
Mining User Contextual Preferences

Sandra de Amo, Marcos L. P. Bueno, Guilherme Alves, Nádia F. Silva

Universidade Federal de Uberlândia, Brazil

deamo@ufu.br, marcos@facom.ufu.br, guilhermealves@comp.ufu.br, nadia.felix@gmail.com

Abstract. User preferences play an important role in database query personalization since they can be used for

sorting and selecting the objects that most fulfill the user wishes. In most situations user preferences are not static
and may vary according to a multitude of user contexts. Automatic tools for extracting contextual preferences without
bothering the user are desirable. In this article, we propose CPrefMiner, a mining technique for mining user contextual
preferences. We argue that contextual preferences can be naturally expressed by a Bayesian Preference Network (BPN).
The method has been evaluated in a series of experiments executed on synthetic and real-world datasets and proved to
be efficient to discover user contextual preferences.

Categories and Subject Descriptors: H.Information Systems [H.m. Miscellaneous]: Databases

Keywords: context-awareness, data mining, preference mining

1. INTRODUCTION

Elicitation of Preferences is an area of research that has been attracting a lot of interest within the
database and AI communities in recent years. It consists basically in providing the user a way to
inform his/her choice on pairs of objects belonging to a database table, with a minimal effort for
the user. Preference elicitation can be formalized under either a quantitative [Burges et al. 2005;
Crammer and Singer 2001; Joachims 2002] or a qualitative [Jiang et al. 2008; Koriche and Zanuttini
2010; de Amo et al. 2012b; Holland et al. 2003] framework. In order to illustrate the quantitative
formulation, consider we are given a collection of movies and we wish to know which films are most
preferred by a certain user. For this, we can ask the user to rate each movie and after that we
simply select those films with the higher score. This method may be impractical when dealing with
a large collection of movies. In order to accomplish the same task using a qualitative formulation of
preferences, we can ask the user to inform some generic rules that reflect his/her preferences. For
example, if the user says that he/she prefers romance movies to drama movies, then we can infer a
class of favorite movies without asking the user to evaluate each film individually.

A qualitative framework for preference elicitation consists in a mathematical model able to express
user preferences. In this article, we consider the contextual preference rules (cp-rules) introduced by
[Wilson 2004]. This formalism is suitable for specifying preferences in situations where the choices
on the values of an attribute depend on the values of some other attributes (context). For example
in our movie database scenario, a user can specify his/her preference concerning the attribute gender
depending on the value of the attribute director : For movies whose director is Woody Allen he/she
prefers comedy to suspense and for movies from director Steven Spielberg he/she prefers action films
to drama.

On both frameworks for expressing preferences (quantitative or qualitative), it is important to
develop strategies to avoid the inconvenience for the user to report his/her preferences explicitly,
a process that can be tedious and take a long time, causing the user not willing to provide such

We thank the Brazilian Research Agencies CNPq, CAPES (SticAmSud Project 016/09) and FAPEMIG for supporting
this work.

Copyright c©2013 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 4, No. 1, February 2013, Pages 37–46.

38 · Sandra de Amo et al.

information. In this context, the development of preference mining techniques allowing the automatic
inference of user preferences becomes very relevant.

In this article we propose the algorithm CPrefMiner, a qualitative method for mining a set of
probabilistic contextual preference rules modeled as a preference bayesian network (BPN). It extends
the preliminary version presented in [de Amo et al. 2012a] with the following new features in Section 5:
(1) Four new databases have been considered in the tests as well as two different validation protocols;
(2) All the experiments have been executed over two baseline algorithms (classical classifiers) in
order to show the superiority of CPrefMiner performance as well as the fact that classifiers are not
suitable for preference mining tasks; (3) Two parameters aiming at calibrating the user’s indecision
and inconsistency have been introduced and a set of experiments have been carried out varying these
parameters.

2. RELATED WORK

An extensive text presenting different theoretical approaches and techniques for preference learning
can be found in [Fürnkranz and Hüllermeier 2011]. Roughly speaking, preference learning can be
divided into two distinct problems: label ranking and object ranking. The problem of Label ranking
consists in discovering rules relating user’s personal information to the way they rank labels. The work
of [Hüllermeier et al. 2008] discusses the differences underlying both problems and proposes a method
for label ranking consisting in training a set of binary classifiers. On the other hand, object ranking
aims at predicting which is the preferred object between two given objects. The present article focuses
on this latter problem.

In [Holland et al. 2003] the authors propose a technique for mining user preferences, based on a
qualitative approach, whose underlying model is the pareto preference model. The preference rules
are obtained from log data generated by the server when the user is accessing a web site. Another
approach to preference mining is presented in [Jiang et al. 2008]. In this work the authors propose using
preference samples provided by the user to infer an order on any pair of tuples in the database. Such
samples are classified into two categories, the superior and inferior samples and contain information
about some preferred tuples and some non-preferred ones. From these rules, an order is inferred on
the tuples. The underlying preference model is the pareto preference model as in [Holland et al. 2003].
In this model, preferences are not conditional or contextual, that is, preferences on values of attributes
do not depend on the values of other attributes. Our contextual preference model is more expressive.

Concerning the topic of mining contextual preference rules, [Koriche and Zanuttini 2010] proposes
a method for mining a CP-Net model [Boutilier et al. 2004] from a set of preferences supplied by
the user. Like in our approach, preference samples are represented by ordered pairs of objects. The
goal is to identify a target preference ordering with a binary-valued CP-net by interacting with the
user through a small number of queries. In [de Amo et al. 2012b] some of the authors of the present
article proposed a different method (ProfMiner), based on pattern mining techniques, to discover user
profiles specified by a set of preference rules. The main advantage of CPrefMiner over ProfMiner is
that it produces a compact preference model (Bayesian Preference Network), which induces a strict
partial order over the set of tuples. Besides, the performance results for both algorithms do not differ
significantly, although ProfMiner presents slightly better results than CPrefMiner.

3. PROBLEM FORMALIZATION

A preference relation on a finite set of objects A = {a1, a2, ..., an} is a strict partial order over A, that
is a binary relation R ⊆ A × A satisfying the irreflexivity and transitivity properties. Typically, a
strict partial order is represented by the symbol >. Considering > as a preference relation, we denote
by a1 > a2 the fact that a1 is preferred to a2.

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.

Mining User Contextual Preferences · 39

Definition 3.1 Preference Database. Let R(A1, A2, ..., An) be a relational schema. Let Tup(R) be
the set of all tuples over R. A preference database over R is a finite set P ⊆ Tup(R) × Tup(R) which
is consistent, that is, if (u, v) ∈ P then (v, u) 6∈ P. The pair (u, v), usually called a bituple, represents
the fact that the user prefers the tuple u to the tuple v.

Example 3.2. Let R(A,B,C,D) be a relational schema with attribute domains given by dom(A)
= {a1, a2, a3}, dom(B) = {b1, b2}, dom(C) = {c1, c2} and dom(D) = {d1, d2}. Let I be an instance
over R as shown in Figure 1(a). Figure 1(b) illustrates a preference database over R, representing a
sample provided by the user about his/her preferences over tuples of I.

Id A B C D

t1 a1 b1 c1 d1
t2 a1 b1 c1 d2
t3 a2 b1 c1 d2
t4 a1 b2 c1 d2
t5 a2 b1 c2 d1
t6 a3 b1 c1 d1

(a)

(t1,t2)
(t1,t3)

(t4,t5)

(t4,t2)

(t5,t6)
(t3,t5)

(t4,t1)

(b) (c)

Fig. 1: (a) An instance I, (b) A Preference Database P, (c) Preference Network PNet1

The main objective of this article is to extract a contextual preference model from a preference
database provided by the user. The contextual preference model is specified by a Bayesian Preference
Network defined next.

Definition 3.3 Bayesian Preference Network (BPN). A Bayesian Preference Network (or BPN for
short) over a relational schema R(A1, ..., An) is a pair (G, θ) where: (1) G is a directed acyclic graph
whose nodes are attributes in {A1, ..., An} and the edges stand for attribute dependency; (2) θ is
a mapping that associates to each node of G a conditional probability table of preferences, that is,
a finite set of conditional probabilities of the form P [E2|E1] where: (i) E1 is an event of the form
(Ai1 = ai1) ∧ . . . ∧ (Aik = aik) such that ∀j ∈ {1, ..., k}, aij ∈ dom(Aij), and (ii) E2 is an event of
the form “(B = b1) is preferred to (B = b2)”

1, where B is an attribute of R, B 6= Aij ∀j ∈ {1, ..., k}
and b1, b2 ∈ dom(B), b1 6= b2.

Example 3.4 BPN. Let R(A,B,C,D) be the relational schema of Example 3.2. Figure 1(c) illus-
trates a preference network PNet1 over R.

Each conditional probability P [E2|E1] in a BPN table stands for a probabilistic contextual prefer-
ence rule (cp-rule), where the condition event E1 is the context and the event E2 is the preference. A
probabilistic contextual preference rule associated to a node X in the graph G represents a degree of
belief of preferring some values for X to other ones, depending on the values assumed by its parents
in the graph. For instance P [D = d1 > D = d2|C = c1] = 0.6 means that the probability of D = d1
be preferred to D = d2 is 60% given that C = c1.

The quality of a BPN as an ordering tool is measured by means of its precision and recall. In order
to properly define the precision and recall of a preference network, we need to define the strict partial
order inferred by the preference network. For lack of space, we do not provide the rigorous definition
of the order here, but only describe it by means of an example. For more details see [de Amo and
Pereira 2011].

1For the sake of simplifying the presentation we often say b1 > b2 instead of “(B = b1) is preferred to (B = b2)”.

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.

40 · Sandra de Amo et al.

Example 3.5 Preference Order. Let us consider the BPN PNet1 depicted in Figure 1(c). This
BPN allows to infer a preference ordering on tuples over R(A,B,C,D). According to this ordering,
tuple u1 = (a1, b1,c1,d1) is preferred to tuple u2 = (a2, b2,c1,d2). In order to conclude that, we
execute the following steps: (1) Let ∆(u1, u2) be the set of attributes where the u1 and u2 differ.
In this example, ∆(u1, u2) = {A,B,D}; (2) Let min(∆(u1, u2)) ⊆ ∆ such that the attributes in
min(∆) have no ancestors in ∆ (according to graph G underlying the BPN PNet1). In this example
min(∆(u1, u2)) = {D,B}. In order to u1 be preferred to u2 it is necessary and sufficient that u1[D] >
u2[D] and u1[B] > u2[B]; (3) Compute the following probabilities: p1 = probability that u1 > u2

= P [d1 > d2|C = c1] ∗ P [b1 > b2|C = c1] = 0.6 * 0.6 = 0.36; p3 = probability that u2 > u1 =
P [d2 > d1|C = c1] ∗ P [b2 > b1|C = c1] = 0.4 * 0.4 = 0.16; p2 = probability that u1 and u2 are
incomparable = P [d1 > d2|C = c1] ∗ P [b2 > b1|C = c1] + P [d2 > d1|C = c1] ∗ P [b1 > b2|C = c1] =
0.6*0.4 + 0.4*0.6 = 0.48. In order to compare u1 and u2 we focus only on p1 and p3 (ignoring the
“degree of incomparability” p2) and select the higher one. In this example, p1 > p3 and so, we infer
that u1 is preferred to u2. If p1 = p3 we conclude that u1 and u2 are incomparable.

Definition 3.6 Precision and Recall. Let PNet be a BPN over a relational schema R. Let P be a
preference database over R. The recall of PNet with respect to P is defined by Recall(PNet,P)=
N
M

, where M is the cardinality of P and N is the amount of pairs of tuples (t1, t2) ∈ P compatible
with the preference ordering inferred by PNet on the tuples t1 and t2. That is, the recall of PNet
with respect to P is the percentage of elements in P which are correctly ordered by PNet. The
precision of PNet is defined by Precision(PNet,P)= N

K
, where K is the set of elements of P which

are comparable by PNet. That is, the precision of PNet with respect to P is the percentage of
comparable elements of P (according to PNet) which are correctly ordered by PNet.

The Mining Problem we treat in this article is the following: Given a training preference database
T1 over a relational schema R and a testing preference database T2 over R, find a BPN over R having
good precision and recall with respect to T2.

4. ALGORITHM CPREFMINER

The task of constructing a Bayesian Network from data has two phases: (1) the construction of a
directed acyclic graph G (the network structure) and (2) the computation of a set of parameters θ
representing the conditional probabilities of the model. This work adopts a score-based approach for
structure learning.

4.1 Score Function

The main idea of the score function is to assign a real number in [−1, 1] for a candidate structure G,
aiming to estimate how good it captures the dependencies between attributes in a preference database
P. In this sense, each network arc is “punished” or “rewarded”, according to the matching between
each arc (X,Y) in G and the corresponding degree of dependence of the pair (X,Y) w.r.t. P.

4.1.1 The Degree of Dependence of a Pair of Attributes. The degree of dependence of a pair of
attributes (X,Y) with respect to a preference database P is a real number that estimates how pref-
erences on values for the attribute Y are influenced by values for the attribute X. Its computation is
carried out as described in Alg. 1. In order to facilitate the description of Alg. 1 we introduce some
notations as follows: (1) For each y, y′ ∈ dom(Y), y 6= y′ we denote by Tyy′ the subset of bituples
(t, t′) ∈ P, such that t[Y] = y ∧ t′[Y] = y′ or t[Y] = y′ ∧ t′[Y] = y; (2) We define support((y, y′),P) =
|Tyy′ |

|P| . We say that the pair (y, y′) ∈ dom (Y) × dom (Y) is comparable if support((y, y′),P) ≥ α1,

for a given threshold α1, 0 ≤ α1 ≤ 1; (3) For each x ∈ dom(X), we denote by Sx|(y,y′) the subset of
Tyy′ containing the bituples (t, t′) such that t[X] = t′[X] = x; (4) We define support(Sx|(y,y′),P) =

|Sx|(y,y′)|

|
⋃

x′∈dom(X) Sx′|(y,y′)|
; (5) We say that x is a cause for (y, y′) being comparable if support(Sx|(y,y′),P)

≥ α2, for a given threshold α2, 0 ≤ α2 ≤ 1.

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.

Mining User Contextual Preferences · 41

Algorithm 1: The degree of dependence of a pair of attributes

Input: P: a preference database; (X,Y): a pair of attributes; two thresholds α1 > 0 and α2 > 0.
Output: The Degree of Dependence of (X,Y) with respect to P

1 for each pair (y, y′) ∈ dom(Y) × dom(Y), y 6= y′ and (y, y′) comparable do

2 for each x ∈ dom(X) where x is a cause for (y, y′) being comparable do

3 Let f1(Sx|(y,y′)) = max{N, 1−N}, where

N =
|{(t, t′) ∈ Sx|(y,y′) : t > t′ ∧ (t[Y] = y ∧ t′[Y] = y′)}|

|Sx|(y,y′)|

4 Let f2(Tyy′) = max {f1(Sx|(y,y′)) : x ∈ dom(X)}

5 Let f3((X,Y),P) = max{f2(Tyy′) : (y, y′) ∈ dom(Y) × dom(Y), y 6= y′, (y, y′) comparable}
6 return f3((X,Y),P)

4.1.2 Score Function Calculus. Given a structure G and a preference database P with n attributes,

we define score(G,P) as score(G,P) =

∑

X,Y

g((X,Y), G)

n(n− 1)
(1)

where X and Y are attributes in a relational schema R. The function g is calculated by the following
set of rules: (a) If f3((X,Y), G) ≥ 0.5 and edge (X,Y) ∈ S, then g((X,Y), G) = f3((X,Y), G); (b) If
f3((X,Y), G) ≥ 0.5 and edge (X,Y) /∈ S, then g((X,Y), G) = −f3((X,Y), G); (c) If f3((X,Y), G) <
0.5 and edge (X,Y) /∈ S, then g((X,Y), G) = 1; (d) If f3((X,Y), G) < 0.5 and edge (X,Y) ∈ S, then
g((X,Y), G) = 0.

Example 4.1. Let us consider the preference database PrefDb1 = {(t1, t
′
2), . . . , (t13, t

′
13)}, where

t > t′ for every bituple (t, t′) in PrefDb1 (table at the left side of Figure 2), constructed over a
relational schema R(A,B,C), where dom (A) = {a1, . . . , a4}, dom (B) = {b1, . . . , b5} and dom
(C) = {c1, . . . , c6}. In order to compute the degree of dependence of the pair (A,C) with respect to
PrefDb1, we first identify the sets Tc1,c3 = {(t1, t

′
1)}, Tc2,c4 = {(t2, t

′
2)}, Tc2,c3 = {(t3, t

′
3), . . . , (t9, t

′
9)}

and Tc5,c6 = {(t10, t
′
10), . . . , (t13, t

′
13)}. The thresholds we consider are α1 = 0.1 and α2 = 0.2.

The support of Tc1,c3 , Tc2,c4 , Tc2,c3 and Tc5,c6 are 0.08, 0.08, 0.54 and 0.30, respectively. Therefore,
Tc1,c3 and Tc2,c4 are discarded. Entering the inner loop for Tc2,c3 we have only one set S, namely
Sa1|(c2,c3) = Tc2,c3 −{(t3, t

′
3)}, since t3[A] 6= t′3[A]. The support of Sa1|(c2,c3) is 6/6 = 1.0 and N = 1/6.

Hence, f1(Sa1
) = 5/6 and f2(T3) = 5/6. In the same way, for Tc5,c6 we have Sa2|(c5,c6) = Tc5,c6 with

support 4/4 = 1.0 and N = 3/4. Therefore, f1(Sa2|(c5,c6)) = 3/4 and f2(T4) = 3/4. Thus, the
degree of dependence of (A,C) is f3((A,C), G) = max{3/4, 5/6} = 5/6. The degree of dependence
for all pairs, with respect to G, are f3(A,B) = 4/6, f3(B,A) = 0, f3(A,C) = 5/6, f3(C,A) = 0,
f3(B,C) = 1, and f3(C,B) = 0.

The score of the network G1, the left one at Figure 2 (b) is given by score(G1,PrefDb1) = (4/6 +
1+5/6+1+1+1)/6 = 0.92. Let us consider another candidate network G2, the right one in Figure 2.
Its score is given by score(G2,PrefDb1) = (−4/6+0− 5/6+1+1+1)/6 = 0.25. By analyzing these
values, we conclude that G1 captures more correctly the dependencies between pairs of attributes
present in the preference database PrefDb1 than does G2.

4.2 Mining the BPN Topology

The problem of finding a Bayesian Network from data is recurrent in literature and it is known to be
not trivial. The search space of candidate structures grows more than exponentially on the number
of attributes in the database [Jensen and Nielsen 2007]. Given such feature, we adopted a heuristic
method - Genetic Algorithm (GA) [Goldberg 1989] - to perform the structure learning phase, along
with the score function described above. Each genetic operator is detailed in the following.

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.

42 · Sandra de Amo et al.

Id A B C A B C

1 a2 b1 c1 a3 b4 c3 T(c1,c3)

2 a1 b1 c2 a4 b2 c4 T(c2,c4)

3 a2 b2 c2 a3 b3 c3 T(c2,c3)

4 a1 b3 c2 a1 b4 c3
5 a1 b3 c3 a1 b4 c2
6 a1 b3 c3 a1 b4 c2
7 a1 b3 c3 a1 b4 c2
8 a1 b4 c3 a1 b3 c2
9 a1 b4 c3 a1 b3 c2

10 a2 b5 c5 a2 b5 c6 T(c5,c6)

11 a2 b5 c5 a2 b5 c6
12 a2 b3 c5 a2 b3 c6
13 a2 b3 c6 a2 b3 c5

(a) (b)

Fig. 2: (a) A preference database PrefDb1. (b) On top, Bayesian Network Structures G1 and G2 for the Preference
Database PrefDb1. On bottom, crossing over two parents to produce two new individuals. The attribute ordering is
ABC. Child with genotype (1, 1, 1) corresponds to the upper structure shown on top of (b).

4.2.1 Codification of Individuals. To model every possible edge in a Bayesian Network with n
attributes, it is possible to set a n×n square matrix m, with mij = 1 representing the existence of an
edge from a node i to a node j, and mij = 0 otherwise. However, generating random structures and
crossing them over in this fashion would potentially create loops. Since a Bayesian Network cannot
have loops, this approach would require extra work to deal with this issue.

To avoid this situation, we adopted an upper triangular matrix m, in which every element of the
main diagonal and below it are zero. For instance, suppose a database with attributes A,B and C.
Considering an ordering ABC in m, it is possible for A to be a parent of B and C. Attribute B can
be a parent of C, but not a parent of A, and so on. This may limit the search abilities of the GA,
therefore we do γ runs of GA, each one with a different random ordering of attributes, to narrow this
issue. In this work, we considered γ = 50 and the number of generations has been settled as 100.

In terms of chromosome genotype, an upper triangular matrix can be implemented as a binary

array with n(n−1)
2 length. An example of this mapping can be seen on the bottom of Figure 2 (b).

The initial population contains randomly generated individuals.

4.2.2 Crossover and Mutation Operators. To form a pair of parents to be crossed, initially each
one is selected through a mating selection procedure, namely, tournament with size three. It works as
follows: randomly select three individuals from the current population, then pick the best of them, i.e.,
the one with highest score. This procedure is done twice to form each pair of parents, since we need
two parents to be crossed. Then, we are ready to apply crossover operator. Since at any generation a
given attribute order is fixed, we can use directly two-point crossover to generate two new individuals
from two parents. A position from 1 to the length of individual’s size is randomly taken, mixing the
genetic materials of two parents, obtaining two new individuals.

The mutation operator aims at adding diversity to population, applying small changes to new
individuals, usually under a low probability of occurrence (in this work, 0.05). For each individual
generated by crossover, a mutation toggles one position (randomly selected) of its binary array. When
an individual is mutated, its score is recalculated, and the mutation is accepted only if it improves its
score, otherwise the mutation is discarded.

4.2.3 Fitness Assignment and Reinsertion Procedure. Whenever new individuals are created, their
score must be evaluated. Initially, since an individual genotype is represented by a binary array, it
must be mapped to its phenotype representation, a Bayesian Network structure. Then, its score is

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.

Mining User Contextual Preferences · 43

calculated using Eq. (1). At the end of j-th generation, we have two populations: parents (Ij) and
offspring (I ′j), where |Ij | = |I ′j | = β. In order to attempting to achieve a faster convergence, we use
an elitist procedure to select individuals to survive: pick the β fittest individuals from Ij ∪ I ′j to set
the next population Ij+1.

4.3 Parameter Estimation

Once we have the topology G of the BPN, calculated at our previous step, we are now seeking
for estimates of the conditional probabilities tables. Since we have a set of cases in our prefer-
ence database P, we can estimate such parameters using the Maximum Likelihood Principle [Jensen
and Nielsen 2007], in which we calculate the maximum likelihood estimates for each conditional
probability distribution of our model. The underlying intuition of this principle uses frequencies as
estimates; for instance, if we want to estimate P (A = a > A = a′|B = b, C = c) we need to calcu-

late N(A=a,B=b,C=c)
N(A=a,B=b,C=c)+N(A=a′,B=b,C=c) , where N(A = a,B = b, C = c) is the number of cases where

(A = a,B = b, C = c) is preferred over (A = a′, B = b, C = c), and so on.

4.4 Complexity Analysis

The optimization problem of determining the Bayesian Network structure which maximizes the score
function is intractable. In fact, as shown in [Robinson 1977] the number of possible structures which
contains n nodes grows exponentially with n. Thus, heuristic methods having polynomial time com-
plexity are normally adopted for accomplishing this task ([Cooper and Dietterich 1992]).

The complexity of creating the model (BPN): (i) the computation of the degree of dependency
between each pair of attributes is O(n2.m), where n is the number of attributes and m is the number
of training bituples; (ii) the computation of the topology (carried out by the genetic algorithm (GA))
is O(n2.q.r.γ), where q is the initial population size, r is the number of generations and γ is the
number of attribute orderings considered; (iii) the computation of the conditional probability tables
is O(e.m), where e is the number of edges of the BPN produced by the GA. Therefore, the complexity
for building the entire CrefMiner model is O(n2(m+ q.r.γ)).

The complexity of using the model (BPN) for ordering a bituple (t, t′) is O(n + e), which can be
reduced to O(n) when the BPN is a sparse graph. So, one can see that the computational cost for
building the model (which is an offline task) is quadratic on the number of attributes n and the
computational cost for using the model is linear on n.

5. EXPERIMENTAL RESULTS

In order to devise an evaluation of the proposed methods, in this article we designed experiments over
synthetic and real data. A 10-fold cross validation protocol was considered, based on two different
sampling strategies. In the following we describe the two sampling strategies, the data features and
the results based on each sampling approach.

5.1 The Sampling Strategies for Cross-validation

Let D be a database of tuples of relation schema R(A1, ..., An, Grade), where each tuple over attributes
A1, ..., An has an associated score (grade) given by the user, which specifies his/her preference on this
tuple. From D one can build a preference database P(D) of bituples (u, v) over R(A1, ..., An): (u, v)
∈ P(D) iff u ∈ D and v ∈ D, and grade(u) > grade(v). CPrefMiner is trained and tested over a set
of bituples (and not over a set of graded tuples as the classifiers used as baselines in our experiments).
Next we describe the two strategies for preparing the training and test data.

Tuple-based K-cross-validation (strong protocol) The database D is partitioned into K (pair-
wise) disjoint subsets D1, ..., DK approximately of the same size and stratified with respect to the
grades (each subset Di keeps the same proportion of tuples of grade i as in D). For i = 1, ...,K let

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.

44 · Sandra de Amo et al.

Table I: Preference order assessment, where PNet∗ stands for the best BPN obtained by GA. Each P
Group stands for 9 datasets. The number of attributes is indicated in the first column. The measures
appearing in each row correspond to the average measure (recall or precision) between the 9 datasets.

P Group Recall(PNet∗,P) Precision(PNet∗,P)

5k 10k 20k 50k 100k 500k 5k 10k 20k 50k 100k 500k
4 0.947 0.951 0.950 0.951 0.950 0.951 0.948 0.951 0.950 0.951 0.950 0.951
6 0.949 0.949 0.948 0.948 0.949 0.949 0.949 0.949 0.948 0.948 0.949 0.949

8 0.950 0.947 0.949 0.949 0.950 0.949 0.951 0.948 0.949 0.949 0.950 0.949
10 0.951 0.952 0.950 0.952 0.951 0.952 0.954 0.953 0.950 0.953 0.952 0.952

Bti be a subset of Di × Di, where (u, v) ∈ Bti iff grade(u) > grade(v). The tuple-based K-cross-
validation protocol executes K rounds of training and testing, where at each round i, the training set
is B1 ∪ ... ∪Bti−1 ∪Bti+1 ∪ ... ∪BtK and the testing set is Bti. Notice that in this protocol, at each
round the bituples involved in the training set do not contain any tuple involved in the testing set.

Bituple-based K-cross-validation (weak protocol): The preference database P(D) is partitioned
into K pairwise disjoint subsets approximately of the same size. The cross-validation in this approach
follows the classical protocol, where each round i uses the subset i for testing and the remaining
K − 1 subsets of bituples for training. Notice that in this protocol, at each round the testing and
training sets are disjoint but individual tuples involved in bituples of the testing set can appear in
some training bituple.

5.2 Synthetic Data

Synthetic data2 were generated by an algorithm based on Probabilistic Logic Sampling [Jensen and
Nielsen 2007], which samples cases for a preference database P given a BPN with structure G and
parameters θ. We have considered groups of networks with 4, 6, 8 and 10 nodes. For each group, we
randomly generated nine networks with their respective parameters. Each attribute at a given setting
has a domain with five elements. We also simulated the practical aspect of user’s preference, in the
sense that users usually do not elicit their preferences on every pair of objects, so we retained only a
small percent (around 10−20%) from all possible preference rules that could be generated for a given
network structure.

A set of experiments (using the weak protocol for 10-cross-validation) analyzing how a BPN infers
the strict partial order described in Sec. 3 is depicted in Table I. We can see that the best BPN
obtained by our method returned very good results, both for precision and recall measures. It is
possible to note that the small differences between recall and precision, even in cases with large
datasets (e.g. 500.000 bituples), indicates that the method leads to very few non-comparable bituples.
Apart from that fact, the method infers a correct ordering by a percent around 95% in every scenario,
having very small data fluctuations, an evidence of the method stability.

5.3 Real Data

In a second series of tests to evaluate CPrefMiner, we considered databases containing preferences re-
lated to movies, taken from APMD project3 by PRISM Laboratory. Such project integrates data from
MovieLens movie recommendation and IMDb forum. Six databases of graded films were considered
(films evaluated by six different users), namely D3, D4, D5, D6 , D7 and D8. Each database has seven
attributes. The experiments have been carried out following the strong and weak 10-cross-validation
protocols. The sizes of the sets Di and Bti are given in Table II4.

We compare the performance of CPrefMiner with two baselines (the Bayesian classifier and J48),
showing the superior quality of the CPrefMiner prediction capability. The poor results produced

2Available at http://www.lsi.ufu.br/cprefminer/
3Available at http://apmd.prism.uvsq.fr
4See http://guilhermealves.eti.br/research/cprefminer/stratified1.html for more details

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.

Mining User Contextual Preferences · 45

Table II: Precision and recall following the weak protocol (bituple-based)

Recall Precision

Dataset Tuples Bituples J48 BayesNet CPrefMiner J48 BayesNet CPrefMiner

D3 167 800 0,173 0,356 0,724 0,506 0,516 0,910
D4 305 2500 0,156 0,432 0,809 0,549 0,613 0,860
D5 607 12000 0,248 0,439 0,864 0,556 0,589 0,887

D6 823 23000 0,270 0,420 0,832 0,487 0,570 0,885
D7 1078 40000 0,345 0,492 0,874 0,556 0,655 0,892
D8 1416 70000 0,295 0,519 0,890 0,596 0,709 0,910

Table III: Precision and recall following the strong protocol (tuple-based)

Recall Precision Time

Dataset J48 BayesNet CprefMiner J48 BayesNet CprefMiner J48 BayesNet CprefMiner

D3 0,141 0,368 0,504 0,435 0,501 0,867 0,001s 0,003s 1s
D4 0,157 0,409 0,623 0,606 0,597 0,735 0,005s 0,005s 1s

D5 0,247 0,442 0,621 0,552 0,605 0,678 0,010s 0,008s 9s
D6 0,287 0,435 0,615 0,501 0,589 0,740 0,018s 0,013s 36s
D7 0,355 0,504 0,694 0,569 0,658 0,755 0,023s 0,012s 2m26s
D8 0,301 0,547 0,722 0,601 0,733 0,774 0,034s 0,016s 6m5s

by these classifiers show that classifiers are not suitable for preference mining tasks. The results
concerning the weak protocol are presented in Table II and those concerning the strong protocol in
Table III. The execution time for building the BPN is the same for both protocols and is showed only
in Table III. In this table we also show the time needed for building the model of the classifiers J48 and
BayesNet. The execution times for using the models are negligible: J48, BayesNet and CPrefMiner
take respectively 0.4ms, 1.35ms and 327.53ms for ordering 100 bituples. As expected, the results of
precision and recall obtained for CPrefMiner according to the weak protocol are better than those
obtained according the strong protocol since for the weak protocol the films appearing in the testing
subset may appear in the training set. Remind that a bituple appearing in the test do not appear in
the training set. The results show that CPrefMiner, an algorithm specifically designed for a preference
mining task, performs far better than classical classifiers.

Parameters for calibrating the inferred order by taking into account the user undecid-

ability and inconsistency . Notice that in order to compare two tuples u1 and u2 according to
the order described in Example 3.5, we simply ignore the probability p2 which in some sort measures
the user undecidability concerning his/her preferences over these tuples. Notice also that in order
to infer a preference we simply consider the higher value between p1 and p3. The proximity of p1
and p3 measures in some sort the user inconsistency concerning his/her preferences over these tuples.
We could be more precise when defining the preference ordering induced by a BPN by considering
parameters k1 and k2 for calibrating respectively the user undecidability and inconsistency factors.
That is: we say that u1 is preferred to u2 if the following conditions are verified: (1) p2 ≤ k1 and (2)
p1 ≥ k2(1− p2). The first condition (resp. the second condition) controls how the user undecidability
(resp. inconsistency) is taken into account in the inferred ordering. As k1 increases (resp. as k2
decreases) user undecidability (resp. inconsistency) importance decreases for deciding the preference
ordering. The ordering considered in Example 3.5 corresponds to k1 = 1 and k2 = 0.5. We designed
a set of experiments (over the movie database) intending to evaluate how would be the variation of
precision and, specially, recall when we change the values of k1 and k2 factors. For lack of space we
do not present the detailed results. Our conclusion is that the recall decreases very quickly as k1
decreases (from 1 to 0, k2 = 0.5), and the decreasing rate is higher for larger datasets. Precision
decreases slower than recall as k1 decreases. Recall increases very quickly as k2 decreases (from 1
to 0.5 and k1 = 1). Precision also decreases very quickly as k2 decreases (from 1 to 0.5) and the
decreasing rate is higher for larger datasets.

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.

46 · Sandra de Amo et al.

6. CONCLUSION AND FURTHER WORK

In this article we proposed an approach for specifying contextual preferences using Bayesian Networks
and the algorithm CPrefMiner for extracting a Bayesian Preference Network from a set of user’s past
choices. As future work, we plan to compare the predictive quality of our (optimized) method with
well-known ranking methods as RankNet, Rank SVM, Ada Rank and RankBoost [Joachims 2002; Fre-
und et al. 2003; Burges et al. 2005; Xu and Li 2007], knowing that existing prototypes that implement
these methods have to be adapted (in order to take directly as input pairwise preferences, and not only
quantitative preferences). We also intend to deepen the study on the parameters k1 (indecision) and
k2 (inconsistency) and design mining techniques which take into account such parameters. Finally,
we plan to develop a recommender system using CPrefMiner as a tool for recommending new items
for new users without bothering the user with a large amount of sampling evaluations beforehand.

REFERENCES

Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H. H., and Poole, D. Cp-nets: A tool for representing and
reasoning with conditional ceteris paribus preference statements. Journal of Artificial Intelligence Research. vol. 21,
pp. 135–191, 2004.

Burges, C. J. C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., and Hullender, G. N.

Learning to Rank Using Gradient Descent. In Proceedings of the International Conference on Machine Learning.

New York, NY, USA, pp. 89–96, 2005.

Crammer, K. and Singer, Y. Pranking with Ranking. In Proceedings of the Neural Information Processing Systems

Conference, Vancouver, Canada, pp. 641–647, 2001.

de Amo, S., Bueno, M.L., Alves, G., Silva, N.F. Mining User Contextual Preferences. In Proceedings of the

Brazilian Symposium on Databases, São Paulo, Brazil, pp. 177–184 ,2012a.

de Amo, S., Diallo, M., Diop, C., Giacometti, A., Li, H. D., and Soulet, A. Mining Contextual Preference

Rules for Building User Profiles. In Proceedings of the International Conference on Data Warehousing and Knowledge

Discovery, Viena, Austria, pp. 229–242, 2012b.

de Amo, S. and Pereira, F. A Context-Aware Preference Query Language: theory and implementation. Tech. Rep.,
Universidade Federal de Uberlândia, School of Computing, Brazil, 2011.

Cooper, G. F. and Dietterich, T. A Bayesian Method for the Induction of Probabilistic Networks from Data.
Machine Learning, vol. 9(4), pp. 309–347, 1992.

Freund, Y., Iyer, R., Schapire, R. E., and Singer, Y. An efficient boosting algorithm for combining preferences.
Journal of Machine Learning Research, vol. 4, pp. 933–969, 2003.

Fürnkranz, J. and Hüllermeier, E. Preference Learning. Springer, 2011.

Goldberg, D. E. Genetic Algorithms in Search, Optimization & Machine Learning. Addison-Wesley, Massachusetts,

1989.

Holland, S., Ester, M., and Kießling, W. Preference Mining: a novel approach on mining user preferences for
personalized applications. In European Conference on Principles of Data Mining and Knowledge Discovery, Cavtat-

Dubrovnik, Croatia, pp. 204–216, 2003.

Hüllermeier, E., Fürnkranz, J., Cheng, W., and Brinker, K. Label Ranking by Learning Pairwise Preferences.

Artificial Intelligence, vol. 172(16-17), pp. 1897–1916, 2008.

Jensen, F. V. and Nielsen, T. D. Bayesian Networks and Decision Graphs. Springer Publ. Company, Inc., 2007.

Jiang, B., Pei, J., Lin, X., Cheung, D. W., and Han, J. Mining Preferences from Superior and Inferior Examples.
In ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, pp. 390–398,

2008.

Joachims, T. Optimizing Search Engines using Clickthrough Data. In Proceedings of the 8th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, pp. 133–142, 2002.

Koriche, F. and Zanuttini, B. Learning Conditional Preference Networks. Artificial Intelligence, vol. 174(11), pp.

685–703, 2010.

Robinson, R. W. Counting Unlabeled Acyclic Digraphs. In C.H.C. Little (Ed.) Combinatorial Mathematics. Lecture

Notes in Mathematics, vol. 622. New York, Springer-Verlag, 1977.

Wilson, N. Extending CP-Nets with Stronger Conditional Preference Statements. In National Conference on Artificial

Intelligence, San Jose, California, USA, pp. 735–741, 2004.

Xu, J. and Li, H. AdaRank: a boosting algorithm for information retrieval. In ACM SIGIR International Conference

on Research and Development in Information Retrieval, Amsterdam, The Netherlands, pp. 391–398, 2007.

Journal of Information and Data Management, Vol. 4, No. 1, February 2013.

