(expert, rep, aid, culture) ∧ rep ≈ A) ∨ ∃ method :
ArteMat(method, year, aid, culture) ∧ year ≈ 2012) ∧ (Arte(aid, type, sond, age) ∧ (age ≈

300))] ∧ age ≈ 300

Please note that the join condition (origin.aid=prop.aid) (see Fig. (2)) is implicitly expressed by the
attribute aid occurring in all relation predicates.

5. EVALUATION OF A LOGIC-BASED SCORING FUNCTION

In the following we explain the evaluation of a logic-based scoring function ψ as specified in Def. (3.1)
and Def. (3.2). We presume that ψ is always derived from a QSQL2 query. In the remainder of
this work we use the term logic-based scoring function according to this subclass. Conceptionally, we
perform three steps to determine the outcome of a logic-based scoring function ψ:

(1) generating the syntax of ψ from a QSQL2 query,
(2) transforming ψ into a syntactical normal form by the normalisation algorithm norm(·) and
(3) evaluating the normalised scoring function norm(ψ) by a relational query plan qp(ψ).

The generation of a logic-based scoring function based on a given QSQL2 query is already described
in Sec. (4). In the next subsections we will present the remaining points (2) and (3).

5.1 Syntactical normalisation

For starters, we motivate our syntactical normalisation by investigating the following simplified simi-
larity condition

ψsp
9 ≡ ((rep ≈ A ∨ year ≈ 2012) ∧ age ≈ 300) ∧ age ≈ 300

which is taken from ψe, see Sec. (4). For the sake of simplicity, we temporarily neglect quantifiers
and relation predicates in ψsp. Let us assume that we directly evaluate ψsp by the evaluation rules of
Def. (3.2), i.e. without a preceded normalisation. In this case, we would obtain

((rep ≈ A ∨ year ≈ 2012)10 ∗ psf≈,age(t[age], 300)) ∗ psf≈,age(t[age], 300)

9The index sp stands for simplified query.
10For clarity reasons, we have not applied the evaluation rule for ∨.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

356 · Sebastian Lehrack and Sascha Saretz

relational
query plan

interpreted as similarity domain
calculus query

logic-based
scoring function

practically
evaluated as

determines
result of

Fig. 7. Basic interrelations between logic-based scoring functions, domain calculus queries and relational query plans

as resulting score ψsp(t). The resulting score for the subcondition (rep ≈ A∨year ≈ 2012) is multiplied
with psf≈,age(t[age], 300) twice. This double multiplication violates the logical law of idempotence11.
Intuitively, this law expresses that the two conditions

((rep ≈ A ∨ year ≈ 2012) ∧ age ≈ 300) ∧ age ≈ 300 and (rep ≈ A ∨ year ≈ 2012) ∧ age ≈ 300

produce equal resulting scores, because we query the same predicate age ≈ 300 twice in the first
condition. In contrast, the direct evaluation of the first variant “blindly” computes the result without
considering the underlying semantics. In this case, it ignores the fact that two subconditions are
formed by the same predicate.

To avoid such incorrect evaluations we propose a syntactical normalisation of ψ. This guarantees
a syntactical form where an evaluation by Def. (3.2) obeys all logical laws of a Boolean algebra, e.g.
associativity, distributivity, contradiction and idempotence. We conduct such a transformation by
employing the normalisation algorithm norm(·) [Schmitt 2008] given in Fig. (6). It basically relies
on the well-known Shannon expansion. By applying norm on ψsp we obtain norm(ψsp) ≡ (rep ≈
A ∨ year ≈ 2012) ∧ age ≈ 300 which can be correctly evaluated by the rules of Def. (3.2).

5.2 Domain calculus queries

Our main idea for building a relational query plan qp(ψ) basically relies on two principles. At first, we
interpret a logic-based scoring function as a domain calculus query [Maier 1983] extended by similarity
predicates. Secondly, we transform the result definition of such a descriptive query into a procedural
query plan. The core concepts of our approach are interrelated in Fig. (7).

Classical domain calculus query: The starting point for the following discourse is a classical
domain calculus query given in the form of

{t[A] | t ∈ Dom, cond(t) ≡ true}.

In this query Dom stands for an (infinite) set of tuples defining the domain of the query and cond(t)
represents a Boolean condition for selecting relevant tuples. Before the set of all relevant tuples build
the final result, all relevant tuples are projected onto a set of output attributes A. As an example we
consider following query derived from our running scenario:

{t[aid, type] | t ∈ Dom, (Arte(aid, type, sond, age) ∧ age > 350)(t) ≡ true}.

This query asks for all stored artefacts being older than 350 years. The underlying domain is defined
by the cartesian product of all involved attribute domains, i.e. Dom := Dom(aid) × Dom(type) ×
Dom(sond)×Dom(age). We illustrate the result definition of the current example query in Fig. (8).
All domain tuples of Dom are sketched in the left columns of Fig. (8). They are built by all possible
combinations of all possible attribute values. The evaluation of the relation predicate Arte(. . .) and
the result of the Boolean predicate age > 350 are shown in the middle columns. The remaining

11Idempotence law: ψ ∧ ψ ≡ ψ and ψ ∨ ψ ≡ ψ

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

Evaluating Logic-Based Scoring Functions · 357

aid type sond age Arte(. . .) age > 350 cond(t)

...
art1 vase fragment 3 299 false false false
art1 vase fragment 3 300 true false false

art1 vase fragment 3 301 false false false

art2 spear head 10 499 false true false

art2 spear head 10 500 true true true
art2 spear head 10 501 false true false

art3 vase fragment 4 299 false false false
art3 vase fragment 4 300 true false false

art3 vase fragment 4 301 false false false

...

Fig. 8. Result definition for the example of a classical domain calculus query: domain tuples (left columns), predicate
evaluations (middle columns) and the evaluation of the combined condition (right column).

column cond(t) contains the result of the combined condition Arte(. . .) ∧ age > 350. Generally, we
determine the result of domain calculus query by iterating all domain tuples and testing them against
the selection condition, i.e. in our case against Arte(. . .)∧age > 350. Subsequently, we take all tuples
evaluated to true and project them on their data values for the attributes aid and type. Finally, we
achieve {(art2, spear head)} as resulting tuple set for our example query.

Similarity domain calculus query: Next we enhance classical domain calculus queries by incor-
porating similarity conditions. For this purpose, we work with following basic structure

{t[A] | t ∈ Dom, ψ(t) > 0}.

Obviously, the selection condition cond(t) ≡ true is replaced by the condition ψ(t) > 0 involving a
logic-based scoring function. As an example we consider the query

{t[aid, culture] | t ∈ Domψsb , ψsb(t) > 0}

whereby ψsb12,13 is given by:

ψsb ≡ ∃ expert, rep : (ArteExp(expert, rep, aid, culture) ∧ rep ≈ A)∨
∃ method, year : (ArteMat(method, year, aid, culture) ∧ year ≈ 2012).

The function ψsb is a subcondition of ψe. Analogously to the former classical query, we demonstrate
the result definition of ψe by sketching the respective domain tuples and the determined predicate
evaluations in Fig. (9). Since the condition ψsb is already given in the required normal form, we can
directly apply the evaluation rules of Def. (3.2) for computing ψsb(t). Please note that the application
of both existential quantifiers always choose the maximal score value generated by a group of tuples
which share the same attribute values for the unbounded14 attributes of ψ, see rule (7) of Def. (3.2).
By iterating over all domain tuples we obtain the result set

{(art1, roman, 0.923), (art1, greek, 0.923), (art2, eqyptian, 1), (art2, punic, 0.918)}

when we add the final score value as third output attribute.

After describing how we can theoretically determine the result we translate the demonstrated pro-
cedure into a relational query plan qp(ψ).

12The index sb stands for subcondition.
13The function ψsb is inferred from the QSQL2 query (select aid, culture from ArteExp where rep ≈ A)
union (select aid, culture from ArteMat where year ≈ 2012) which is a subquery of our running exam-
ple. For the construction of ψsb also see the rules of Fig. (5).
14An attribute is called unbounded in ψ when it is not involved in any existential/universal quantifier of ψ.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

358 · Sebastian Lehrack and Sascha Saretz

aid culture expert rep method year AE(. . .) rep≈A AM(. . .) year≈2012 ψsb(t)

...
art1 roman Peter B XRF 1996 1 0.75 0 0.673 0.75
art1 roman Peter B XRF 1997 1 0.75 1 0.694 0.923

art1 roman Peter B XRF 1998 1 0.75 0 0.714 0.75

art1 roman Cathy C XRF 1996 1 0.5 0 0.673 0.5
art1 roman Cathy C XRF 1997 1 0.5 1 0.694 0.847

art1 roman Cathy C XRF 1998 1 0.5 0 0.714 0.5

art1 greek Peter B XRF 1996 1 0.75 0 0.673 0.75

art1 greek Peter B XRF 1997 1 0.75 1 0.694 0.923
art1 greek Peter B XRF 1998 1 0.75 0 0.714 0.75

art2 egyptian John A XRF 2010 1 0.959 1 1 1

art2 punic Frank A ICS-MS 2008 0 1 1 0.918 0.918

art3 roman Frank A ICS-MS 2012 0 1 0 1 0

...

Fig. 9. Result definition for the similarity domain calculus query using ψsb: domain tuples (left columns), predicate
evaluations (middle columns) and the evaluation of the combined similarity condition (right column). The abbreviated
predicate names AE(. . .) and AM(. . .) stand for ArteExp(. . .) and ArteMat(. . .)

5.3 Relational query plan

Similar to SQL, the domain calculus is a descriptive query language. The result of such a query is
determined by specifying properties which all resulting tuples have in common. The practical and
algorithmic generation of the result is thereby purposely left open. For instance, we used an iteration
over an infinite domain to achieve the result of ψ in the previous subsection. Obviously, such an
enumeration is not possible in practise.

Consequently, we have to develop a relational query plan which can be practically performed on
a relational database system. For this purpose, we split the result definition of a similarity domain
calculus query into three consecutive subtasks:
(1) generating the domain Domψ by a relational algebra query QDomψ

,
(2) computing the score value ψ(t) for all tuples of QDomψ

and
(3) projecting all tuples with ψ(t) > 0 onto the given output attributes A.

(1) Generating Domψ by QDomψ
: Since our logic-based scoring functions are constructed by

QSQL2 queries, we can show that their domains Domψ are always finite and can be computed by a
relational algebra query QDomψ

. Thereby, the structure of QDomψ
is derived from the logical com-

bination of the relation predicates involved in ψ, e.g. (ArteExp(. . .) ∨ ArteMat(. . .)) ∧ Arte(. . .)
in ψe. Concretely, we map a conjunctive combination R1(. . .) ∧ R2(. . .) to a natural join R1 ./ R2

and a disjunction R1(. . .) ∨ R2(. . .) to a full outer join R1 ./fo R2. These both rules lead to the
property: ∀t ∈ Domψ : ψ(t) > 0 ⇒ t ∈ QDomψ

. That is, by processing QDomψ
we certainly obtain

each domain tuple which might have a final score value greater than 0. For ψe we get the query
QDomψ

≡ (ArteExp ./fo ArteMat) ./ Arte producing all relevant tuples.

(2) Computing ψ(t) and (3) projection on A: The primary goal for the subtasks (2) and (3)
is a transformation of ψ into a syntactical form representing the basis for the desired query plan.
The inferred query plan will consist of standard relation operators which are easily implementable
by standard SQL. For this purpose, we have to prepare ψ by (i) a normalisation (see above), (ii) a
transformation of all relation predicates and (iii) a shifting of all existential quantifiers. As already
demonstrated, we need to normalise ψ before we can employ the evaluation rules of Def. (3.2).
Additionally, we convert each relation predicate Ri(. . .) of ψ into a standard binary predicate of the
form Ri = 1. This is necessary, because we intent to evaluate all predicates directly on attributes
of QDomψ

. Thus, we map a relation predicate Ri(. . .) to an artificial predicate Ri = 1 embodying

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

Evaluating Logic-Based Scoring Functions · 359

tid aid culture expert rep method year sond age AE AM A ψqf (t)

(t4, t8, t1) art1 roman Peter B XRF 1997 3 300 1 1 1 0.923

(t5, t9, t1) art1 greek Peter B XRF 1997 3 300 1 1 1 0.923

(t6, t8, t1) art1 roman Cathy C XRF 1997 3 300 1 1 1 0.847
(t7, t11, t2) art2 egyptian John A XRF 2010 10 500 1 1 1 0.933

(t10, t2) art2 punic null null ICS-MS 2008 10 500 null 1 1 0.857

Fig. 10. This table shows the tuple set generated by Domψe and the score values computed by ψe,qf (the abbreviated
column names AE, AM and A stand for ArteExp, ArteMat and Arte).

the connection between the data values and their source relation. Simultaneously, we extend each
relation Ri involved in QDomψ

by an artificial attribute labelled by the respective relation name Ri.
It contains the value 1 for all tuples. We denote the extended version of Ri as R′i. For example, we
get following transformed formula for the already normalised formula ψe:

ψ′e := ∃ sond, age : [(∃ expert : (ArteExp = 1 ∧ rep ≈ A) ∨ ∃ method : (ArteMat = 1 ∧ year ≈
2012)) ∧ (Arte = 1 ∧ age ≈ 300)].

The condition ψ′e is then evaluated on the tuples generated by (ArteExp′ ./fo ArteMat′) ./ Arte′.

In the next step we transform ψ′ into prenex normal form where all existential quantifiers are located
at the beginning of ψ′, i.e. ψ′ ; ψ′′ := ∃ A1, . . . , Al : ψqf 15 whereby ∃ A1, . . . , Al : ψqf is equivalent to
ψ′ and the subcondition ψqf does not contain any existential/universal quantifiers. Such an equivalent
transformation is always possible, because our underlying geometric retrieval model forms a Boolean
algebra [Schmitt 2008]. When we reconsider the last example condition, then we achieve:

ψ′′e := ∃ sond, age, expert,method : [((ArteExp = 1 ∧ rep ≈ A) ∨ (ArteMat = 1 ∧ year ≈
2012)) ∧ (Arte = 1 ∧ age ≈ 300)]

As result of this shifting, we can now evaluate all existential quantifiers of ∃A1, . . . , Al : ψqf by a
single maximum operation applied on the tuples of QDomψ

(see rule (7) of Def. (3.2)), i.e.

ψ′′(t) := max
t̂∈QDomψ

,t̂[B]=t[B],

B=attr(t)\{A1,...,Al}

{ψqf (t̂)}.

Thereby, the attribute set B is equal to all unbounded attributes of ψ, i.e. to all output attributes A.
In combination with the final projection on A we can therefore compute the final score values by a
grouping operation as known from SQL [Date 1997]:

qp(ψ) := γA;max(norm(ψqf)(t))(QDomψ
),

whereby (i) the operator γ stands for a grouping operation, (ii) the attribute set A represents the
grouping attributes of γ, (iii) the operation max(norm(ψqf)(t)) defines the applied aggregation func-
tion of γ and (iv) the algebra query QDomψ

computes the underlying finite domain. As an example
we give the query plan qp(ψe) for our running example:

qp(ψe) := γ(aid,type,culture);max(norm(ψe,qf (t)))((ArteExp
′ ./fo ArteMat′) ./ Arte′),

with norm(ψe,qf (t)) ≡ ((ArteExp = 1∧rep ≈ A)∨(ArteMat = 1∧year ≈ 2012))∧(Arte = 1∧age ≈
300). The domain tuple set determined by QDomψ

and the respective score values of ψe,qf (t) are listed
in Fig. (10). The final result returned by the last grouping operation is already known from the
corresponding similarity calculus query as

{(art1, roman, 0.923), (art1, greek, 0.923), (art2, eqyptian, 1), (art2,punic, 0.918)}.

15The index qf stands for quantifier free.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

360 · Sebastian Lehrack and Sascha Saretz

Next we formalise our introduced ideas by the following definition. Specifically, it determines qp(ψ)
by recursively constructing (i) the domain query QDomψ

, (ii) the quantifier free condition ψqf and
(iii) the output attribute set A. Thereby, we directly infer QDomψ

, ψqf and A from the given QSQL2
query instead of explicitly building ψ before.

Definition 5.1 Constructing QDomψ
, ψqf and A for qp(ψ). If a QSQL2 query is given, then we re-

cursively build QDomψ
, ψqf and A with following rules:

rule QSQL2 query query plan components
R1 R QDomψ := R′

ψqf := (R = 1)

A := attr(R)

R2 select B1,..,Bm QDomψ := σbool(sc)(QE1,Domψ)

from E1 ψqf := ψE1,qf ∧ sc
where sc A := {B1, . . . , Bm}

R3 select B1,..,Bm QDomψ := σbool(sc)(QE1,Domψ ./jc QE2,Domψ)

from (E1 inner join E2 ψqf := ψE1,qf ∧ ψE2,qf ∧ sc
on jc) where sc A := {B1, . . . , Bm}

R4 E1 intersect E2 QDomψ := QE1,Domψ ./ β(AE1←AE2)(QE2,Domψ)

ψqf := ψE1,qf ∧ (ψE2,qf)<AE2 |AE1>

A := AE1

R5 E1 union E2 QDomψ := QE1,Domψ ./full outer β(AE1←AE2)(QE2,Domψ)

ψqf := ψE1,qf ∨ (ψE2,qf)<AE2 |AE1>

A := AE1

The auxiliary function bool(sc) returns a Boolean condition such that the implication sc(t) > 0 ⇒
bool(sc)(t) = true always holds.

The following theorem proves the correctness of the developed query plan qp(ψ).

Theorem 5.2. Let ψ be a logic-based scoring function which is derived from a QSQL2 query. If
QDomψ

, ψqf and A are constructed as specified in Def. (5.1), then

{t[unb(ψ)] • (ψ(t)) | t ∈ Domψ, ψ(t) > 0} equals σscore>0(γA;max(norm(ψqf)(t)) as score(QDomψ
))

whereby unb(ψ) returns all unbounded variables of ψ. The complexity of γA;max(norm(ψqf)(t))(QDomψ
)

is in O(nk ∗ l+2r) whereby n describes the size of the database, k stands for the number of all involved
relations in Q, l represents the effort for evaluating the normalised ψqf (t) and 2r gives the cost of the
normalisation, if r gives the formula length of ψqf). For a detailed proof see [Lehrack 2012b].

5.4 Combined query plans

So far, we developed a relational query plan evaluating queries from class SConCD. When we extend our
focus to SConUD-queries we need to apply specific ranking semantics. ProQua exploits expected scores
[Li et al. 2011], i.e. the resulting score value of a tuple is weighted by the occurrence probability of the
considered tuple: escore(t) := ψ(t) ∗PrQ(t). The value PrQ(t) describes the occurrence probability of
t.

Since qp(ψ) and the query plan for occurrence probabilities qp(Q) generate equivalent tuple sets
(augmented by ψ(t) and PrQ(t), respectively), we can compute the final expected scores by a single
natural join:

πA,ψ(t)∗PrQ(t) as escore(γA;max(norm(ψqf)(t)) as ψ(t)(QDomψ
) ./ πA,PrQ(t)(qp(Q))).

We want to point out that we are able to optimise this single join by merging both query plans. A
detailed discussion about merging techniques would require a comprehensive introduction of the query
plan qp(Q) which is not addressed in this work.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

Evaluating Logic-Based Scoring Functions · 361

0.01

0.1

1

10

100

1000

●

●
●

●

●

●

●

0.001 0.003 0.01 0.03 0.1 0.3 1

scale factor

tim
e

[s
]

VARIANT
● BConCD

BConUD
SConCD
SConUD

0.01

0.1

1

10

100

1000

10000

●
●

●

●

●

●

●

0.001 0.003 0.01 0.03 0.1 0.3 1

scale factor

tim
e

[s
]

VARIANT
● BConCD

BConUD
SConCD
SConUD

0.001

0.01

0.1

1

10

100

1000

●

●
●

●

●

●

●

0.001 0.003 0.01 0.03 0.1 0.3 1

scale factor

tim
e

[s
]

VARIANT
● BConCD

BConUD
SConCD
SConUD

0.01

0.1

1

10

●

●

●

●

●

●

●

0.001 0.003 0.01 0.03 0.1 0.3 1

scale factor

tim
e

[s
]

VARIANT
● BConCD

BConUD
SConCD
SConUD

Fig. 11. TPC-H experiments measured in seconds: adapted versions of Q2 (top-left), Q3 (top-right), Q7 (bottom-left)
and Q19 (bottom-right).

6. EXPERIMENTS
In order to compare the computation times of queries taken from all four query classes BConCD,
SConCD, BConUD and SConUD we carried out multiple experiments on a probabilistic version of the
TPC-H database (version 2.14.3)16. Thereby, the experiments were conducted on a 2xAMD octo-core
Opteron 6134 (2.3GHz)/64bit/64GiB RAM machine running CentOS 5.8 (Linux)/Oracle 11.2.

To create a probabilistic variant of the database we augmented each tuple by a Boolean random
variable with a uniform distribution. In detail, we investigated the TPC-H queries Q2, Q3, Q7 and
Q19 as variants of all four classes, i.e. we removed all aggregations and added logic-based similarity
conditions, respectively. A more detailed description of the investigated queries can be found in the
extended version of this article [Lehrack 2012b].

In Fig. (11) the computation times of the queries Q2, Q3, Q7 and Q19 as BConCD, SConCD, BConUD
and SConUD variants are depicted. Please note that the BConUD and SConUD variants of Q7 and Q19
reached the time limit very soon at scale factor 0.1. Not surprisingly, we achieve the variant ordering
SConUD > BConUD >> SConCD > BConCD for all queries, when we compare the corresponding
computation times for a given combination of query and scale factor. This reflects the complexity
classes of the query variants, i.e. #P for SConUD and BConUD (see [Dalvi and Suciu 2007]) vs. P
in data size for SConCD and BConCD (see Theorem (5.2)). Additionally, we calculated the additional
costs for computing score values instead of Boolean truth values (i.e. the increasing rates from a
BConCD variant to a corresponding SConCD variant) for our example queries as Q2 : 15.9%−323.6%,
Q3 : 17.8%−56.8%, Q7 : 0.2%−373.3% and Q19 : 10.3%−31.9% ranging over the given scale factors

16http://www.tpc.org/tpch/

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

362 · Sebastian Lehrack and Sascha Saretz

between 0.001 and 1. Summarising, we conclude that the increasing rates strongly depend on the
given query structure. The broad range of rates of growth also point out that there is a promising
potential for optimisation techniques which will be approached in future works.

7. RELATED WORK

Over the last years a remarkable amount of probabilistic database approaches as [Fuhr and Roelleke
1997; Dalvi and Suciu 2007; Koch 2008; Widom 2008] have been proposed. They all facilitate the
processing of relational queries on uncertain relational data, i.e. queries from class BConUD.

An important comparison criterion for a query language is its expressiveness. Especially, the land-
mark papers [Fuhr and Roelleke 1997] and [Dalvi and Suciu 2007] already discussed the additional
support of similarity predicates, i.e. queries of class SConUD, by modelling score values as proba-
bilities. Fuhr and Rölleke [Fuhr and Roelleke 1997], for instance, suggested to integrate similarity
predicates as built-in predicates. Concretely, they encoded a scoring function by a probabilistic rela-
tion containing all relevant domain value pairs and their respective similarity values. These auxiliary
scoring relations were then used within an algebra query substituting a respective function call. Un-
fortunately, the class of valid queries constructed by this method is very limited. All queries which
build complex tuple events involving more than one basic tuple event from the same auxiliary scoring
relation are forbidden. This is rooted by the fact that basic tuple events of auxiliary scoring relation
can be complexly correlated. Those correlations are not captured in the auxiliary scoring functions.

In contrast, Dalvi and Suciu proposed in [Dalvi and Suciu 2007] to determine the score values of
all similarity predicates in advance by a pre-processing step. The calculated score values are then
integrated into the queried probabilistic relations as occurrence probabilities. Inconveniently, the
corresponding system MystiQ [Re and Suciu 2008] leaves this pre-processing step to the user, since its
query language does not feature similarity predicates as an integrated language concept. Furthermore,
this method is restricted to the set of conjunctive queries, because the applied join operations always
aggregates probabilities conjunctively.

Further approaches as [Widom 2008; Koch 2008] support uncertainty on attribute level. In these
approaches the evaluation of a single similarity predicate could be encoded in the queried uncertain
attribute. But once again this approach is limited to conjunctive queries, because the probability for
an entire tuple is technically combined by a conjunctive join operation.

To the best of our knowledge, ProQua [Lehrack and Schmitt 2011; Lehrack and Saretz 2012; Lehrack
2012a] is the first and only probabilistic database system which enables complex SConCD-queries
and SConUD-queries by integrating a generic similarity operator into its query language QSQL2. In
[Lehrack et al. 2012] we give a non-technical introduction of the capabilities of our query language
QSQL2 without describing any technical evaluation techniques. In [Lehrack and Schmitt 2010] we
presented the first version of QSQL as a query language which is exclusively applied on deterministic
data, i.e. this version only supports queries from BConCD and SConCD.

Besides ProQua, fuzzy databases as [Galindo et al. 2006] also offer complex SConCD- and SConUD-
queries employing fuzzy logic [Zadeh 1988]. However, fuzzy databases do not rely on probabilistic
semantics. In [Schmitt et al. 2009] we presented a detailed comparison between fuzzy logic and
quantum logic which can be interpreted probabilistically [Lehrack and Schmitt 2011]. Unfortunately,
there is a significant set of fuzzy queries where the computed result does not meet user expecta-
tions adequately. Especially, the result of the minimum function, which is the only t-norm with the
logic properties idempotence and distributivity, can depend only on one input parameter (dominance
problem).

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

Evaluating Logic-Based Scoring Functions · 363

8. CONCLUSION AND OUTLOOK

In this article we introduced the concept of logic-based scoring functions formalising complex similarity
conditions on uncertain relational data as a key feature of our probabilistic database system ProQua.
In particular, we developed comprehensive techniques for evaluating logic-based scoring functions.
Furthermore, we showed that we can easily combine the computations of score values and occurrence
probabilities by a relational query plan when we presume expected scores as underlying ranking
semantics. In future works we want to integrate optimisation rules for merged query plans and extend
ProQua by further ranking semantics.

REFERENCES

Agrawal, R., Ailamaki, A., and Bernstein, Philip A., e. a. The claremont report on database research. Journal
of ACM Special Interest Group on Management of Data vol. 37, pp. 9–19, September, 2008.

Agrawal, S., Chaudhuri, S., Das, G., and Gionis, A. Automated ranking of database query results. In Proceedings
of the Conference on Innovative Data Systems Research. Asilomar, CA, USA, 2003.

Dalvi, N. and Suciu, D. Efficient query evaluation on probabilistic databases. Journal of Very Large Data
Bases 16 (4): 523–544, October, 2007.

Date, C. A Guide to the SQL Standard, 4th Edition. Addison Wesley, 1997.
Fuhr, N. and Roelleke, T. A probabilistic relational algebra for the integration of information retrieval and database

systems. ACM Trans. IS 15 (1): 32–66, 1997.
Galindo, J., Urrutia, A., and Piattini, M. Fuzzy Databases: Modeling, Design and Implementation. Idea Group

Publishing, Hershey, USA, 2006.
Henze, F., Lehmann, H., and Langer, W. Cisar - a modular database system as a basis for analysis and docu-
mentation of spatial information. In Proceedings of the 35th International Conference on Computer Application and
Quantitative Methods in Archaeology, L. K. H. I. Posluchny, A. (Ed.). Dr. Rudolf Habelt GmbH Verlag, Berlin, pp.
228–233, 2007.

Ilyas, I. F. and Soliman, M. A. Probabilistic Ranking Techniques in Relational Databases. Synthesis Lectures on
DM. Morgan & Claypool, 2011.

Koch, C. MayBMS: A System for Managing Large Uncertain and Probabilistic Databases. Springer-Verlag, 2008.
Lehrack, S. Applying Weighted Queries on Probabilistic Databases. In Proceedings of the International Conference
on Information and Knowledge Management. Maui, USA, 2012a.

Lehrack, S. Evaluating Logic-Based Scoring Functions on Uncertain Relational Data, 2012b. BTU Cottbus, Technical
Report.

Lehrack, S. and Saretz, S. A Top-k Filter for Logic-Based Similarity Conditions on Probabilistic Databases. In
Proceedings of the Advances in Databases and Information Systems. Poznan, Poland, pp. 268–281, 2012.

Lehrack, S., Saretz, S., and Schmitt, I. QSQL2: Query Language Support for Logic-Based Similarity Conditions
on Probabilistic Databases. In Proceedings of the Research Challenges in Information Science. Valencia, Spain, pp.
1–12, 2012.

Lehrack, S. and Schmitt, I. Qsql: Incorporating logic-based retrieval conditions into sql. In Proceedings of the
Database Systems for Advanced Applications. Tsukuba, Japan, pp. 429–443, 2010.

Lehrack, S. and Schmitt, I. A Probabilistic Interpretation for a Geometric Similarity Measure. In Proceedings of
the European Conferences on Symbolic and Quantitative Approaches to Reasoning with Uncertainty. Belfast, UK,
pp. 749–760, 2011.

Li, J., Saha, B., and Deshpande, A. A unified approach to ranking in probabilistic databases. Journal of Very Large
Data Bases 20 (2): 249–275, 2011.

Maier, D. The Theory of Relational Databases. Computer Science Press, 1983.
Re, C. and Suciu, D. Managing Probabilistic Data with MystiQ: The Can-Do, the Could-Do, and the Can’t-Do. In
Proceedings of the Scalable Uncertainty Management. Naples, Italy, pp. 5–18, 2008.

Schmitt, I. QQL: A DB&IR Query Language. Journal of Very Large Data Bases 17 (1): 39–56, 2008.
Schmitt, I., Nuernberger, A., and Lehrack, S. On the relation between fuzzy and quantum logic. In Views on
Fuzzy Sets and Systems from Different Perspectives, R. Seising (Ed.). Studies in Fuzziness and Soft Computing, vol.
243. Springer, pp. 417–438, 2009.

Suciu, D., Olteanu, D., Ré, C., and Koch, C. Probabilistic Databases. Synthesis Lectures on Data Management.
Morgan & Claypool Publishers, 2011.

Widom, J. Trio: A system for data, uncertainty, and lineage. In Managing and Mining Uncertain Data. Springer, pp.
113–148, 2008.

Zadeh, L. A. Fuzzy logic. IEEE Computer 21 (4): 83–93, 1988.

Journal of Information and Data Management, Vol. 3, No. 3, October 2012.

