
Approaches to Model Query Interactions

Manoel Siqueira1, José Maria Monteiro1, Angelo Brayner2,
José Macedo1, Javam Machado1

1 Universidade Federal do Ceará - Brasil
{manoeljr, monteiro, jose.macedo, javam}@lia.ufc.br

2 Universidade de Fortaleza - Brasil
brayner@unifor.br

Abstract. A typical database workload consists of several query instances of different query types running con-
currently. The execution of each query may interact with the execution of the other queries. It is well known that
such interactions can have a significant impact on database system performance. In this article we propose three new
approaches to model and measure query instance and query type interactions. Our approaches require no prior as-
sumptions about the internal aspects of the database system, making it non intrusive, namely, portable across systems.
Furthermore, to demonstrate the profit of exploiting query interactions, we have developed a novel interaction-aware
query scheduler for online workloads, called Intelligent Scheduler for Multiple-query Execution Ordering (ISO, for short).
In order to verify the efficiency of the proposed approaches for measuring query interaction and of IOS, an experimental
evaluation using TPC-H workloads running on PostgreSQL has been done. The results show that the proposed approach
has potential to improve the efficiency of database tuning tools.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous

Keywords: query interactions, query scheduling, interaction factor

1. INTRODUCTION

A typical database workload consists of a mix of multiple query instances of different query types
that run concurrently and interact with each other. A query type can be defined as a template for
SQL queries, which consists of a SQL expression with parameter markers. Whenever a template is
instantiated with a set of parameter values, one has a query instance. For example, the popular
TPC-H decision support benchmark [TPC 2013] defines 22 query templates. From each TPC-H query
template, several query instances can be generated. From now on, we use the term query type to
represent a query template. Thus, there exist 22 query types in TPC-H benchmark.

Figures 1a and 1b illustrates the notions of query type and query instance. Figure 1a shows a TPC-
H query type Qj with one parameter marker, represented by the symbol “?”. Different value settings
of the parameter marker yield different instances of the query type. In turn, Figure 1b illustrates a
query instance qj1 of the query type Qj .

Query instances in a workload can have interactions with a significant impact on database per-
formance, which can be positive or negative [Ahmad et al. 2009]. The papers presented in [Ahmad
et al. 2009; Ahmad et al. 2011] show many interesting examples of the effect of query interactions on
database performance. However, very little work in the database literature deals with the problems
of modeling and measuring query interactions [Ahmad et al. 2009].

This work as partially funded by FUNCAP and CNPq.
Copyright c©2012 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 4, No. 1, February 2013, Pages 1–10.



2 · Manoel M. Siqueira et. al.

1 SELECT *
2 FROM lineitem AS l, orders AS o,
3 supplier AS s, nation AS n
4 WHERE l.l_orderkey = o.o_orderkey AND
5 l.l_suppkey = s.s_suppkey AND
6 s.s_nationkey = n.n_nationkey AND
7 n.n_name = ?;

(a) Query type (template)

1 SELECT *
2 FROM lineitem AS l, orders AS o,
3 supplier AS s, nation AS n
4 WHERE l.l_orderkey = o.o_orderkey AND
5 l.l_suppkey = s.s_suppkey AND
6 s.s_nationkey = n.n_nationkey AND
7 n.n_name = ’USA’;

(b) Query instance
Fig. 1: Query examples

In this work, we propose three new approaches to model and measure query instance and query
type interactions. The proposed approaches, denoted intercalation strategy (IS), data retrieving rate
(DRR) and greedy bidimentional array (GBA), do not require any prior assumptions on internal
aspects of the database system, which makes them non intrusive and consequently portable to existing
database systems. The proposed approaches have different inputs and preprocessing overhead. The
IS approach is based only on the SQL statements and query execution plans. No preprocessing is
needed. The DRR approach is based on the data retrieving rate from hard disk and requires a low
level of preprocessing. GBA approach uses a preprocessed bidimentional array with estimations about
the gain reached by the execution of each pair of query instances (or query types).

Based on the approaches to measure query interactions, an intelligent scheduler for multiple-query
execution ordering, denoted ISO, has been implemented. ISO is interaction-aware query scheduler for
online workloads. Thus, given a set Q = {q1, q2, ..., qn} of queries, ISO is able to dynamically define
the most efficient execution order for the queries belonging to Q.

The remainder of this article is organized as follows. Section 2 discusses related work. Section 3
introduces the proposed approaches to model and measure query interactions. Section 4 presents the
proposed query scheduler. Thereafter, Section 5 presents and discusses the results of the executed
experiments. Finally, Section 6 concludes the article.

2. RELATED WORK

There is little work discussing query interaction and efficient query-execution order. In this sense,
[O’Gorman et al. 2005] describes a scheduling algorithm based on a bidimentional array which stores
in each cell ci,j a rate for executing query instance qi before qj . [Ahmad et al. 2008; 2011] describe
an experiment-driven modeling for batch scheduling. Also, the authors propose an online scheduling
algorithm based on a metric called NRO (Normalized Runtime Overhead). All these approaches need
a heavy preprocessing to be used and can be inappropriate when each query has a deadline.

Some works are intrusive and use the concurrent query execution scenario to get performance
improvements. [Roy et al. 2000] and [Tan and Lu 1995] are in this group. Each one makes changes
in the DBMS query optimizer to explore some properties and reuse common data among queries that
are stored in memory.

Other works (e. g. [Niu et al. 2007] and [Niu et al. 2009]) are based on query optimizer estimations
to support workload management decisions, including scheduling ones. However, this cost does not
help so much when queries have a deadline to fulfill. In fact, our solution is based on query plan, but
it does not care about their estimations because this information is not good enough to indicate if a
query can execute in an acceptable time.

3. MEASURING AND MODELING QUERY INTERACTIONS

Nowadays, most databases are stored in hard disks. Data access rate in hard disks is several magnitude
orders lower than in main memory, specially w.r.t. random accesses.

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.



Approaches to Model Query Interactions · 3

To execute a query qi, the buffer manager may load data pages into the buffer pool, which are used
by another concurrently running query qk. Such a scenario characterizes a query interaction between
qi and qk. Of course, executing qi before qk (or vice-versa), qk can profit from the fact that pages,
necessary to process it, are already in the buffer pool. Based on this observation, this article presents
three approaches to model and measure query instance and query type interactions. In this section
we will discuss these approaches in detail.

The proposed approaches uses the concept of interaction factor, which is a number between 0 and
1. The interaction factor quantifies the interaction between two query instances or between two query
types. Values close to 1 indicate strong interaction and close to 0 weak interaction.

3.1 Table Relationships

The IS (Subsection 3.2) and DRR (Subsection 3.3) approaches computes the interaction factor between
two queries by means of the notion of table relationship. There are two types of table relationships:
possible intersection and disjunction.

Let qi and qj two query instances, Pqi and Pqj the query execution plans for qi and qj (generated
by the DBMSâĂŹs query processor). Consider that Ti is a set with all tables ti ∈ Pqi . Given a table
ti, such that ti ∈ Pqi , Oti is the set of table operations on ti in Pqi (for example, table scan, index
scan or index seek). Thus, oti , where oti ∈ Oti is a table operation on ti in Pqi .

So, given two tables ti and tj , the relationship between ti and tj is possible interaction if and only
if: (i) ti = tj and (ii) ∃oti ∈ Oti and ∃otj ∈ Otj such that one of the following conditions occur: (a)
oti or otj is a table scan operation; (b) oti and otj are index scan using distinct columns, or; (c) oti
and otj are index scan using the same columns and there are overlaps on index search keys. If one of
these conditions occurs, oti and otj may access common data.

On the other hand, the table relationship between ti e tj is disjunctive, if: (i) ti 6= tj , or; (ii) ti = tj
and none of the following conditions occurs: (a) oti or otj is a table scan operation; (b) oti and otj
are index scan using distinct columns, and; (c) oti and otj are index scan using the same columns and
there are overlaps on index search keys. If neither of these conditions occur, oti and otj , do not access
common data.

3.2 Intercalation Strategy (IS)

The Intercalation Strategy is based only on the SQL statements and query execution plans. No
pre-processing is needed. Algorithm 1 describes the steps of this approach to computes interaction
factor.

Algorithm 1 has as input the following parameters: two query instances qj1 and ql2 , where we
assume that qj1 starts its execution before ql2 , and; a DBMS driver (dbms), which is responsible for
accessing database catalog (metabase). The algorithm output is the interaction factor between qj1 and
ql2 , denoted by fqj1 ,ql2 . It’s important to note that fqj1 ,ql2 can be different from fql2 ,qj1 . According to
the notation used in Subsection 3.1, Tqj1 represents the set of tables belonging to the query execution
plan Pqj1 and Tql2 is the set of tables belonging to Pql2 . The variable size(tk) represents the size of
the table tk (in Kilobytes), totalSize stores the sum of size(tk) for each t1 ∈ Tqj1 and t2 ∈ Tql2 .

The tableRelationship variable represents table relationship (possible interaction or disjunction)
between two tables. From line 8 to 25 the α variable is calculated. Finally, in line 26, the interaction
factor (α) is returned. During the tests W1 and W4 were set to 0.5, W2 to 1 and W3 to 0.25. These
values were chosen to benefit occurrences of table scan in t1 and index seek in t2.

The key idea of the IS approach is to put closer queries with tables in common in the query
execution schedule. The access method is important because the chance of improving the performance

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.



4 · Manoel M. Siqueira et. al.

Algorithm 1: Intercalation strategy
input : qj1 , ql2 , dbms
output : interaction factor

1 begin
2 if isNull(qj1) or isNull(ql2) then
3 return 0;
4 end if
5 Tqj1

← dbms.parseQuery(qj1);
6 Tql2

← dbms.parseQuery(ql2);
7 totalSize ← getTotalSize(Tqj1

, Tql2
);

8 α ← 0;
9 foreach t1 in Tqj1

do
10 foreach t2 in Tql2

do
11 tableRelationship ← t1.getRelationship(t2);
12 if isPossibleIntersection(tableRelationship) then
13 if t1.hasFullScan() and t2.hasFullScan() then
14 auxWeight ← W1;
15 else if t1.hasFullScan() and not t2.hasFullScan() then
16 auxWeight ← W2;
17 else if not t1.hasFullScan() and t2.hasFullScan() then
18 auxWeight ← W3;
19 else
20 auxWeight ← W4;
21 end if
22 α ← α + auxWeight × size(t1 )

totalSize ;
23 end if
24 end foreach
25 end foreach
26 return α;
27 end

by executing a query q with an index seek operation on a table t after another query q′ which accesses
the same table t by means of a table scan operation is higher than executing q′ before q.

3.3 Data Retrieving Rate (DRR)

The implementation of the DRR approach relies on the following parameters: SQL statements, query
execution plans and data retrieving (access) rate for each query type. For that reason, a preprocessing
step is required. This preprocessing consists of running, for each query type Qj , a set Sj of n query
instances m times. The average of the data retrieving rate for the instances in Sj with m running
iterations is the DRR for the query type Qj . In the experiments, we have fixed m = 5 and evaluated
two values âĂŃâĂŃfor n: n = 1 and n = 5.

Actually, DRR represents the amount of data transferred from the disk to the database buffer pool
(main memory) per time unit (KB/s in our tests). Thus, it is possible to infer that if a query type
has a low DRR its query instances will access data in a low rate as well. By doing this, the following
heuristic is applied: query instances with greater DRRs should be executed before query instances
with low DRR.

Algorithm 2 describes the steps implemented by the DRR approach. Algorithm 2 has as input
parameters: two query instances qj1 and ql2 (qj1 starts its execution before ql2); the query types Qj
and Ql of qj1 and ql2 , respectively; an array R with the computed DRR for each query type; and a
DBMS driver (dbms) responsible for accessing database catalog (metabase). The algorithm output
is the interaction factor between qj1 and ql2 , denoted by fqj1 ,ql2 . In Algorithm 2, max(R) represents
highest value in the array R and RQk

is the DRR for Qk. Lines 2 to 7 do the same as lines 2 to 7
from Algorithm 1. From line 8 to 22, the value of the interaction factor α is calculated. This process
starts with the initialization of this variable in line 8. Next, it is verified the relationship between
each pair of tables computed in the nested loops, which is depicted from line 9 to 22. Whenever
possible intersection table relationships are found, the value of α is modified based on the set O1 (see

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.



Approaches to Model Query Interactions · 5

Algorithm 2: DRR approach
input : qj1 , ql2 , R, Qj , Ql, dbms
output : interaction factor

1 begin
2 if isNull(qj1) or isNull(ql2) then
3 return 0;
4 end if
5 Tqj1

← dbms.parseQuery(qj1);
6 Tql2

← dbms.parseQuery(ql2);
7 totalSize ← getTotalSize(Tqj1

, Tql2
);

8 α ← 0;
9 foreach t1 in Tqj1

do
10 foreach t2 in Tql2

do
11 tableRelationship ← t1.getRelationship(t2);
12 if isPossibleIntersection(tableRelationship) then
13 if t1.hasFullScan() then
14 auxWeight ← W1 × getNormalizedDRR(Ql);
15 else
16 auxWeight ← W2 × getNormalizedDRR(Ql);
17 end if
18 size(t1) ← dbms.size(t1.getTableName());

19 α ← α + auxWeight × size(t1 )
totalSize ;

20 end if
21 end foreach
22 end foreach
23 return α;
24 end

Subsection 3.1) and the constants W1, W2, DRR of Ql and the analyzed table weight (from lines 12
to 20).

It is important to observe that the DDR approach has the same table relationship concept as IS.
Moreover, the DDR and IS approaches are based on the heuristic in which queries accessing tables by
table scans load more data to the buffer pool, allowing thus more data page reuse. For that reason,
during the experiments, W1 was set to 1 and W2 to 0.5. Nevertheless, in the DDR approach, the
value of the interaction factor α should incorporate the data retrieving rate. This is because DDR
approach implements the following heuristic: query instances with greater DRRs should be executed
before query instances with low DDRs. The DRR parameter is used in its normalized form, computed
by getNormalizedDRR(Ql), which basically consists of RQl

max(R) .

3.4 Greedy with bidimentional array (GBA)

The GBA approach is based on a bidimentional array obtained by a preprocessing step, which is
described in Algorithm 3. Each line j of the bidimentional array built by GBA represents a query
type Qj and each column l represents a query type Ql. Hence, a cell cj,l stores the gain of running a
query instance of query typeQl after an instance of query typeQj . This gain, denoted by gain(Qj , Ql),
is calculated from the following formula: rt(Qj , Ql) - rt(Ql), where rt(Qj , Ql) is the response time for
an instance of Ql that starts its execution immediately after finishing an instance of Qj and rt(Ql) is
the response time for an instance of Ql running with free memory.

The input parameter for Algorithm 3 are: a set D of query instances used to calculate the
gain(Qj , Ql); the number of query types (parameter typeQty); the variable instanceQty contain-
ing the number of query instances for each query type; the total number of iterations (parameter
iterations) for each pair of query instances to be run; and a DBMS driver (dbms) responsible for
accessing database catalog (metabase).

The first steps of Algorithm 3 are responsible creating and initializing the arrays T and G. In order
to illustrate how Algorithm 3 works, consider that Qj and Ql are query types currently being analyzed

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.



6 · Manoel M. Siqueira et. al.

Algorithm 3: GBA preprocessing
input : D, typeQty, instanceQty, iterations, dbms
output : G

1 begin
2 T ← createArray(typeQty);
3 G ← createArray(typeQty, instanceQty);
4 for Qj ← 1 to typeQty do
5 timej1 ← 0;
6 for Ql ← 1 to typeQty do
7 timel2 ← 0;
8 for ij1 ← 1 to instanceQty do
9 qj ← DQj ,ij1

;

10 for il ← 1 to instanceQty do
11 ql ← DQl,il ;
12 for k← 1 to iterations do
13 freeMemory();
14 timej1 ← timej1 + dbms.runQuery(qj);
15 timel2 ← timel2 + dbms.runQuery(ql);
16 end for
17 end for
18 end for

19 GQj ,Ql
←

timel2
instanceQty2× iterations

;

20 end for

21 TQj
←

timej1
typeQty × instanceQty2× iterations

;

22 end for
23 for Qj ← 1 to typeQty do
24 for Ql ← 1 to typeQty do
25 GQj ,Ql

← TQj
−GQj ,Ql

;
26 end for
27 end for
28 return G;
29 end

and that query instances from Qj are executed before query instances of Ql. Between lines 5 and 21,
the execution time for Qj is calculated. This is obtained by computing the average of response time
of all Qj query instance execution. From line 7 to line 19 it is computed the execution time for Ql
when running after query instances of Qj . Thereafter, the gain matrix is built (from lines 23 to 27).
In line 28, the gain matrix G is returned.

Algorithm 4: GBA approach
input : Qj , Ql, G
output : interaction factor

1 begin
2 α ← 0;
3 if not isNull(Qj) and not isNull(Ql) then

4 α ←
GQj,Ql
max(G)

;
5 end if
6 return α;
7 end

After the bidimentional array GBA is built, Algorithm 4 is triggered. According to the steps of
Algorithm 4, in the same way as previous approaches, α is initialized with value 0, as it is showed in
line 2. Next, in line 3, it is verified if Qj and Ql are defined types (not null). In this case, in line 4,
the performance gain is read in the cell GQj ,Ql

and α (the interaction factor) receives
GQj,Ql

max(G) , where
max(G) is the maximum value stored in G, Qj is a line of G and Ql is a column of G. So, the value
of the interaction factor is normalized ([0, 1]). Finally, the interaction factor is returned in line 6.

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.



Approaches to Model Query Interactions · 7

Algorithm 5: Interaction-aware query scheduling
input : S, qnew, qlast, dbms

1 begin
2 bestPosition ← 1;
3 ∆factormax ← -1;
4 previousQuery ← qlast;
5 for i ← 1 to S.getLength() do
6 nextQuery ← Si;
7 ∆factor ← getFactor(previousQuery, qnew, dbms)
8 + getFactor(qnew, nextQuery, dbms)
9 - getFactor(previousQuery, nextQuery, dbms);

10 if ∆factor ≥ ∆factormax then
11 bestPosition ← i;
12 ∆factormax ← ∆factor;
13 end if
14 previousQuery ← nextQuery;
15 end for
16 ∆factor ← getFactor(previousQuery, qnew, dbms);
17 if ∆factor ≥ ∆factormax then
18 bestPosition ← S.getLength() + 1;
19 end if
20 S.add(bestPosition, qnew);
21 end

0

5

10

15

20

25

30

35

FIFO IS DRR GBA

To
ta

l E
xe

cu
ti

o
n

 T
im

e
 (

h
o

u
rs

) 

(a) Preprocessing overhead

0

10

20

30

40

50

60

70

80

FIFO IS (no cache) IS (cache) DRR (no cache) DRR (cache) GBA

To
ta

l E
xe

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)
 

(b) Scheduling overhead

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

IS DRR GBA

Worse

Draw

Better

(c) Effectiveness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

FIFO IS DRR GBA

To
ta

l E
xe

cu
ti

o
n

 T
im

e
 (

h
o

u
rs

) 

(d) Efficiency
Fig. 2: Comparative analysis between IS, DRR, GBA and FIFO with one instance per query type

4. ISO: AN INTERACTION-AWARE QUERY SCHEDULER

Based on the proposed approaches to model and measure query interactions (IS, DRR and GBA), we
have developed a interaction-aware query scheduler for online (and batch) workloads, denoted ISO.
ISO uses the interaction factor to define the query execution order. The scheduler goal is to optimize
workload query response time by dynamically choosing, for each query instance, the position in the
scheduling queue which provides the highest interaction factor gain.

The steps implemented by ISO are showed in Algorithm 5. The Algorithm 5 requires three input
parameters: the scheduling queue S; the query instance to be scheduled qnew; the last query instance
qlast, which left the queue S, and; the database driver dbms. The first steps executed by Algorithm 5
consist of the initialization of the following variables (lines from 2 to 4): bestPosition, which represents
the position for qnew in S; ∆factormax

, containing the greatest interaction gain, and; previousQuery,
which stores the position in S of the previous query if qnew has to be added to current position in
S. In line 6, variable nextQuery is set to previousQuery. Between lines 5 and 19, qnew is tested in

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.



8 · Manoel M. Siqueira et. al.

each position of S. The query instance qnew will occupy the position in S which provides the greatest
global gain obtained by the formula depicted in line 10. Finally, in line 20, qnew is inserted in the best
estimated position of the scheduling queue.

0

5

10

15

20

25

30

35

FIFO IS DRR GBA

To
ta

l E
xe

cu
ti

o
n

 T
im

e
 (

h
o

u
rs

) 

(a) Preprocessing overhead

0

10

20

30

40

50

60

70

80

FIFO IS (no cache) IS (cache) DRR (no cache) DRR (cache) GBA

To
ta

l E
xe

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)
 

(b) Scheduling overhead

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

IS DRR GBA

Worse

Draw

Better

(c) Effectiveness

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

FIFO IS DRR GBA

To
ta

l E
xe

cu
ti

o
n

 T
im

e
 (

h
o

u
rs

) 

(d) Efficiency
Fig. 3: Comparative analysis between IS, DRR, GBA and FIFO with five instances per query type

5. EVALUATION

In order to evaluate the proposed three approaches to model and measure query interactions and ISO
scheduler, we have chosen a scenario in which queries are executed in a sequential way. The choice
for such a scenario was motivated by the discussion about the need of predictability in the current
paradigm of optimization problem [Florescu and Kossmann 2009]. The idea is to ensure that the
queries are executed in an acceptable time, but not as quick as possible. According to this approach,
optimizing for the 99 percentile is more important than for the average. Thus, for instance, in the case
that each query has its deadline, a solution that is optimized by 99 percentile is more appropriate.
One example of this is showed in [Chi et al. 2011], that describes a solution based on agreements called
SLAs (Service Level Agreements) with a specific metric: query response time. In this case, each query
has to be run in a defined period of time to generate profit to the service provider, otherwise penalties
can be applied.

When each query has a maximum time to be run, the use of a concurrent solution can be an
inefficient way to schedule queries because of the complexity in predicting their response times if
compared with sequential approaches. Many factors such as operating system scheduling algorithm
and resource utilization impact of each query during the execution interfere in concurrent solution
effectiveness. In fact, they can decrease the workload response time, but it is harder than in sequential
solutions to control the query deadline fulfillment or to guarantee the profit in an SLA environment
that uses query response time as metric, for example. Therefore, a sequential solution shows to be
more feasible in some situations than a concurrent one.

5.1 Experimental Setup

A 2 GHz Intel Core 2 Duo machine with 3 GB of RAM and 500 GB of HD, using Ubuntu 11.10 of 64
bits as operating system, has been used to execute the experiments. The tests were run implementing

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.



Approaches to Model Query Interactions · 9

the TPC-H benchmark with scale factor of 2 GB, using DBGEN/DBT-3 project, in PostgreSQL 9.1.3
database system.

The experiments have been conducted by using two different workloads, based on the number of
queries to be scheduled. In the first workload, one query instance has been created for each TPC-
H query type, totaling 22 queries. These instances were generated setting different values for the
template parameters, using QGEN/DBT-3. Thereafter, ten different orderings have been randomly
yielded, each of which with 22 query instances. For this workload, the DRR vector, used by DRR
approach, was created using n = 1. In the second workload, five query instances have been created
for each TPC-H query type, totaling 110 queries. For this second workload, the DRR vector, used by
DRR approach, was created using n = 5. Furthermore, twenty different ordering have been randomly
produced. It is important to note that the different orderings simulate the orders in which the queries
are arriving to be executed. For each defined ordering, a FIFO strategy is used to send queries to
ISO.

5.2 Test Results

In this section, we present the results of the experiments we carried out. For that, we used four
metrics: preprocessing-step execution time; execution time for computing the query-execution sched-
ule; effectiveness and efficiency. Since the DRR and GBA approaches require a pre-processing step,
we have used preprocessing-step execution time metric. Figure 2a depicts the results regarding that
metric for the first workload (22 query instances and 10 random orderings). In turn, Figure 3a brings
the results for the second workload (110 query and 20 random orderings). The second metric has the
functionality to specify how much time each approach takes to define the query-execution schedule.
Figure 2b presents the results for the first workload and Figure 3b for the second workload.

The effectiveness metric has been used to compare how many times each scheduling approach has
presented a better result than FIFO approach (the queries are executed according to the random
ordering), which was used as baseline. We have considered “Draw” when the absolute difference
between execution times is less or equal than one minute (about 3 seconds of margin of error for each
query instance). Figure 2c illustrates the effectiveness of the three proposed approaches for the first
workload. IS and DRR presented better performance in 90% of cases, and GBA was better than FIFO
in all cases. Regarding effectiveness for the second workload (Figure 3c), only IS approach was not
better than FIFO.

Efficiency has been applied to measure the total time consumed to execute queries by using the
schedules produced by the three approaches and by a FIFO schedule. As Figure 2d (results for the
first workload) illustrates, IS was executed in 3.7 hours, saving 1 hour w.r.t. the execution time for
the FIFO approach (22% of reduction). DRR had a better response time, since the schedule produced
by DRR has consumed 3.5 hours to be executed (25% of reduction). Nevertheless, the most efficient
strategy was GBA with reduction of 40%, saving 1.9 hours and hence being the only solution with
execution time less than 3 hours.

Figure 3d brings the results of efficiency when the second workload (110 query and 20 random
orderings) was executed. IS was executed in 33.6 hours, saving 9.9 hours w.r.t. the execution time
for the FIFO approach (reduction of 23% ). DRR had the best response time, during 28.8 hours
(reduction of 33%). However GBA was also good with reduction of 33%, saving 14.7 hours.

The results presented in Figure 4 highlight the benefits of taking into account query interaction.
For that experiment, we have picked up the execution time for seven TPC-H queries with highest
execution time when execute in schedules produced by three approaches (IS, DRR, GBA) and FIFO.
Observe that for each of those queries, the execution time is less than when they are executed in the
FIFO approach. Recall that in FIFO query interaction is not considered.

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.



10 · Manoel M. Siqueira et. al.

0

1

2

3

4

5

6

7

21 9 20 5 8 18 4

A
ve

ra
ge

 Q
u

e
ry

 R
e

sp
o

n
se

 T
im

e
 (

m
in

u
te

s)
 

Query Type 

FIFO

IS

DRR

GBA

Fig. 4: Query type performance evaluation

6. CONCLUSION AND FUTURE WORK

In this article we propose three new approaches to model and measure query instance and query type
interactions. Our approaches require no prior assumptions about the internal aspects of the database
system or the reason of query interactions, making it non intrusive, namely, portable across systems.
To demonstrate the profit of exploiting query interactions, we have developed a novel interaction-aware
query scheduler for online workloads. The test results show that significant speed-ups are achieved.
Besides, the evaluation shows that our approaches have potential to improve many database tuning
algorithms. It may be interesting to incorporate the proposed approaches into other database system
components such as query optimizers, physical design advisors and buffer manager, making them
query interaction awareness. These possibilities represent interesting directions for future researches.

REFERENCES

Ahmad, M., Aboulnaga, A., and Babu, S. Query interactions in database workloads. In Proceedings of the Second
International Workshop on Testing Database Systems. Rhode Island, USA, pp. 11:1–11:6, 2009.

Ahmad, M., Aboulnaga, A., Babu, S., and Munagala, K. Modeling and exploiting query interactions in database
systems. In Proceedings of the 17th ACM Conference on Information and Knowledge Management. California, USA,
pp. 183–192, 2008.

Ahmad, M., Aboulnaga, A., Babu, S., and Munagala, K. Interaction-Aware Scheduling of Report-Generation
Workloads. The VLDB Journal 20 (4): 589–615, 2011.

Chi, Y., Moon, H. J., Hacigümüş, H., and Tatemura, J. Sla-tree: a framework for efficiently supporting sla-
based decisions in cloud computing. In Proceedings of the 14th International Conference on Extending Database
Technology. Uppsala, Sweden, pp. 129–140, 2011.

Florescu, D. and Kossmann, D. Rethinking Cost and Performance of Database Systems. SIGMOD Record 38 (1):
43–48, 2009.

Niu, B., Martin, P., and Powley, W. Towards Autonomic Workload Management in DBMSs. Journal of Database
Management 20 (3): 1–17, 2009.

Niu, B., Martin, P., Powley, W., Bird, P., and Horman, R. Adapting mixed workloads to meet slos in autonomic
dbmss. In Proceedings of the IEEE 23rd International Conference on Data Engineering Workshop. Istanbul, Turkey,
pp. 478–484, 2007.

O’Gorman, K., Abbadi, A. E. E., and Agrawal, D. Multiple Query Optimization in Middleware Using Query
Teamwork. Software - Practice & Experience 35 (4): 361–391, 2005.

Roy, P., Seshadri, S., Sudarshan, S., and Bhobe, S. Efficient and Extensible Algorithms for Multi Query Opti-
mization. SIGMOD Record 29 (2): 249–260, 2000.

Tan, K.-L. and Lu, H. Workload scheduling for multiple query processing. Information Processing Letters 55 (5):
251–257, 1995.

TPC. Tpc-h benchmark, 2013. http://www.tpc.org/tpch/spec/tpch2.14.4.pdf.

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.


