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Abstract. Web page segmentation and data cleaning are essential steps in structured web data extraction. Identifying
a web page main content region, removing what is not important (menus, ads, etc.), can greatly improve the performance
of the extraction process. We propose, for this task, a novel and fully automatic algorithm that uses a tag path sequence
(TPS) representation of the web page. The TPS consists of a sequence of symbols (string), each one representing a
di�erent tag path. The proposed technique searches for positions in the TPS where it is possible to split it in two regions
where each region's alphabet do not intersect, which means that they have completely di�erent sets of tag paths and,
thus, are di�erent regions. The results show that the algorithm is very e�ective in identifying the main content block
of several major websites, and improves the precision of the extraction step by removing irrelevant results.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications�Data mining; H.3.3
[Information Storage and Retrieval]: Information Search and Retrieval�Information �ltering; I.1.2 [Symbolic

and Algebraic Manipulation]: Algorithms�Analysis of algorithms

Keywords: noise removal, page segmentation, structured extraction, web mining

1. INTRODUCTION

One crucial step in web data mining, including structured extraction, is the cleaning phase that takes
place before extracting the information. One can not expect to get good results in the extraction
phase without cleaning and removing the undesired noise �rst. In [Yi et al. 2003], it is mentioned
that despite the importance of this task, relatively little work has been done in this area and, while
reviewing up to date related work, we still have the impression that this is an underdeveloped �eld.
Moreover, according to [Liu and Chang 2004], noise can seriously harm web data mining.

In structured extraction, most of the existing approaches use some sort of pattern recognition to
identify the records (as de�ned in [Liu et al. 2003]) present in the page. The problem is that, usually,
we are interested only in the main content region, as depicted in Figure 4, but other regions of the
page (menus, ads, etc.) often contain repeating patterns that are outputted as noise results. So, it is
useful to cleanup a web page before extracting the records from it.

Currently, some of the works on noise removal and page segmentation are aimed at page indexing
and clustering (i.e. they assume the main region is textual) such as [Fernandes et al. 2011; Yi et al.
2003] and, due to intrinsic di�erences between unstructured data and structured data, these can not
be used for structured extraction. The existing techniques that can be used for structured content
either require a priori de�nitions ([Cai et al. 2003]), or prior training ([Chakrabarti et al. 2008]) or
they rely on speci�c HTML tags or aspects of the HTML language to work, such as [Cho et al. 2009].

In this article, we propose and lay down a simple, computationally e�cient, yet very powerful,
algorithm aimed at web page segmentation, noise removal and main content identi�cation, based on
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the tag path sequence of the web page. It is a general segmentation technique, presented here in the
context of structured extraction, that takes into account the page's style and structure. Our main
contributions are:

�Fully automatic: no training or human intervention needed;

�Domain independent: it is only required that a page contains structured content, no matter what
domain it is about;

�HTML syntax independent: there are no rules de�ned for speci�c HTML tags;

�Works on single page: it is required only one page as input, which is a main advantage as discussed
in [Liu and Chang 2004];

�Can be combined with extraction techniques: due to the way pruning is carried out (preserving tree
structure), this algorithm can be combined with any structured extraction algorithm;

�Extraction optimization: the proposed algorithm prunes an average of 46.22% of the DOM tree, in
linear time, avoiding the processing of this noise by the subsequent extraction algorithm.

To evaluate how e�ective our approach is, we have compared the output of MDR [Liu et al. 2003], a
well known structured extraction technique, against the output of MDR combined with our technique,
as illustrated in Figure 1, yielding an average of 77.03% of noise removed from the test web pages.

Fig. 1. Evaluation method adopted.

This article is organized as follows. In Section 2, we give a brief survey of related work in seg-
mentation, pointing out the di�erences between each one and our proposal. In Section 3, some basic
de�nitions are given, which are needed for the problem de�nition and the understanding of the algo-
rithm. In Section 4, we state the problem and explain the two hypothesis that are the basis on which
we develop the proposed solution for the problem of segmentation and noise removal, targeted at
structured extraction. In Section 5, a detailed description of the full algorithm and its complexity are
given. In Section 6, we present the results of the tests done so far. Finally, in Section 7, a conclusion
is given and possible future developments are outlined.

2. RELATED WORK

There are several works proposing ways to segment web pages and identify what is noise and what
is informative content in them. We grouped them in three di�erent categories: those based on text
content, those based on the DOM tree and those that make use of visual information.

Text content based approaches. In [Fernandes et al. 2007; Kohlschütter and Nejdl 2008;
Kohlschütter et al. 2010; Weninger et al. 2010; Fei et al. 2013] the segmentation is done using the
text content of the web page. The focus of these works, however, is not on structured extraction, but
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instead, on indexing and clustering of web sites. The majority of the works about page cleaning and
noise removal are aimed at this kind of applications.

DOM tree based approaches. In [Yi et al. 2003; Chakrabarti et al. 2008; Cho et al. 2009;
Fernandes et al. 2011; Zheng et al. 2012; Zheng et al. 2007] the segmentation is done using the
DOM tree and, thus, they do take into account the web page's structure. However [Fernandes et al.
2011] and [Yi et al. 2003] require several pages from the same web site, they are site-driven techniques,
[Chakrabarti et al. 2008] and [Zheng et al. 2007] proposes a training framework that requires a manually
labeled data set to work, [Cho et al. 2009] is dependent of a tag dictionary, de�ned a priori, to build
a visual representation of the page and [Zheng et al. 2012] requires a database of terms associated to
�semantic roles� in order to detect data-rich regions.

Visual information based approaches. Besides text and DOM tree based techniques, there are
the ones based on visual information such as [Cai et al. 2003; Simon and Lausen 2005; Liu et al. 2009].
They all rely on a web browser's renderer to obtain the visual information used for segmentation,
what can be computationally expensive, and beyond that, [Cai et al. 2003] is based on quite a large
set of strong heuristic rules, each one applied to speci�c HTML tags. Approaches based on speci�c
HTML tags have a serious disadvantage of being a�ected by changes in web page design practices and
HTML syntax changes.

Structured extraction techniques. There are a number of techniques proposed to address the
problem of structured extraction, like [Liu and Zhai 2005; Crescenzi et al. 2001; Liu et al. 2003; Miao
et al. 2009; Xie et al. 2012], just to name a few. The reason we chose MDR for the evaluation of our
proposal is due to the level of detail provided by the publications (which allows for implementation)
and availability of independent implementations. Since we are measuring only the noise suppressed
in the output, and not the quality of the extraction itself, any pattern detection algorithm, that
complies with our constraints (fully automatic, works on single page, no training, no labeling, etc.),
would su�ce.

The representation of the web page used in our work (tag path sequence) was also employed in
[Miao et al. 2009] and [Xie et al. 2012], although in both cases for structured extraction, not for
segmentation. We cite them here to show that, according to their results, this representation, just like
the DOM tree, is also able to expose the web page's structure and, thus, is suitable for the purpose
of our work.

3. BASIC DEFINITIONS

Now we present the concepts and de�nitions used to state the problem in Section 4 and outline the
proposed algorithm in Section 5, as well as an example to illustrate each de�nition.

De�nition 3.1 (DOM tree). The DOM tree is a hierarchical structure, derived from the parsing
of HTML code, that represents a web page.

In Figure 2 we use a small piece of HTML code to illustrate the DOM tree and the next de�nitions.

De�nition 3.2 (Tag path). A tag path (TP ) is a string describing the absolute path from the root
of the DOM tree to a given node. Let i be the depth-�rst position, in the DOM tree, of a nodei, then
we say that the tag path TPi is a string describing the path from the root of the DOM tree to the
nodei.

In Figure 2, the absolute tag path TP4 from the node body to the table cell node td4 is TP4 =
“body/table/tr/td”.

De�nition 3.3 (Tag path sequence). We de�ne the tag path sequence (TPS) of a DOM tree
with n nodes to be the ordered sequence TPS[1..n] = (TP1, TP2, TP3, ..., TPn−1, TPn) where two tag
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paths TPi and TPj , with i 6= j, are considered equal only if their paths and style de�nitions are equal,
otherwise they are di�erent.

This is the same de�nition as in [Xie et al. 2012], where each di�erent tag path is represented in the
sequence by a symbol, except that here we incorporate style de�nitions when comparing tag paths.
In Figure 2 we show the TPS for the given HTML code, where each TP is assigned a code, yielding
TPS = (1, 2, 3, 4, 4, 3, 4, 4).

De�nition 3.4 (Alphabet of the TPS). Let Σa be a set containing all the symbols in a given
sequence TPSa of size n, we say that Σa is the alphabet of TPSa de�ned as Σa = {α|∃TPSa[i] =
α ∧ 1 ≤ i ≤ n}, where α is a symbol in the alphabet.

Informally speaking, the alphabet indicates all distinct symbols in a TPS. In Figure 2, the TPS is
formed only by the symbols �1�,�2�, �3� and �4�, so its alphabet is Σ = {1, 2, 3, 4}.

De�nition 3.5 (Tag path frequency set). Let (s, f) be a pair where s is a symbol from an al-
phabet of a given TPS and f is the number of times that s appears in the TPS, so we de�ne
the tag path frequency set as the set containing all possible (s, f) pairs of a TPS. Let FS =
{(s1, fs1), (s2, fs2), (s3, fs3), . . . , (sn−1, fsn−1), (sn, fsn)}, where n is the size of the TPS.

In Figure 2, symbol �1� shows up once in the sequence, symbol �2� once too, symbol �3� twice and
symbol �4� four times, so for this sequence the tag path frequency set is equal to FS = {(1, 1), (2, 1),
(3, 2), (4, 4)}. The set FS is a mapping between every symbol of an alphabet and its corresponding
frequency.

De�nition 3.6 (Frequency thresholds). Given a TPSa with alphabet Σa, tag path frequency set
FSa, we de�ne the frequency thresholds FTa to be the ordered set containing only the frequencies of
FSa. Let FTa = {f |∃(s, f) ∧ (s, f) ∈ FSa ∧ s ∈ Σa}, where f is a frequency, s is the corresponding
symbol of the alphabet Σa.

In the TPS from Figure 2, the tag path frequency set is FS = {(1, 1), (2, 1), (3, 2), (4, 4)}, in this case
the frequency thresholds is equal to FT = {1, 2, 4} because symbols �1� and �2� both have frequency
equal to 1, symbol �3� has frequency equal to 2 and symbol �4� has frequency equal to 4. The FT
set is need to �lter out symbols from the TPS. If we have a set FT = {1, 2, 4}, there is no point in
�ltering symbols with f = 3, because there is none in the sequence.

De�nition 3.7 (Region). Let a tag path sequence TPS be a concatenation of two other sequences
TPS = TPSa.TPSb, we say that TPSa and TPSb are regions of TPS, i� Σa ∩ Σb = ∅.

In Figure 2 if we divide the TPS in two subsequences TPSa = TPS[1..2] = (1, 2) and TPSb =
TPS[3..8] = (3, 4, 4, 3, 4, 4), with alphabets Σa = {1, 2} and Σb = {3, 4}, we say that TPSa and TPSb

are distinct regions of TPS, because Σa ∩ Σb = ∅.
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Fig. 2. An example of a TPS being built from an HTML code.

4. PROBLEM FORMULATION

Given the de�nitions presented in the previous section, we formulate next the problem of page seg-
mentation and noise removal, based on the following assumptions:

(1) di�erent regions of a web page are described using di�erent tag paths, so these regions will have
di�erent alphabets; and

(2) in web sites with semi-structured content (i.e. records, as de�ned in [Liu et al. 2003]), the main
region is structurally denser than the others (menus, ads, text, etc.).

The basis for assumption (1) comes from the observation that the regions of a web page are di�erent
rami�cations in the DOM tree and these regions are described either using di�erent tags for each one
or, if the tags are the same, with di�erent styles, so that they can easily be distinguished by the user.
If all regions of a page look alike, it gets more di�cult, for the user, to tell them apart. Then, from
De�nition 3.3 we can see that the set of symbols used in each region of a web page should be di�erent,
and so it should be possible to segment a page using De�nition 3.7.

The assumption (2) comes from the context in which we apply the page segmentation proposed in
this work (i.e. structured extraction). Since we are segmenting only pages containing records, and we
know that in order to describe the structure of these records, in HTML, we need more nodes of the
DOM tree than for unstructured data (i.e. text), it is reasonable to assume that, for a page containing
records, the main region is the largest one (i.e. the one with more nodes).

Now, using the de�nitions in Section 3 and the above assumptions, we can state the problem of web
page segmentation and main content identi�cation to be the following: ��nd the largest region in

the TPS of a web page that has an alphabet that does not intersect with the alphabet of
other smaller regions� .

One crucial detail that has to be taken into account, is that there may be tag paths in a page
that represent structural divisions of it (i.e. web site's visual formatting). These tag paths, if they
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are divisions, will show up a few times throughout the entire sequence, preventing us from �nding a
split, in the TPS, where the alphabets of the two parts of the sequence do not intersect. To remove
this noise from the TPS, we �lter out, iteratively, all symbols with lower frequencies. This way we
can avoid this problem without harming the segmentation process, because the tag paths with higher
frequencies are still being considered.

For illustration purposes, we give now an example of a web page starting and ending with the same
tag path (�/body/br�) and with three regions delimited by the same tag path (�/body/div�). Assuming
that di�erent tag paths are used to describe each region, without �ltering out low frequency tag paths
from the TPS it would not be possible to split the sequence into regions.

�HTML code

<body>

<br>

<div><span class='region1'></span>...<span class='region1'></span></div>

<div><span class='region2'></span>...<span class='region2'></span></div>

<div><span class='region3'></span>...<span class='region3'></span></div>

<br>

</body>

�TPS

TPS = (1,2,3,4,...,4,3,5,...,5,3,6,...,6,2)

The symbols 2 and 3 appear along the entire TPS.

�Filtered TPS

TPS = ( , , ,4,...,4, ,5,...,5, ,6,...,6, )

Only symbols with frequency higher than 3 are considered in the segmentation process. Now it is
possible to split the TPS into regions.

5. ALGORITHMS' DESCRIPTION

In this section we present the algorithms we have developed to address the problem stated in Section
4. They are the following:

�tagPathSequenceFilter(). It is the main algorithm, which receives a HTML �le as input and
returns a pruned DOM tree with the main content region;

�convertTreeToSequence(). It converts the web page DOM tree into a tag path sequence;

�searchRegion(). It is the actual search for the main region of the TPS;

��lterAlphabet(). It �lters an alphabet, removing lower frequency symbols, making the overall
algorithm more robust and resistant to noise;

�pruneDOMTree(). It prunes the original DOM tree, leaving only the main content region reported
by searchRegion, keeping the original structure of the document.
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5.1 tagPathSequenceF ilter() Algorithm

Algorithm 1 Filters out noise from a web page

Input: inputF ile - an HTML �le
Output: pruned inputF ile's DOM tree

1: procedure tagPathSequenceFilter(inputF ile)
2: DOMTree← parseHTML(inputF ile)
3: convertTreeToSequence(DOMTree.body,� �, tagPathSequence)
4: searchRegion(tagPathSequence)
5: pruneDOMTree(DOMTree.body, tagPathSequence)
6: return DOMTree
7: end procedure

The procedure tagPathSequenceF ilter() in Algorithm 1 returns the main content region of inputF ile.
The procedure parseHTML(), in Line 2, converts the HTML code into a DOM tree represen-
tation; convertTreeToSequence(), in Line 3, converts the DOM tree into a TPS; the procedure
searchRegion(), in Line 4, recursively searches for the largest part of the TPS that has a unique
alphabet and, �nally; pruneDOMTree(), in Line 5, prunes out of the DOM tree every node that is
not in the resulting TPS, preserving the structure of the returned document in Line 6.

Bellow we detail the algorithms convertTreeToSequence(), searchRegion(), filterAlphabet() and
pruneDOMTree(). The algorithm parseHTML() is not in the scope of our work and so, will not be
discussed here.

5.2 convertTreeToSequence() Algorithm

Algorithm 2 Converts a DOM tree to a tag path sequence representation

Input: node - a node from the DOM tree, initially the root of the tree
Input: tagPath - the previous tag path, initially empty
Input: tagPathSequence - the TPS built from the DOM tree, initially empty
Output: the TPS for the given DOM tree stored in tagPathSequence

1: procedure convertTreeToSequence(node, tagPath, tagPathSequence by reference)
2: tagPath← concatenate(tagPath,�/�, node.tag, node.style)
3: if tagPath 3 tagPathMap then
4: tagPathMap← tagPathMap+ {tagPath}
5: tagPathMap[tagPath].tagPathCode← tagPathMap.size
6: end if

7: tagPathSequence← concatenate(tagPathSequence, tagPathMap[tagPath].tagPathCode);
8: for each child of node do
9: convertTreeToSequence(child, tagPath, tagPathSequence)
10: end for

11: end procedure

The procedure convertTreeToSequence() in Algorithm 2 converts a web page from its DOM tree
representation to a TPS representation, traversing the DOM tree in depth-�rst order. It is initially
called in Algorithm 1 with an empty tagPath parameter, which represents the previous tag path string
(from the previous recursive call). In Line 2, the previous tag path is concatenated with the current
tag, as well as with its style de�nition, in order to distinguish repeated paths with di�erent styles;
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in Line 3, it is checked whether or not the current tag path has been seen before (tagPathMap is
used for this purpose) and, if not, in Line 4, it is inserted into the set tagPathMap and a new code
assigned to it in Line 5, as stated in De�nition 3.3; in Line 7, the tag path code is appended to the
end of the sequence and, �nally, the procedure is called recursively in Line 9 for each child of node.

5.3 searchRegion() Algorithm

This is the core algorithm, since it is responsible for �nding the main content region, so we have
provided na illustration, in Figure 3, to help understand its workings. In Figure 3, for clarity purposes,
we have omitted alphabet �ltering in order to keep it simple and easy to understand the main idea
behind the searchRegion() algorithm.

Fig. 3. Illustration of procedure searchRegion().

Algorithm 3 Search for regions in the TPS with di�erent alphabets

Input: tagPathSequence - the TPS of a given page
Output: the main region of the TPS, stored in tagPathSequence

1: procedure searchRegion(tagPathSequence[1..n] by reference)
2: alphabet← ∅
3: t← 0
4: for i← 1..n do

5: symbol← tagPathSequence[i]
6: if symbol 3 alphabet then
7: alphabet← alphabet ∪ {symbol}
8: symbolCount[symbol]← 0
9: end if
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10: symbolCount[symbol]← symbolCount[symbol] + 1
11: end for

12: thresholds← OrderedSetOfFrequencies(symbolCount)
13: regionFound← false
14: while not regionFound do
15: t← t+ 1
16: currentAlphabet← filterAlphabet(alphabet, symbolCount, thresholds[t])
17: if currentAlphabet.size < 2 then

18: break
19: end if

20: currentSymbolCount← symbolCount
21: regionAlphabet← ∅
22: for i← 1..n do

23: symbol← tagPathSequence[i]
24: if symbol ∈ currentAlphabet then
25: regionAlphabet← regionAlphabet ∪ {symbol}
26: currentSymbolCount[symbol]← currentSymbolCount[symbol]− 1
27: if currentSymbolCount[symbol] = 0 then

28: currentAlphabet← currentAlphabet− {symbol}
29: if currentAlphabet ∩ regionAlphabet = ∅ then
30: if currentAlphabet 6= ∅ and (n− 2 ∗ i)/n > 0.20 then

31: regionFound← true
32: end if

33: break
34: end if

35: end if

36: end if

37: end for

38: end while

39: if regionFound then
40: if i < n/2 then

41: tagPathSequence← tagPathSequence[i+ 1..n]
42: else

43: tagPathSequence← tagPathSequence[1..i]
44: end if

45: searchRegion(tagPathSequence)
46: end if

47: end procedure

The procedure searchRegion() in Algorithm 3 computes the TPS alphabet and corresponding
symbol frequency from Lines 4 to 11; in Line 12, the frequency thresholds, from De�nition 3.6, are
computed; from Lines 14 to 38 the actual search is performed for a position in the TPS where a split
is possible (i.e. where a region exists); in Line 15 the frequency thresholds are iterated; in Line 16
the TPS alphabet, from De�nition 3.4, is �ltered, as described in Section 4; in Line 22 the TPS is
iterated; in Line 25 the region alphabet is computed and; from Lines 27 to 35 it is checked if there is
no intersection between the alphabets of the two portions of the TPS (an empty intersection indicates
that a possible region was found, as in De�nition 3.7). The found region is only reported if it is at least
20% larger than the rest of the sequence, otherwise we continue iterating the frequency thresholds.
This percentage is actually a parameter and its purpose is to avoid reporting a region under ambiguous
conditions (in the experiments we used the value of 20%); �nally from Lines 39 to 46 the TPS is split
if a region was found, calling searchRegion() recursively in line 45, if so.
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5.4 filterAlphabet() Algorithm

Algorithm 4 Filters out symbols with lower frequencies from the alphabet

Input: alphabet - the alphabet ot be �ltered
Input: symbolCount - the tag path frequency set (FS) of the alphabet
Input: threshold - a frequency threshold
Output: a �ltered alphabet

1: procedure filterAlphabet(alphabet, symbolCount, threshold)
2: filteredAlphabet← ∅
3: for i← 1..n do

4: if symbolCount[alphabet[i]] ≥ threshold then
5: filteredAlphabet← filteredAlphabet ∪ {alphabet[i]}
6: end if

7: end for

8: return filteredAlphabet
9: end procedure

The procedure filterAlphabet() in Algorithm 4 removes from alphabet, every symbol with frequency
lower than threshold. in Lines 3 to 7 only the symbols with frequency greater or equal to threshold
are inserted in the resulting set. The result of filterAlphabet() is used in Algorithm 3, Line 24, where
only the symbols in filteredAlphabet are considered while searching for a region.

5.5 pruneDOMTree() Algorithm

Algorithm 5 Prune from the DOM tree the nodes that are not in sequence

Input: node - a node from the DOM tree to be pruned, initially the root of the tree
Input: sequence - the TPS that has to remain in the DOM tree
Output: the DOM tree pointed by node pruned

1: procedure pruneDOMTree(node by reference,sequence)
2: for each child of node do
3: if pruneDOMTree(child, sequence) = true then
4: remove child from node
5: end if

6: end for

7: if node 3 sequence and node.childCount = 0 then

8: return true
9: end if

10: return false
11: end procedure

The procedure pruneDOMTree() in Algorithm 5, traverses the DOM tree, depth �rst, removing the
nodes that do not belong to sequence. In Line 3 the DOM is traversed; in Lines 7 to 9 it is decided
whether or not node should be removed.

A node is removed from the tree, only if it is not in sequence and has no children. This way we keep
the structure of the remaining tree intact, in order not to a�ect the subsequent structured extraction
phase.
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5.6 Algorithm's complexity

As for the algorithm's complexity, if we observe Lines 14 and 22 of the procedure searchRegion(),
we can see that the loop in Line 14 iterates the frequency thresholds until a region is found and Line
22 iterates the TPS (�ltered at given frequency threshold) also until a region is found and, if so, the
reported region is recursively processed.

In the worst case, when the alphabet intersection is empty only in the last index of the TPS, the
complexity would be at most O(n2f), where n is the length of the TPS and f is the size of the set
thresholds. In practice, the size of the set thresholds is much smaller than the length of the TPS, so
we can say the complexity approximates O(n2) as shown in Equation 1.

T (n) = T (n− 1) + Θ(n) =⇒
n∑

i=1

i =
n(n+ 1)

2
= O(n2) (1)

In average, if the TPS gets split in half, the complexity would be O(n) as in Equation 2.

T (n) = T (n/2) + Θ(n) =⇒
logn

2∑
i=1

n

2i
= n− 1 = O(n) (2)

In the best case, TPS is split in the �rst index, yielding O(n) as in Equation 3.

T (n) = T (n− 1) + Θ(1) =⇒
n∑

i=1

1 = n = O(n) (3)

In real world scenarios, as we have seen while doing the evaluation of the algorithm, the sequences
get split approximately four of �ve times until they can not be split no more. So we can say that in
real cases, the algorithm executes in O(in) time, where n is the size of the TPS and i is the number
of times the sequence gets split, which we can consider as a small constant, in this case, and say that
it runs in O(n).

6. EXPERIMENTAL RESULTS

In this section we describe and discuss the results of our experiments and how they are presented.
To obtain the results presented in Subsection 6.2, we have implemented the algorithm and tested it
against some commercial and institutional web sites. In Subsection 6.1 we detail one of the results
presented, as an example, to clarify how they are compiled in Table I.

6.1 Experimental setup

We considered the extraction results of MDR alone as our baseline to be compared with the results
obtained by the combined use of TPS �ltering and MDR, as illustrated in Figure 1.

When applying both approaches (MDR and TPS �ltering+MDR) to a result page of YouTube web
site, the following results are obtained:

�raw web page (i.e. the original page, without TPS �ltering)
�DOM tree processed: 1424 nodes;
�MDR results: 82 records total ( 62 noise / 20 targets );

�pruned web page (i.e. the web page after TPS �ltering)
�DOM tree processed: 674 nodes, size 47, 33% of the original page, reduction of (−52, 67%)
�MDR results: 20 records total ( 0 noise / 20 targets ), noise removed 100%
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In this result, we can see an improvement in the extraction of records as well as a considerable
reduction in the size of the DOM tree to be processed. A percentage of 52.67% of the DOM tree was
pruned without losing the target records in the process. Everything pruned out of the DOM tree was
noise. Figure 4 illustrates the web page and the main content region.

Fig. 4. A page from the YouTube web site and the main content region delimited.

Without applying TPS �ltering, we get 82 records in total and, since we know there are 20 target
records in this page, we can consider the value of 62 records to be 100% of noise to be removed. When
we use TPS �ltering, this time we get only the 20 target records in the extraction phase, yielding a
precision of 100%, that means all noise was removed in this case. We calculate the percentage of noise
removed to be

NoiseRemoved = 1− NumRectotalTPS −NumRectargetTPS

NumRectotal −NumRectarget
(4)

Where NumRectotal and NumRectarget are the total number of records and the number of target
records, respectively, from the original web page, and NumRectotalTPS and NumRectargetTPS are
the total number of records and the number of target records, respectively, from the �ltered web page.

6.2 Results

In Table I we present, in the �rst three columns, the size of the DOM tree processed by MDR and
the reduction obtained after �ltering. The column �Content Present� indicates whether or not the
�ltering process preserved the main content region. The next four columns are the results of MDR
alone and combined with TPS �ltering, showing the total records and target records extracted for
both approaches. The last column shows the percentage of noise removed, calculated using Equation
4.

As we can see in Table I, the total of column �Content Present� indicates that the algorithm has
worked in 86.96% of the sites and it has removed, for this test set, an average of 77.03% of all noise
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Table I. Compiled results

MDR (# records)
DOM size (# nodes) Content Raw Pruned (eq. 4)

Site Raw Pruned Reduction present Tot Tgt Tot Tgt Noise rem.

acm.org 601 340 -43.43% Yes 61 10 16 10 88.24%
amazon.com 3309 1054 -68.15% Yes 368 15 27 15 96.60%
americanas.com.br 2660 710 -73.31% Yes 211 20 20 20 100.00%
bestbuy.com 3632 1425 -60.77% Yes 299 15 15 15 100.00%
bondfaro.com.br 3897 3069 -21.25% Yes 231 28 178 28 26.11%
bradesco.com.br 1913 1113 -41.82% Yes 164 10 93 10 46.10%
buscape.com.br 3608 3514 -2.61% Yes 279 24 266 24 5.10%
ebay.com 2623 1801 -31.34% Yes 162 50 50 50 100.00%
elsevier.com 906 160 -82.34% Yes 120 10 32 10 80.00%
g1.com.br 900 619 -31.22% No 225 10 202 0 N/A
globo.com 400 193 -51.75% Yes 80 10 20 10 85.71%
google.com 1421 981 -30.96% Yes 118 11 61 11 53.27%
itau.com.br 1111 410 -63.10% No 77 10 11 0 N/A
magazineluiza.com.br 3167 1115 -64.79% Yes 314 40 44 40 98.54%
mercadolivre.com.br 2401 1771 -26.24% Yes 136 50 52 50 97.67%
reuters.com 1202 480 -60.07% Yes 136 10 54 10 65.08%
scopus.com 4929 4688 -4.89% Yes 114 20 75 20 41.49%
submarino.com.br 2389 1268 -46.92% Yes 116 20 22 20 97.92%
terra.com.br 869 588 -32.34% Yes 122 50 76 50 63.89%
valor.com.br 514 126 -75.49% No 55 10 2 0 N/A
webmotors.com.br 2119 1361 -35.77% Yes 113 14 19 14 94.95%
yahoo.com 760 290 -61.84% Yes 67 10 10 10 100.00%
youtube.com 1424 674 -52.67% Yes 82 20 20 20 100.00%

Average/Total -46.22% 86.96%/13.04% 77.03%

present in the data, as shown by the average of column �Noise rem.". We consider these to be good
results.

The average DOM tree reduction of 46.22% is an interesting result. First, because that means
almost half the DOM tree is noise in average. Second, because this number matches the value reported,
independently, by [Gibson et al. 2005] as page template size (between 40% and 50%), corroborating
with literature work.

An interesting situation we can see in Table I is the result for the site �g1.com.br�. Without �ltering,
MDR has reported a total of 225 records, included 10 target records. After �ltering is applied, a total
of 202 records are reported, none of them targets, all noise. So, after �ltering, if we had reported
the complementary DOM tree instead, we would get a result of 23 records in total (202− 225 = 23),
included here the 10 target records, which is an excellent result since it gives us a 93.99% of noise
removal. We can deduce from this, that the segmentation has worked just �ne for this site, only the
main content was not correctly identi�ed, since it's relatively small.

6.3 Results Discussion

There are three main situations where the algorithm needs to be improved but, fortunately, only two
of these can lead to loss of main content (content removal). In Table I, column �Content Present�,
these two situations account for 13.04% of the cases, where the content region was removed in the
�ltering process.

(1) templates too homogeneous. These are pages with little di�erence between the regions. In
this case, using this technique, there is not much to do. We simply do not have enough information
to work with, since the entire page looks alike. We do not lose the target records, but the amount
of noise removed is very low;
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(2) templates too heterogeneous. These are pages where the main content is subdivided in more
than one region. In this case, the main region gets split over and over, and only the largest part
passes through the �lter (and it might be noise). We propose a way to work around this problem
later in this Section;

(3) pages where the main content is smaller than the rest. That is a consequence of the
second assumption we made in Section 4: �the main region is denser/bigger than the rest�. In this
case, noise will always be reported as content. The same proposal made for the former situation
can be used to deal with this one as well.

In the case of heterogeneous templates, TPS �ltering can still be used if we make some slight
modi�cations in the algorithm. One such case of heterogeneous template are �news sites�, where every
record has a di�erent structure, but they are all records from the same domain (i.e. they belong to the
same entity). In this speci�c situation, TPS segmentation could be used to split the page in several
parts, and a semantic approach used to combine the regions, reporting the main content as a set of
regions instead of only one.

For situation described for the site �g1.com.br� (that happened for two other sites we tested), when
the content region is smaller than the rest, we could apply a semantic technique to check whether or
not the desired content is present in the reported region, if not, report the complementary DOM tree
(i.e. inverse the pruning) instead. The main algorithm would look like this:

Algorithm 6 Filters out noise from a web page

Input: inputF ile - an HTML �le
Output: pruned inputF ile's DOM tree

1: procedure tagPathSequenceFilter(inputF ile)
2: DOMTree← parseHTML(inputF ile)
3: convertTreeToSequence(DOMTree.body,� �, tagPathSequence)
4: backupTPS ← tagPathSequence
5: searchRegion(tagPathSequence)
6: if tagPathSequence not content then
7: tagPathSequence = backupTPS − tagPathSequence
8: end if

9: pruneDOMTree(DOMTree.body, tagPathSequence)
10: return DOMTree
11: end procedure

Algorithm 6 is the same as Algorithm 1, except for Line 6 where it checks if the main content is
present in the reported region and, if not, we report the complementary sequence instead (Line 7),
ensuring the presence of the main content.

7. CONCLUSION

As shown in the results, the method we have proposed for page segmentation and noise removal is
very e�ective for some commercial/institutional web sites. In most cases, a very large amount of noise
is removed without compromising the main content region. Also, when applied in conjunction with
MDR, we can see that the extraction precision is greatly improved.

In the situations where our algorithm fails, other techniques have to/should/could be combined
depending on the targeted application. In extreme cases, where a page has either too homogeneous
structure (so we can not �nd a split anywhere along the TPS) or too heterogeneous structure (then
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the main content itself gets split in several parts), the main content block could be detected using,
perhaps, semantic approaches.

The algorithm shows outstanding performance, as it works very well for the majority of large
commercial web sites we have tested. It also outcomes the limitations (training requirements, HTML
tag dependency, manual labeling, among others) of previous works in the area of data cleaning, page
segmentation and noise removal as mentioned in Section 2.
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