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Abstract. A typical database workload consists of several query instances of different query types running con-
currently. The execution of each query may interact with the execution of the other queries. It is well known that
such interactions can have a significant impact on database system performance. In this article we propose three new
approaches to model and measure query instance and query type interactions. Our approaches require no prior as-
sumptions about the internal aspects of the database system, making it non intrusive, namely, portable across systems.
Furthermore, to demonstrate the profit of exploiting query interactions, we have developed a novel interaction-aware
query scheduler for online workloads, called Intelligent Scheduler for Multiple-query Execution Ordering (ISO, for short).
In order to verify the efficiency of the proposed approaches for measuring query interaction and of ISO, an experimental
evaluation using TPC-H workloads running on PostgreSQL has been done. The results show that the proposed approach
has potential to improve the efficiency of database tuning tools.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous

Keywords: query interactions, query scheduling, interaction factor

1. INTRODUCTION

A typical database workload consists of a mix of multiple query instances of different query types
that run concurrently and interact with each other. A query type can be defined as a template for
SQL queries, which consists of a SQL expression with parameter markers. Whenever a template is
instantiated with a set of parameter values, one has a query instance. For example, the popular
TPC-H decision support benchmark [TPC 2013] defines 22 query templates. From each TPC-H query
template, several query instances can be generated. From now on, we use the term query type to
represent a query template. Thus, there are 22 query types in TPC-H benchmark.

Figures 1a and 1b illustrates the notions of query type and query instance. Figure 1a shows a TPC-
H query type Qj with one parameter marker, represented by the symbol “?”. Different value settings
of the parameter marker yield different instances of the query type. In turn, Figure 1b illustrates a
query instance qj1 of the query type Qj .

Query instances in a workload can have interactions with a significant impact on database per-
formance, which can be positive or negative [Ahmad et al. 2009]. Ahmad et al. [2009] and Ahmad
et al. [2011] show many interesting examples of the effect of query interactions on database perfor-
mance. However, very little work in the database literature deals with the problems of modeling and
measuring query interactions [Ahmad et al. 2009].

In this work, we propose three new approaches to model and measure query instance and query
type interactions. The proposed approaches, denoted intercalation strategy (IS), data retrieving rate
(DRR) and greedy two-dimensional array (GBA), do not require any prior assumptions on internal
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1 SELECT *
2 FROM lineitem AS l, orders AS o,
3 supplier AS s, nation AS n
4 WHERE l.l_orderkey = o.o_orderkey AND
5 l.l_suppkey = s.s_suppkey AND
6 s.s_nationkey = n.n_nationkey AND
7 n.n_name = ?;

(a) Query type (template)

1 SELECT *
2 FROM lineitem AS l, orders AS o,
3 supplier AS s, nation AS n
4 WHERE l.l_orderkey = o.o_orderkey AND
5 l.l_suppkey = s.s_suppkey AND
6 s.s_nationkey = n.n_nationkey AND
7 n.n_name = ‘USA’;

(b) Query instance
Fig. 1: Query examples

aspects of the database system, which makes them non intrusive and consequently portable to existing
database systems. The proposed approaches have different inputs and preprocessing overhead. The
IS approach is based only on the SQL statements and query execution plans. No preprocessing is
needed. The DRR approach is based on the data retrieving rate from hard disk and requires a low
level of preprocessing. GBA approach uses a preprocessed two-dimensional array with estimations
about the gain reached by the execution of each pair of query instances (or query types).

Based on the approaches to measure query interactions, an intelligent scheduler for multiple-query
execution ordering, denoted ISO, has been implemented. ISO is interaction-aware query scheduler for
online workloads. Thus, given a set Q = {q1, q2, ..., qn} of queries, ISO is able to dynamically define
the most efficient execution order for the queries belonging to Q.

The remainder of this article is organized as follows. Section 2 discusses related work. Section 3
introduces the proposed approaches to model and measure query interactions. Section 4 presents the
proposed query scheduler. Thereafter, Section 5 presents and discusses the results of the executed
experiments. Finally, Section 6 concludes the article.

2. RELATED WORK

There is little work discussing query interaction and efficient query execution order. In this sense,
Ahmad et al. [2009] proved that query interactions have a significant impact on database performance.
However, they did not discuss how to model and measure query interactions.

Ahmad et al. [2008] and Ahmad et al. [2011] describe an experiment-driven modeling for batch
scheduling. Also, they propose an online scheduling algorithm based on a metric called NRO (Nor-
malized Runtime Overhead). To calculate NRO, a time consuming preprocessing phase is used. In
this step, i query sets, denoted mixes, are constructed and run. Each query mix mi has Ni,j in-
stances of each query type j. O’Gorman et al. [2005] describe a scheduling algorithm based on a
two-dimensional array which stores in each cell ci,j a rate for executing query instance qi before qj .
All these approaches need a heavy preprocessing to be used and can be inappropriate when each query
has a deadline.

Some work are intrusive and use the concurrent query execution scenario to get performance im-
provements [Roy et al. 2000; Tan and Lu 1995]. These approaches make changes in the DBMS query
optimizer to explore some properties and reuse common data among queries that are stored in mem-
ory. Other work are based on query optimizer estimations to support workload management decisions,
including scheduling ones [Niu et al. 2007; Niu et al. 2009]. However, this cost does not help so much
when queries have a deadline to fulfill.

This article extends previous work in several aspects: (i) it provides three new approaches to model
and measure query interactions; (ii) the proposed approaches present different preprocessing overhead
levels; (iii) no changes in the DBMS query optimizer are needed and (iv) optimizer estimations for
query execution cost are not used. In fact, our solution is based on query execution plans, but it does
not care about their estimations because this information is not good enough to indicate if a query
can execute in an acceptable time.
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3. MEASURING AND MODELING QUERY INTERACTIONS

Nowadays, most databases are stored in hard disks. Data access rates in hard disks are several
magnitude orders lower than in main memory, specially w.r.t. random accesses.

To execute a query qi, the buffer manager may load data pages into the buffer pool, which are used
by another concurrently running query qk. Such a scenario characterizes a query interaction between
qi and qk. Of course, executing qi before qk (or vice-versa), qk can profit from the fact that pages,
necessary to process it, are already in the buffer pool. Based on this observation, this article presents
three approaches to model and measure query instance and query type interactions. In this section
we will discuss these approaches in detail.

The proposed approaches uses the concept of interaction factor, which is a number between 0 and
1. The interaction factor quantifies the interaction between two query instances or between two query
types. Values close to 1 indicate strong interaction while values close to 0 indicate weak interaction.

3.1 Table Relationships

The IS (Subsection 3.2) and DRR (Subsection 3.3) approaches computes the interaction factor between
two queries by means of the notion of table relationship. There are two types of table relationships:
possible intersection and disjunction.

Let qi and qj be two query instances, Pqi and Pqj the query execution plans for qi and qj (generated
by the DBMS’s query processor). Consider that Ti is a set with all tables ti ∈ Pqi . Given a table ti,
such that ti ∈ Pqi , Oti is the set of table operations on ti in Pqi (for example, table scan, index scan
or index seek). Thus, oti , where oti ∈ Oti is a table operation on ti in Pqi .

So, given two tables ti and tj , the relationship between ti and tj is possible interaction if and only
if: (i) ti = tj and (ii) ∃oti ∈ Oti and ∃otj ∈ Otj such that one of the following conditions occur: (a)
oti or otj is a table scan operation; (b) oti and otj are index scan using distinct columns, or; (c) oti
and otj are index scan using the same columns and there are overlaps on index search keys. If one of
these conditions occurs, oti and otj may access common data.

On the other hand, the table relationship between ti e tj is disjunctive, if: (i) ti 6= tj , or; (ii) ti = tj
and none of the following conditions occurs: (a) oti or otj is a table scan operation; (b) oti and otj
are index scan using distinct columns, and; (c) oti and otj are index scan using the same columns and
there are overlaps on index search keys. If neither of these conditions occur, then oti and otj do not
access common data.

3.2 Intercalation Strategy (IS)

The Intercalation Strategy is based only on the SQL statements and query execution plans. No
preprocessing is needed. Algorithm 1 describes the steps of this approach to compute interaction
factor.

Algorithm 1 has as input the following parameters: two query instances qj1 and ql2 , where we
assume that qj1 starts its execution before ql2 , and; a DBMS driver (dbms), which is responsible for
accessing database catalog (metabase). The algorithm output is the interaction factor between qj1 and
ql2 , denoted by fqj1 ,ql2 . It’s important to note that fqj1 ,ql2 can be different from fql2 ,qj1 . According to
the notation used in Subsection 3.1, Tqj1 represents the set of tables belonging to the query execution
plan Pqj1 and Tql2 is the set of tables belonging to Pql2 . The variable size(tk) represents the size of
the table tk (in Kilobytes), totalSize stores the sum of size(tk) for each t1 ∈ Tqj1 and t2 ∈ Tql2 .

The tableRelationship variable represents table relationship (possible interaction or disjunction)
between two tables. From line 8 to 25 the α variable is calculated. Finally, in line 26, the interaction
factor (α) is returned. During the tests W1 and W4 were set to 0.5, W2 to 1 and W3 to 0.25. These
values were chosen to benefit occurrences of table scan in t1 and index seek in t2.
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Algorithm 1: Intercalation strategy
input : qj1 , ql2 , dbms
output : interaction factor

1 begin
2 if isNull(qj1) or isNull(ql2) then
3 return 0;
4 end if
5 Tqj1

← dbms.parseQuery(qj1);
6 Tql2

← dbms.parseQuery(ql2);
7 totalSize ← getTotalSize(Tqj1

, Tql2
);

8 α ← 0;
9 foreach t1 in Tqj1

do
10 foreach t2 in Tql2

do
11 tableRelationship ← t1.getRelationship(t2);
12 if isPossibleIntersection(tableRelationship) then
13 if t1.hasFullScan() and t2.hasFullScan() then
14 auxWeight ← W1;
15 else if t1.hasFullScan() and not t2.hasFullScan() then
16 auxWeight ← W2;
17 else if not t1.hasFullScan() and t2.hasFullScan() then
18 auxWeight ← W3;
19 else
20 auxWeight ← W4;
21 end if
22 α ← α + auxWeight × size(t1)

totalSize ;
23 end if
24 end foreach
25 end foreach
26 return α;
27 end

The key idea of the IS approach is to put closer queries with tables in common in the query
execution schedule. The access method is important because the chance of improving the performance
by executing a query q with an index seek operation on a table t after another query q′ which accesses
the same table t by means of a table scan operation is higher than executing q′ before q.

3.3 Data Retrieving Rate (DRR)

DRR approach relies on the following parameters: SQL statements, query plans and data retrieving
(access) rate for each query type. For that reason, a preprocessing step is required. This preprocessing
consists of running, for each query type Qj , a set Sj of n query instances m times. The average of
the data retrieving rate for the instances in Sj with m running iterations is the DRR for the query
type Qj . In the experiments, we have fixed m = 5 and evaluated two values for n: n = 1 and n = 5.

Actually, DRR represents the amount of data transferred from the disk to the database buffer pool
(main memory) per time unit (KB/s in our tests). Thus, it is possible to infer that if a query type
has a low DRR its query instances will access data in a low rate as well. By doing this, the following
heuristic is applied: query instances with greater DRRs should be executed before query instances
with low DRR.

Algorithm 2 describes the steps implemented by the DRR approach. Algorithm 2 has as input
parameters: two query instances qj1 and ql2 (qj1 starts its execution before ql2); the query types Qj
and Ql of qj1 and ql2 , respectively; an array R with the computed DRR for each query type; and a
DBMS driver (dbms) responsible for accessing database catalog (metabase). The algorithm output
is the interaction factor between qj1 and ql2 , denoted by fqj1 ,ql2 . In Algorithm 2, max(R) represents
highest value in the array R and RQk

is the DRR for Qk. Lines 2 to 7 do the same as lines 2 to 7
from Algorithm 1. From line 8 to 22, the value of the interaction factor α is calculated. This process
starts with the initialization of this variable in line 8. Next, it is verified the relationship between
each pair of tables computed in the nested loops, which is depicted from line 9 to 22. Whenever
possible intersection table relationships are found (line 12), the value of α is modified (line 19) based
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Algorithm 2: DRR approach
input : qj1 , ql2 , R, Qj , Ql, dbms
output : interaction factor

1 begin
2 if isNull(qj1) or isNull(ql2) then
3 return 0;
4 end if
5 Tqj1

← dbms.parseQuery(qj1);
6 Tql2

← dbms.parseQuery(ql2);
7 totalSize ← getTotalSize(Tqj1

, Tql2
);

8 α ← 0;
9 foreach t1 in Tqj1

do
10 foreach t2 in Tql2

do
11 tableRelationship ← t1.getRelationship(t2);
12 if isPossibleIntersection(tableRelationship) then
13 if t1.hasFullScan() then
14 auxWeight ← W1 × getNormalizedDRR(Ql);
15 else
16 auxWeight ← W2 × getNormalizedDRR(Ql);
17 end if
18 size(t1) ← dbms.size(t1.getTableName());

19 α ← α + auxWeight × size(t1)
totalSize ;

20 end if
21 end foreach
22 end foreach
23 return α;
24 end

on the set Ot1 (line 13 – for more details, see Subsection 3.1), the constants W1 or W2 (depending
on set Ot1 , as showed between lines 13 to 17), DRR of Ql (lines 14 and 16) and the analyzed table
weight (represented by size(t1)

totalSize , in line 19). From line 19, α variable is modified. From this line, the
auxWeight variable refers to interaction caused by table operations of t1 (when t1 = t2) in qj1 and ql2 ,
whereas size(t1)

totalSize represents its impact on interaction between these two queries.

It is important to observe that the DDR approach has the same table relationship concept as IS.
Moreover, the DDR and IS approaches are based on the heuristic in which queries accessing tables by
table scans load more data to the buffer pool, allowing thus more data page reuse. For that reason,
during the experiments, W1 was set to 1 and W2 to 0.5. Nevertheless, in the DDR approach, the
value of the interaction factor α should incorporate the data retrieving rate. This is because DDR
approach implements the following heuristic: query instances with greater DRRs should be executed
before query instances with low DDRs. The DRR parameter is used in its normalized form, computed
by getNormalizedDRR(Ql), which basically consists of RQl

max(R) .

3.4 Greedy with Two-Dimensional Array (GBA)

The GBA approach is based on a two-dimensional array obtained by a preprocessing step, which
is described in Algorithm 3. Each line j of the two-dimensional array built by GBA represents a
query type Qj and each column l represents a query type Ql. Hence, a cell cj,l stores the gain of
running a query instance of query type Ql after an instance of query type Qj . This gain, denoted
by gain(Qj , Ql), is calculated from the following formula: rt(Qj , Ql) - rt(Ql), where rt(Qj , Ql) is the
response time for an instance of Ql that starts its execution immediately after finishing an instance
of Qj and rt(Ql) is the response time for an instance of Ql running with free memory.

The input parameter for Algorithm 3 are: a set D of query instances used to calculate the
gain(Qj , Ql); the number of query types (parameter typeQty); the number n of query instances
for each query type; the total number m of iterations for each pair of query instances to be run; and a
DBMS driver (dbms) responsible for accessing database catalog (metabase). In the experiments, we
have fixed m = 5 and evaluated two values for n: n = 1 and n = 5.
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Algorithm 3: GBA preprocessing
input : D, typeQty, n, m, dbms
output : G

1 begin
2 T ← createArray(typeQty);
3 G ← createArray(typeQty, n);
4 for Qj ← 1 to typeQty do
5 timej1 ← 0;
6 for Ql ← 1 to typeQty do
7 timel2 ← 0;
8 for ij1 ← 1 to n do
9 qj ← DQj ,ij1

;

10 for il ← 1 to n do
11 ql ← DQl,il ;
12 for k← 1 to m do
13 freeMemory();
14 timej1 ← timej1 + dbms.runQuery(qj);
15 timel2 ← timel2 + dbms.runQuery(ql);
16 end for
17 end for
18 end for

19 GQj ,Ql
←

timel2
n2× m

;
20 end for

21 TQj
←

timej1
typeQty × n2× m

;

22 end for
23 for Qj ← 1 to typeQty do
24 for Ql ← 1 to typeQty do
25 GQj ,Ql

← TQj
−GQj ,Ql

;
26 end for
27 end for
28 return G;
29 end

The first steps of Algorithm 3 are responsible for creating and initializing the arrays T and G. In
order to illustrate how Algorithm 3 works, consider that Qj and Ql are query types currently being
analyzed and that query instances from Qj are executed before query instances of Ql. Between lines 5
and 21, the execution time for Qj is calculated. This is obtained by computing the average of response
time of all Qj query instance execution. From line 7 to line 19 it is computed the execution time for
Ql when running after query instances of Qj . Thereafter, the gain matrix is built (from lines 23 to
27). In line 28, the gain matrix G is returned.

Algorithm 4: GBA approach
input : Qj , Ql, G
output : interaction factor

1 begin
2 α ← 0;
3 if not isNull(Qj) and not isNull(Ql) then

4 α ←
GQj,Ql
max(G)

;
5 end if
6 return α;
7 end

After the two-dimensional array GBA is built, Algorithm 4 is triggered. According to the steps of
Algorithm 4, in the same way as previous approaches, α is initialized with value 0, as it is showed in
line 2. Next, in line 3, it is verified if Qj and Ql are defined types (not null). In this case, in line 4,
the performance gain is read in the cell GQj ,Ql

and α (the interaction factor) receives
GQj,Ql

max(G) , where
max(G) is the maximum value stored in G, Qj is a line of G and Ql is a column of G. So, the value
of the interaction factor is normalized ([0, 1]). Finally, the interaction factor is returned in line 6.
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4. ISO: AN INTERACTION-AWARE QUERY SCHEDULER

Algorithm 5: Interaction-aware query scheduling
input : S, qnew, qlast, dbms

1 begin
2 bestPosition ← 1;
3 ∆factormax ← -1;
4 previousQuery ← qlast;
5 for i ← 1 to S.getLength() do
6 nextQuery ← Si;
7 ∆factor ← getFactor(previousQuery, qnew, dbms)
8 + getFactor(qnew, nextQuery, dbms)
9 - getFactor(previousQuery, nextQuery, dbms);

10 if ∆factor ≥ ∆factormax then
11 bestPosition ← i;
12 ∆factormax ← ∆factor;
13 end if
14 previousQuery ← nextQuery;
15 end for
16 ∆factor ← getFactor(previousQuery, qnew, dbms);
17 if ∆factor ≥ ∆factormax then
18 bestPosition ← S.getLength() + 1;
19 end if
20 S.add(bestPosition, qnew);
21 end

Based on the proposed approaches to model and measure query interactions (IS, DRR and GBA),
we have developed a interaction-aware query scheduler for online (and batch) workloads, denoted ISO.
ISO uses the interaction factor to define the query execution order. The scheduler goal is to optimize
workload query response time by dynamically choosing, for each query instance, the position in the
scheduling queue which provides the highest interaction factor gain.

The steps implemented by ISO are showed in Algorithm 5. The Algorithm 5 requires four input
parameters: the scheduling queue S; the query instance to be scheduled qnew; the last query instance
qlast, which left the queue S, and; the database driver dbms. The first steps executed by Algorithm 5
consist of the initialization of the following variables (lines from 2 to 4): bestPosition, which represents
the position for qnew in S; ∆factormax

, containing the greatest interaction gain, and; previousQuery,
which stores the position in S of the previous query if qnew has to be added to current position in
S. In line 6, variable nextQuery is set to previousQuery. Between lines 5 and 19, qnew is tested in
each position of S. Let i be a position of S and Si a query added in the position i of S. From line
9, it is calculated the interaction factor gain ∆factor of adding qnew in the position i of S, namely,
between queries represented by variables previousQuery and nextQuery. In case of ∆factor being
the greatest interaction factor gain for while, the bestPosition variable and the best interaction factor
gain ∆factormax

are updated (lines 11 and 12, respectively). Lines from 16 to 19 are similar to lines
from 9 to 13. The main difference is the current position tested. In the first case, it is a position i of
S where there is a query added, whereas in the second case, the query qnew is tested in the first free
position of S. The last step of Algorithm 5 is add the query instance qnew in the position of S which
provides the greatest estimated global gain obtained by the formula depicted in line 10.

5. EVALUATION

In order to evaluate the proposed three approaches to model and measure query interactions and ISO
scheduler, we have chosen a scenario in which queries are executed in a sequential way. The choice
for such a scenario was motivated by the discussion about the need of predictability in the current
paradigm of optimization problem [Florescu and Kossmann 2009]. The idea is to ensure that the
queries are executed in an acceptable time, but not as quick as possible. According to this approach,
optimizing for the 99 percentile is more important than for the average. Thus, for instance, in the case
that each query has its deadline, a solution that is optimized by 99 percentile is more appropriate.
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Chi et al. [2011] show one example of this, that describes a solution based on agreements called SLAs
(Service Level Agreements) with a specific metric: query response time. In this case, each query has
to be run in a defined period of time to generate profit to the service provider, otherwise penalties
can be applied.

When each query has a maximum time to be run, the use of a concurrent solution can be an
inefficient way to schedule queries because of the complexity in predicting their response times if
compared with sequential approaches. Many factors such as operating system scheduling algorithm
and resource utilization impact of each query during the execution interfere in concurrent solution
effectiveness. In fact, they can decrease the workload response time, but it is harder than in sequential
solutions to control the query deadline fulfillment or to guarantee the profit in an SLA environment
that uses query response time as metric, for example. Therefore, a sequential solution shows to be
more feasible in some situations than a concurrent one.

5.1 Experimental Setup

A 2 GHz Intel Core 2 Duo machine with 3 GB of RAM and 500 GB of HD, using Ubuntu 11.10 of 64
bits as operating system, has been used to execute the experiments. The tests were run implementing
the TPC-H benchmark with scale factor of 2 GB, using DBGEN/DBT-3 project, in PostgreSQL 9.1.3
database system.

The experiments have been conducted by using two different workloads, based on the number of
queries to be scheduled. In the first workload, one query instance has been created for each TPC-
H query type, totaling 22 queries. These instances were generated setting different values for the
template parameters, using QGEN/DBT-3. Thereafter, ten different orderings have been randomly
yielded, each of which with 22 query instances. For this workload, the DRR vector, used by DRR
approach, and gain matrix G, used by GBA approach, were created using n = 1. In the second
workload, five query instances have been created for each TPC-H query type, totaling 110 queries.
For this second workload, the DRR vector, used by DRR approach, and gain matrix G, used by GBA
approach, were created using n = 5. Furthermore, twenty different ordering have been randomly
produced. It is important to note that the different orderings simulate the orders in which the queries
are arriving to be executed. For each defined ordering, a FIFO strategy is used to send queries to
ISO.

5.2 Test Results

In this section, we present the results of the experiments we carried out. For that, we used four met-
rics: preprocessing-step execution time; execution time for computing the query-execution schedule;
effectiveness and efficiency. Since the DRR and GBA approaches require a preprocessing step, we have
used preprocessing-step execution time metric. Figure 2a depicts the results regarding that metric for
the first workload (22 query instances and 10 random orderings). In turn, Figure 3a brings the results
for the second workload (110 query and 20 random orderings). The second metric aims at specifying
how much time each approach takes to define the query-execution schedule. Figure 2b presents the
results for the first workload and Figure 3b for the second workload.

The effectiveness metric has been used to compare how many times each scheduling approach has
presented a better result than FIFO approach (the queries are executed according to the random
ordering), which was used as baseline. We have considered “Draw” when the absolute difference
between execution times is less or equal than one minute (about 3 seconds of margin of error for each
query instance). Figure 2c illustrates the effectiveness of the three proposed approaches for the first
workload. IS and DRR presented better performance in 90% of cases, and GBA was better than FIFO
in all cases. Regarding effectiveness for the second workload (Figure 3c), only IS approach was not
better than FIFO.

Efficiency has been applied to measure the total time consumed to execute queries by using the
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Fig. 2: Comparative analysis between IS, DRR, GBA and FIFO with one instance per query type
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Fig. 3: Comparative analysis between IS, DRR, GBA and FIFO with five instances per query type

schedules produced by the three approaches and by a FIFO schedule. As Figure 2d (results for the
first workload) illustrates, IS was executed in 3.7 hours, saving 1 hour w.r.t. the execution time for
the FIFO approach (22% of reduction). DRR had a better response time, since the schedule produced
by DRR has consumed 3.5 hours to be executed (25% of reduction). Nevertheless, the most efficient
strategy was GBA with reduction of 40%, saving 1.9 hours and hence being the only solution with
execution time less than 3 hours.

Figure 3d brings the results of efficiency when the second workload (110 query and 20 random
orderings) was executed. IS was executed in 33.6 hours, saving 9.9 hours w.r.t. the execution time
for the FIFO approach (reduction of 23% ). DRR had the best response time, during 28.8 hours
(reduction of 33%). However GBA was also good with reduction of 33%, saving 14.7 hours.

The results presented in Figure 4 highlight the benefits of taking into account query interaction.
For that experiment, we have picked up the execution time for seven TPC-H queries with highest
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Fig. 4: Query type performance evaluation

execution time when execute in schedules produced by three approaches (IS, DRR, GBA) and FIFO.
Observe that for each of those queries, the execution time is less than when they are executed in the
FIFO approach. Recall that in FIFO query interaction is not considered.

6. CONCLUSION AND FUTURE WORK

In this article we propose three new approaches to model and measure query instance and query type
interactions. Our approaches require no prior assumptions about the internal aspects of the database
system or the reason of query interactions, making it non intrusive, namely, portable across systems.
To demonstrate the profit of exploiting query interactions, we have developed a novel interaction-aware
query scheduler for online workloads. The test results show that significant speed-ups are achieved.
Besides, the evaluation shows that our approaches have potential to improve many database tuning
algorithms. It may be interesting to incorporate the proposed approaches into other database system
components such as query optimizer, physical design adviser and buffer manager, making them query-
interaction aware. These possibilities represent interesting directions for future research.
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