
Towards Recommendations for Horizontal XML
Fragmentation

Tatiane Lima da Silva1, Fernanda Baião2, Jonice de Oliveira Sampaio1,
Marta Mattoso3, Vanessa Braganholo4

1 PPGI/Universidade Federal do Rio de Janeiro, Brazil
tatiane.lima@ufrj.br, jonice@dcc.ufrj.br

2 NP2Tec/Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Brazil
fernanda.baiao@uniriotec.br

3 COPPE/Universidade Federal do Rio de Janeiro, Brazil
marta@cos.ufrj.br

4 IC/Universidade Federal Fluminense, Brazil
vanessa@ic.uff.br

Abstract. The large amount of XML data available on the web and inside organizations makes the performance of
query processing a big concern. Several techniques can be applied to improve query processing performance, including
indexing and data distribution. The increasing popularity of clouds, clusters and grids makes data distribution a feasible
alternative. In these approaches, data is fragmented and distributed to several nodes, and queries submitted by users
are processed in parallel, thus improving performance. However, the problem of how to fragment an XML database has
not been adequately addressed. There are lots of definitions for XML fragments in the literature, but few proposals
focus on how to use those definitions to actually fragment the database – a process called fragmentation design. Both
the relational and the object-oriented models have solid methodologies for database fragmentation design. Inspired by
them, the main objective of this article is to study and propose guidelines to be used in a fragmentation design algorithm
for XML databases, aiming at increasing query processing performance.

Categories and Subject Descriptors: H.2 [Database Management]: Systems - Distributed Databases

Keywords: database fragmentation design, heuristics, horizontal fragmentation, XML

1. INTRODUCTION

Due to the large volume of data predominantly stored in XML databases, there is great concern
about the performance of query processing and, consequently, several work in this area [Andrade
et al. 2006; Gang and Rada 2007; Moro et al. 2009; Kling et al. 2011; Figueiredo et al. 2010]. The
increasing popularity of clouds, clusters and grids makes data distribution a feasible alternative. In
these approaches, data is fragmented and distributed to several nodes. Queries submitted by users
can then be processed in parallel, thus improving performance [Ozsu and Valduriez 2011].

There are two distinct ways of using fragmentation to improve query performance: physical frag-
mentation and virtual fragmentation. Physical fragmentation approaches [Ozsu and Valduriez 2011]
physically break the data, generating what we call "fragments", and allocates the fragments into dif-
ferent nodes in a network. On the other hand, virtual fragmentation [Rodrigues et al. 2011] requires
data to be replicated over network nodes, thus requiring more disk space. With respect to physical
data fragmentation (our focus in this article), the potential performance gain is obtained depending
on the location (proximity) of the data when the query is segmented into parts and sent to different

The authors would like to thank CNPq and FAPERJ for partially supporting this work.
Copyright c©2013 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 4, No. 1, February 2013, Pages 27–36.



28 · Tatiane L. da Silva et al.

nodes that runs in parallel on a smaller volume of data in each node. However, physical fragmentation
can also degrade the query performance [Figueiredo et al. 2010; Silva et al. 2012]. This occurs, for
example, when the query execution on the fragmented database requires processing joins to perform
reconstructions that were not needed in the original query, among other reasons. Therefore, frag-
mentation design requires a careful analysis on the most frequent queries, so that fragmentation can
provide performance gains for most of them.

The process of fragmentation design can be divided into three stages [Ozsu and Valduriez 2011]:
(i) extraction of relevant data (frequent queries, database schema, access frequency of each attribute,
among others); (ii) analysis, where information extracted in the previous phase is evaluated to decide
which type of fragmentation should be applied; and (iii) fragmentation itself. The analysis phase is,
thus, the most important phase in the fragmentation design. It is crucial for the performance of the
applications that will run over the fragmented database.

The ideas of fragmentation and distribution proposed for the relational [Ozsu and Valduriez 2011]
and object-oriented [Baião et al. 2004] models have influenced several work on XML query processing
in distributed environments. In fact, several approaches propose XML fragmentation techniques and
algorithms to generate them [Bremer and Gertz 2003; Ma and Schewe 2003; Andrade et al. 2006;
Abiteboul et al. 2009]. One of the most explored aspects in the literature is precisely the definition
of what an XML fragment is [Bremer and Gertz 2003; Ma and Schewe 2003; Andrade et al. 2006],
and how queries can be processed over distributed and fragmented XML databases [Figueiredo et al.
2010]. The problem of how to fragment an XML database has also started to receive some attention
recently [Pagnamenta 2005; Kurita et al. 2007; Bonifati and Cuzzocrea 2007; Mahboubi and Darmont
2009; Kling et al. 2010], but they lack on providing a methodology to fragment XML databases. To
the best of our knowledge, there is no methodology for the distribution design of XML data that
analyzes which fragmentation techniques should or should not be applied in a given scenario, and also
no experimental results that can be used to derive this methodology. This has a direct impact on
performance of applications that run over distributed databases. Proposals in the literature assume
the designer already knows how the database should be fragmented [Bremer and Gertz 2003; Abiteboul
et al. 2009].

The main goal of this article is to give a step forward towards a methodology for XML fragmen-
tation design. In particular, we focus on the analysis stage. We contribute by providing a set of
recommendations for horizontal XML fragmentation. We start by horizontal fragmentation since it
is the first step to solve the general problem of the analysis phase. Our recommendations are based
on a series of experimental evaluations over three XML databases of different sizes. Specifically, this
article extends our previous work [Silva et al. 2012] by analyzing a larger dataset.

The remaining of this article is structured as follows. In Section 2 we discuss related work. Section 3
presents concepts related to horizontal XML fragmentation that are used in our analysis. Section 4
describes our experimental evaluation, which was used as the foundation for deriving recommendations
for horizontal XML fragmentation, presented in Section 5. Finally, we conclude in Section 6.

2. XML FRAGMENTATION DESIGN

There are many approaches in the literature that present definitions of XML fragments [Bremer and
Gertz 2003; Andrade et al. 2006; Kling et al. 2010] and XML approaches for fragmentation design in
general [Bremer and Gertz 2003; Ma and Schewe 2003; Pagnamenta 2005]. However, regarding the
analysis stage of the fragmentation design, there is no work that details the criteria that need to be
taken into consideration in that stage to generate a good fragmentation design (a good fragmentation
design in one that improves query performance for the most frequent application queries). Thus, there
lacks a consistent decision-making method to assess which type of fragmentation is more applicable
in each scenario, causing fragmentation to be ad-hoc, typically based on the designers’ experience.

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.



Towards Recommendations for Horizontal XML Fragmentation · 29

Ma and Schewe [2003] emphasize the importance of considering the frequent queries in the definition
of the fragments. Moreover, in their work, they describe heuristics for horizontal XML fragmentation.
The heuristics are based on a cost model, where the biggest offender of horizontal XML fragmentation
is the transport time of pieces of the query answer between nodes in the network. However, Ma and
Schewe [2003] do not provide experimental results to evaluate the efficiency of the proposed heuristics.

Bonifati and Cuzzocrea [2007] describe a structure-driven fragmentation methodology. That is,
issues such as size, width and depth of the XML subtrees are considered in the fragmentation process.
The authors propose a set of heuristics for XML fragmentation, called SimpleX. These heuristics
seek to determine the maximum values for the variables size, width and depth of the subtrees, and
fragmentation is done so not to overcome these values.

Kurita et al. [2007] propose a method for query processing over distributed XML databases. The
method focuses on XML data fragmentation and dynamic relocation of fragments on the network
nodes. The authors consider that for an efficient large-scale XML query processing system, we must
follow four steps: data partitioning, data distribution, distributed query processing and dynamic data
reallocation. However, their work is restricted to vertical fragmentation only. During the fragmen-
tation, the authors do consider the frequent queries, but the fragment size instead. Their goal is to
obtain homogeneous fragment sizes.

Mahboubi and Darmont [2009] propose to apply horizontal XML fragmentation over a data ware-
house. They explore two methods for horizontal fragmentation: predicate construction and affinity-
based fragmentation. The authors mention that several studies suggest that derived horizontal frag-
mentation is the best way to shred XML data. However, according to them, this statement does
not necessarily apply to the XML data warehouse architecture. As a conclusion of their experiment,
the authors present fragmentation affinity attributes as being the best way to shred an XML data
warehouse.

Kling et al. [2011] focus on exploring the distribution in the context of XML database systems as
a way to solve the problem of effectiveness and efficiency in accessing large-scale XML data. Their
proposed solution addresses two problems of XML query processing in distributed environments:
localization, which is the conversion of a single query execution plan into several ones, so they can
be executed in a distributed environment; and pruning, which eliminates parts of the execution plan
that not contribute to the query result. In other words, only the fragments that contain relevant data
to the query would be accessed. Specifically, for horizontal fragmentation, the authors use the same
technique they apply in the relational model. That is, the fragmentation is obtained by composing
minterms extracted from the frequent queries.

In summary, there are several different approaches to fragment documents horizontally, vertically or
in a hybrid way. However, none of them focuses on the analysis phase, i.e. they do not give any hints
or suggestions to help the designer to choose a horizontal or vertical fragmentation, for example. All
related work is focused on phases (i) extraction of relevant data and phase (iii) fragmentation itself,
lacking a direction to the analysis phase.

3. BACKGROUND: HORIZONTAL XML FRAGMENTATION

Our work uses the concept of XML fragment proposed by Andrade et al. [2006]. This is because
among the definitions we found in the literature [Bremer and Gertz 2003; Ma and Schewe 2003;
Pagnamenta 2005; Kling et al. 2011] that is the closest to the definition of fragments in the relational
model [Ozsu and Valduriez 2011]. This choice is essential, since we want to take advantage of the
fragmentation design proposed for the relational model [Ozsu and Valduriez 2011]. Andrade et al.
[2006] define three types of fragments: horizontal that uses selection predicates to separate documents
into different fragments; vertical, which "cuts" the data structure through projections; and hybrid,
which combines selection and projection operations in its definition.

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.



30 · Tatiane L. da Silva et al.

The definition of fragment uses collections as its base structure. A collection C of XML documents
is a set of data trees. We say it is homogeneous if all the documents in C satisfy the same XML
type. If not, we say the collection is heterogeneous. Given a schema S, a homogeneous collection C is
denoted by the expression C := < S, τroot >, where τroot is a type in S and all instances of C satisfy
τroot [Andrade et al. 2006]. A horizontal fragment F of a collection C is defined by the selection
operation (σ) applied over documents in C, where the predicate of σ is a boolean expression with
one or more simple predicates. Thus, F has the same schema of C, where C is a collection of XML
documents [Andrade et al. 2006]. Horizontal fragmentation should be applied to Multiple Document
collections (MD) [Yao et al. 2004], since the selection operation acts over entire documents instead
of parts of documents. Single Document (SD) repositories can be horizontally fragmented through
a hybrid fragmentation process, where we first apply a vertical fragmentation and then a horizontal
one.

Based on the definition of fragments provided by Andrade et al. [2006], Figueiredo et al. [2010]
developed a methodology for processing queries on distributed and fragmented XML databases. The
prototype developed by Figueiredo et al. [2010] takes care of distributing the query to the relevant
fragments. The prototype includes a mediator, which is responsible for query processing, going from
the query decomposition until the consolidation of the final results. Each node of the network, in
turn, has an adapter that receives the sub queries sent by the mediator and runs them on the local
node. We have adapted this prototype to improve its performance and to adjust it to run on clusters,
and used it in our experimental evaluation, which we describe in the next section.

4. EXPERIMENTAL EVALUATION

Our goal in this article is to derive a set of recommendations for horizontal XML fragmentation based
on experimental results. The main goals of our experimental evaluation are as follows.

(1) To compare the performance of queries on a centralized environment and on a distributed envi-
ronment, testing different scenarios while running the same set of queries in all of them. These
scenarios simulate situations where the fragmentation takes the frequent queries into account, and
others that do not.

(2) To evaluate the performance of queries that benefit from fragmentation and queries that do not
benefit from fragmentation.

Our experiments used the XBench benchmark [Yao et al. 2004]. The benchmark data were system-
atically fragmented according to various strategies, inspired by the literature [Baião et al. 2004; Ozsu
and Valduriez 2011] and the queries behavior was assessed in each scenario. The analysis was made by
comparing the average response times of queries in the different scenarios. Each query was executed
10 times. We discarded the first execution time, and then calculated the average response time using
the remaining 9 runs. The experiments were performed on 9 nodes of a homogeneous cluster. Each
node consists of two Intel Xeon quad core processors (8 cores), with 16 GB of RAM and local hard
disk of 160 GB. One of them acted as the mediator, which is responsible for submitting the queries,
generating the sub queries and consolidating the final results. An instance of the adapter component
runs in each of the eight remaining nodes. Those nodes are responsible for the local execution of sub
queries. Each instance of the adapter uses the local disk of the node where it was allocated, where
the native XML database Sedna was installed. The scenarios are described next. Table I presents a
summary of the criteria we used for fragmentation and allocation of the fragments in our experiment.

Scenario 0: Execution in a centralized environment, using only one node to run all queries.
Scenario 1: Implementation of horizontal fragmentation, using attributes of frequent queries. In
our experiment, we considered the benchmark queries to be the frequent queries. We used two

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.



Towards Recommendations for Horizontal XML Fragmentation · 31

Table I. Fragmentation criteria and allocation of fragments in each scenario
Scenario Fragmentation Criteria Allocation
1.1.1 Frag1: total >= 11000 Frag1: Node 1

Frag2: total <= 7000 Frag2: Node 2
Frag3: total > 7000 and total < 11000 Frag3: Node 3

1.1.2 Frag1: total >= 11000 Frag1: Node 1
Frag2: total <= 7000 Frag2: Node 2
Frag3: total > 7000 and total < 11000 Frag3: Node 3

1.2.1 Frag1: total <= 1000 Frag1: Node 1
Frag2: total > 1000 Frag2: Node 2

1.2.2 Frag1: total <=1000 Frag1: Node 1
Frag2: total > 1000 and total <=7000 Frag2: Node 2
Frag3: total >7000 and total <=11000 Frag3: Node 3
Frag4: total >11000 Frag4: Node 4

1.2.3 Frag1: total <=250 Frag1: Node 1
Frag2: total >250 and total <=500 Frag2: Node 2
Frag3: total >500 and total <=1000 Frag3: Node 3
Frag4: total > 1000 and total <=7000 Frag4: Node 4
Frag5: total >7000 and total <=11000 Frag5: Node 5
Frag6: total >11000 Frag6: Node 6

1.2.4 Frag1: total <=250 Frag1: Node 1
Frag2: total >250 and total <=500 Frag2: Node 2
Frag3: total >500 and total <=1000 Frag3: Node 3
Frag4: total > 1000 and total <=5000 Frag4: Node 4
Frag5: total > 5000 and total <=7000 Frag5: Node 5
Frag6: total >7000 and total <=9000 Frag6: Node 6
Frag7: total >9000 and total <=11000 Frag7: Node 7
Frag8: total >11000 Frag8: Node 8

3.1.1 Frag1: transaction_country_id <=23 Frag1: Node 1
Frag2: transaction_country_id > 23 and transaction_country_id <=46 Frag2: Node 1
Frag3: transaction_country_id > 46 and transaction_country_id <=69 Frag3: Node 2
Frag4: transaction_country_id > 69 Frag4: Node 2

3.1.2 Frag1: transaction_country_id <=23 Frag1: Node 1
Frag2: transaction_country_id > 23 and transaction_country_id <=46 Frag2: Node 2
Frag3: transaction_country_id > 46 and transaction_country_id <=69 Frag3: Node 3
Frag4: transaction_country_id > 69 Frag4: Node 4

3.1.3 Frag1: transaction_country_id <=12 Frag1: Node 1
Frag2: transaction_country_id > 12 and transaction_country_id <=23 Frag2: Node 2
Frag3: transaction_country_id > 23 and transaction_country_id <=46 Frag3: Node 3
Frag4: transaction_country_id > 46 and transaction_country_id <=69 Frag4: Node 4
Frag5: transaction_country_id > 69 and transaction_country_id <=81 Frag5: Node 5
Frag6: transaction_country_id > 81 Frag6: Node 6

3.1.4 Frag1: transaction_country_id <=12 Frag1: Node 1
Frag2: transaction_country_id > 12 and transaction_country_id <=23 Frag2: Node 2
Frag3: transaction_country_id > 23 and transaction_country_id <=39 Frag3: Node 3
Frag4: transaction_country_id > 39 and transaction_country_id <=46 Frag4: Node 4
Frag5: transaction_country_id > 46 and transaction_country_id <=58 Frag5: Node 5
Frag6: transaction_country_id > 58 and transaction_country_id <=69 Frag6: Node 6
Frag7: transaction_country_id > 69 and transaction_country_id <=81 Frag7: Node 7
Frag8: transaction_country_id > 81 Frag8: Node 8

sub-scenarios: (1.1.1) three fragments distributed in two nodes; (1.1.2) three fragments distributed
in three nodes.

Scenario 2: Implementation of horizontal fragmentation, using the number of nodes available for
allocation and domain data. We evaluated the queries and extracted the attribute used in most of
the selections. The goal is to generate fragments covering the domain of this attribute. We then
generated four sub-scenarios: (2.1.1) two fragments in two nodes; (2.1.2) four fragments in four
nodes; (2.1.3) six fragments in six nodes; (2.1.4) eight fragments in eight nodes.

Scenario 3: Implementation of horizontal fragmentation, without using the attributes of frequent
queries. We executed four sub-scenarios classified as follows: (3.1.1) two fragments in two nodes;
(3.1.2) four fragments in four nodes; (3.1.3) six fragments in six nodes; (3.1.4) eight fragments into
eight nodes.

For evaluating the behavior of each scenario, we executed 19 queries of XBench. Furthermore, we
evaluated the queries performance on three databases of different sizes (4MB, 40MB and 400MB). The
summary of these queries and the selection predicates used in each of them are presented in Table
II. By analyzing these queries, it is possible to observe that the most frequent selection attribute is

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.



32 · Tatiane L. da Silva et al.

Table II. Queries performed in the experiments and their respective attributes selection
Query Predicate
Q1 count(/order/order_lines/order_line) >= 5
Q2, Q12 id = 1
Q3 id = 3
Q4 id = 5
Q5 count(/order/order_lines/order_line) = 1
Q6 id = 6
Q7 total > 7000 and count(/order/order_lines/order_line) >= 5
Q8, Q9 total > 7000
Q10 total < 2000
Q11, Q13, Q15, Q16 total > 11000
Q14 id = 2
Q17, Q18 total > 10000
Q19 total > 7000 and total < 8000

"total". Therefore, scenario 1 evaluates the results when the databases are fragmented by "total"
while scenario 2 uses this same attribute, but also explores its domain.

We now compare the average response times of queries in the different scenarios, using the centralized
scenario (Scenario 0) as a baseline. The goal of these experiments is to verify if the fragmentation
allows better results when compared to the centralized scenario. Additionally, we want to verify
that fragmentations that do not consider frequent queries lead to poor performance when compared
to a scenario that takes them into consideration. Figures 1 and 2 present a comparative response
time analysis between the centralized environment (Scenario 0) and the best scenario analyzed in the
experiments with two database sizes: 4MB and 40MB, respectively.

By analyzing Table II, Figures 1 and 2, we can see that 12 queries have benefited from fragmentation
when compared to the centralized environment. In the 4MB experiment, these queries are Q6, Q7,
Q8, Q9, Q10, Q11, Q13, Q15, Q16, Q17, Q18, and Q19. In the 40MB experiment, query Q6 did not
benefit from the fragmentation, but on the other hand, query Q12 did. In the 4MB experiment, only
queries that did not have a selection on the "total" attribute did not benefit from the fragmentation
(Q1, Q2, Q3, Q4, Q5, Q12, and Q14). The same behavior can be observed in the 40MB experiment
with only a small variation in the set of queries that have not benefited from the fragmentation (Q1,
Q2, Q3, Q4, Q5, Q6, and Q14). In the 4MB experiment, query Q16 achieved a performance gain of
almost 70% (dropping from 175.1ms in the centralized environment to 99.5ms in scenario 2.1.3), while
query Q10 obtained a performance gain of approximately 260% in the 40MB experiment (decreasing
from 467.68ms in the centralized environment to 128.8ms in scenario 1.1.1). The experiments in the
4Mb and 40MB databases do not show much difference in their results. However, query Q10 performed
much better in the 40MB (when compared to the centralized scenario). On the other hand, queries
Q15 and Q16 reduced their gains on that database. Furthermore, queries Q12 (4MB experiment)
and Q6 (40MB experiment) benefited from the fragmentation, despite of not accessing the frequent
attribute (total). This occurred because scenario 3.1.2 generated fragments with uniform sizes, thus
improving load balance during query execution.

We then increased the database size and checked the queries behavior. For the experiment on the
400MB database, only two queries (Q1 and Q5) did not present performance gains when compared
to the centralized environment, as described in Figure 3. The remaining 17 queries (Q2, Q3, Q4, Q6,
Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15, Q16, Q17, Q18, and Q19) presented percentage gains
ranging from 55% to 1654%. Figure 3 shows the average response time of the centralized scenario and
the best distributed scenario. Please note the logarithmic scale in the figure.

Summarizing, in the 400MB experiment several queries benefited from the fragmentation: sce-
nario 1.1.1, 17 queries; scenario 1.1.2, 16 queries; scenario 2.1.1, 11 queries; scenario 2.1.2,
15 queries; scenario 2.1.3, 15 queries; scenario 2.1.4, 15 queries; scenario 3.1.1, 14 queries;

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.



Towards Recommendations for Horizontal XML Fragmentation · 33

Fig. 1. Average query response times on the 4MB database, in the centralized and the best of the analyzed scenarios

Fig. 2. Average query response times on the 40MB database, in the centralized and the best of the analyzed scenarios

Fig. 3. Average query response times on the 400MB database, in the centralized and the best of the analyzed scenarios

scenario 3.1.2, 14 queries; scenario 3.1.3, 14 queries; scenario 3.1.4, 14 queries. When we
compare scenarios 1, 2 and 3 for these 17 queries that have benefited from the fragmentation, 6% of
the queries achieved the best response time in scenario 1; 1, 6% in scenario 2; and 88% in scenario 3.
Recall that scenario 3 is the one that do not use the frequent attribute in the fragmentation.

After presenting the experimental results, we now proceed to a discussion of the results we obtained
with the three database sizes. Initially, it is important to remember that in the 4MB and 40MB exper-
iments there were 11 queries that have benefited from the fragmentation, while in 400MB experiment
there were 17 queries that have benefited from the fragmentation.

Queries Q1 and Q5 did not benefit from the fragmentation in any of the three proposed experiments.
For these queries, in all scenarios, all fragments needed to be accessed during query processing. More-
over, they had large partial results, and the transfer time between the local nodes and the mediator
had great influence in the total query processing time.

Queries Q2, Q3, Q4, Q6, Q12, and Q14 did not benefit from the fragmentation in the 4MB and
40MB experiments, but did in the 400MB one. These queries needed to access all fragments in all
of the 10 evaluated scenarios. However, in the 400MB experiment, although they still had to access
all fragments, the number of documents in each fragment was much smaller than in the centralized
database. Of course this is also true for the other two database sizes, but here, the large size of the
database (400MB) had a great negative impact in the processing times of the centralized database,
much more than in the 4MB and 40MB databases. Another point worth noting in the 400MB ex-

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.



34 · Tatiane L. da Silva et al.

Fig. 4. Comparison between the scenarios that have benefited from the fragmentation

periment is that the best performance for these queries took place in scenario 3 (specifically, scenario
3.1.2) in which the database was fragmented by an infrequent attribute. Queries in scenario 3.1.2
performed better than in other scenarios because its fragments contained approximately the same
numbers of documents (uniform distribution of data), which contributed for load balance. In fact,
handling large XML documents has proven to be a hazard in performance [Ferraz et al. 2010]. The
smaller the documents, the better the access performance.

As for the queries that used the frequent attribute "total", Figure 4 shows, the number of scenarios
in which the fragmentation was beneficial. Note that the 400MB experiment has, in general, a larger
range of beneficial scenarios in each of the queries.

As a conclusion, in the experiments with the 4MB and 40MB databases, performance gains were only
obtained in queries that had "total" as its selection predicate. These queries did handle significantly
large size data, and so issues such as seek time, latency and throughput were not as significant as in
the larger dataset. Generalizing the results, we may suppose that larger datasets would benefit from
the fragmentation even more. However, we do not have experimental results to show this for now.

5. RECOMMENDATIONS FOR HORIZONTAL XML FRAGMENTATION

XML fragmentation design must consider several criteria, similar to what was done for other data
models that preceded it. This section presents some of these criteria, which were inspired by the
relational [Ozsu and Valduriez 2011] and object-oriented [Baião et al. 2004] models. Our criteria
consider the experimental results presented in the previous section.

There are important issues that must be evaluated on a distribution design in order to choose the
best fragmentation alternative to a given collection. This work focuses on three points that have
proven to have great influence on the quality of the data distribution:

Application Characteristics: operations that are performed on the data;
Semantic of the Database: represented by attributes and relationships of the schema;
Quantitative information: instances of collections and their sizes.

The analysis stage consists in determining which type of fragmentation should be performed in the
database. In literature, there are no studies defining points that should be considered in this step. In
most cases, one assumes that the designer knows what kind of fragmentation is to be applied. In this
article, we define some factors that allow us to consistently choose the type of fragmentation to be
applied on XML databases.

The application information is fundamental to understand its behavior, i.e., to identify, for example,
the actual use of the database by the user. This makes it possible to assess how it is being used so that
it can be fragmented to bring faster answers to the user. The analysis stage collects three kinds of data:
access operations, which is composed of information relating to the operations applied on queries;
logical schema, that includes the XML schema and XML documents, and finally, quantitative

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.



Towards Recommendations for Horizontal XML Fragmentation · 35

information, that regards information about the data volume and type of database that will be
fragmented. We now detail the information extracted at this stage.

Frequent Queries. We analyze frequent queries to obtain data access statistics. The main statistics
we collect at this stage are the following.
Classification of Operations: For each frequent query, we classify operations as selection or pro-
jection.

Operation Frequency: We extract the frequency of each operation type, including projected at-
tributes and selection predicates.

Attribute Cardinality: We evaluate the cardinality of the attributes to which each operation is
being applied. This assessment is particularly important in the decision towards vertical frag-
mentation. This type of fragmentation cannot be applied on attributes with cardinality greater
than one, as this compromises the reconstruction of the fragments.

Frequency of attributes: We analyze the frequency of attributes on frequent queries. Also, we
check the affinities of these attributes, i.e., we compare all occurrences of the attributes in the
same query.

Database Type. We evaluate the database that will be fragmented. Depending on the database
type, there are limitations on the fragmentation type that can be applied. A database with a single
document repository can only be vertically or hybridly fragmented.

Data Volume. We measure the database size both in terms of number of documents and in terms
of disk space occupied. This type of analysis allows us to verify the feasibility of fragmenting the
database. For this work we classify the databases in three sizes, which are: small : < 10MB;
medium : 10MB to 100MB; and large : > 100MB.

Based on the aforementioned information and on the experiments we performed, we now present
recommendations to the XML fragmentation design. It is important to note that this study presents
recommendations for horizontal fragmentation only, i.e., we do not consider vertical fragmentation or
hybrid fragmentation in our recommendations. Additionally, the development of tools and algorithms
to support the fragmentation design is out of the scope of this article. However, future implementations
could use our recommendations in algorithms for XML data fragmentation.

—Horizontal fragmentation can be applied over a collection that is stored in a MD repository.
—Large-sized collections should be fragmented.
—Horizontal fragmentation should only be applied over a collection C when the majority of the queries
over C contains selection predicates on C.

—A small- or medium-sized collection C should only be fragmented when the majority of the queries
over C contains simple predicates over the same attribute/element.

—Horizontal fragments of a collection C should have homogeneous sizes.
—A collection C should only be fragmented when queries over C do not contain aggregation functions.

It is important to not that for large collections, the fragment size does not significantly influence
the query response times. Additionally, for small- and medium-sized collections, the query processing
time is proportional to the number of fragments that is accessed during query processing. These
characteristics should also be taken into account when fragmenting a database.

6. CONCLUSIONS

In this article, we have broadened the aspects that should be considered during the fragmentation
design. We performed experiments on XML databases of 4, 40 and 400MB seeking to analyze the
behavior of query execution times in various scenarios. By using these database sizes, we aimed at
analyzing how data growth impacts in the distributed query processing performance.

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.



36 · Tatiane L. da Silva et al.

Our experiments presented performance gains for frequent queries that have benefited from the
fragmentation process, when compared to the results obtained in the centralized environment. Addi-
tionally, in the larger database we obtained gains even for queries that did not benefitted from the
fragmentation. From these results we were able to define a set of recommendations for horizontal
fragmentation of XML data that help in choosing the best type of horizontal fragmentation to be
applied to a particular database.

As future work, we propose the implementation of these scenarios on larger databases to evaluate
whether the increased volume of data implies in different results. Moreover, we plan to expand the
recommendations in this work to other fragmentation types: vertical and hybrid.

REFERENCES

Abiteboul, S., Gottlob, G., and Manna, M. Distributed XML Design. In Proceedings of the Symposium on
Principles of Database Systems. Providence, USA, pp. 247–257, 2009.

Andrade, A., Ruberg, G., Baião, F., Braganholo, V., and Mattoso, M. Efficiently Processing XML Queries
over Fragmented Repositories with PartiX. In Proceedings of the International Workshop on Database Technologies
for Handling XML Information on the Web. Munich, Germany, pp. 150–163, 2006.

Baião, F., Mattoso, M., and Zaverucha, G. A Distribution Design Methodology for Object DBMS. Distributed
Parallel Databases 16 (1): 45–90, 2004.

Bonifati, A. and Cuzzocrea, A. Efficient Fragmentation of Large XML Documents. In Proceedings of the Interna-
tional Conference Database and Expert Systems Applications. Regensburg, Germany, pp. 539–550, 2007.

Bremer, J. and Gertz, M. On Distributing XML Repositories. In Proceedings of the International Workshop on the
Web and Databases. San Diego, USA, pp. 73–78, 2003.

Ferraz, C. A., Braganholo, V., and Mattoso, M. ARAXA: Storing and Managing Active XML documents. Web
Semantics: Science, Services and Agents on the World Wide Web 8 (2-3): 209–224, 2010.

Figueiredo, G., Braganholo, V., and Mattoso, M. Processing Queries over Distributed XML Databases. Journal
of Information and Data Management 1 (3): 455–470, 2010.

Gang, G. and Rada, C. Efficiently Querying Large XML Data Repositories: A Survey. IEEE Transactions on
Knowledge and Data Engineering 19 (10): 1381–1403, 2007.

Kling, P., Ozsu, M., and Daudjee, K. Generating Efficient Execution Plans for Vertically Partitioned XML
Databases. PVLDB 4 (1): 1–11, 2010.

Kling, P., Ozsu, M., and Daudjee, K. Scaling XML Query Processing: Distribution, Localization and Pruning.
Distributed and Parallel Databases 29 (5): 445–490, Oct., 2011.

Kurita, H., Hatano, K., Miyazaki, J., and Uemura, S. Efficient Query Processing for Large XML Data in
Distributed Environments. In Proceedings of the International Conference on Advanced Networking and Applications.
Washington, USA, pp. 317–322, 2007.

Ma, H. and Schewe, K.-D. Fragmentation of XML Documents. In Proceedings of the Brazilian Symposium on
Databases. Manaus, Brazil, pp. 200 – 214, 2003.

Mahboubi, H. and Darmont, J. Enhancing XML Data Warehouse Query Performance by Fragmentation. In
Proceedings of the ACM Symposium on Applied Computing. Hawaii, pp. 1555–1562, 2009.

Moro, M., Braganholo, V., Dorneles, C., Duarte, D., Galante, R., and Mello, R. XML: Some Papers in a
Haystack. SIGMOD Record 38 (2): 29–34, 2009.

Ozsu, M. and Valduriez, P. Principles of Distributed Database Systems. Prentice Hall, 2011.
Pagnamenta, F. Design and Initial Implementation of a Distributed XML Database. Ph.D. thesis, University of

Dublin, Irlanda, 2005.
Rodrigues, C., Braganholo, V., and Mattoso, M. Virtual Partitioning ad-hoc Queries over Distributed XML

Databases. Journal of Information and Data Management 2 (3): 495–510, 2011.
Silva, T., Baião, F., Sampaio, J., Mattoso, M., and Braganholo, V. Recomendações para Fragmentação Hori-

zontal de Bases de Dados XML. In Proceedings of the Brazilian Symposium on Databases. São Paulo, Brasil, pp.
145–152, 2012.

Yao, B., Ozsu, M., and Khandelwal, N. XBench Benchmark and Performance Testing of XML DBMSs. In
Proceedings of the IEEE International Conference on Data Engineering. Boston, United States, pp. 621–632, 2004.

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.


