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Abstract. The data currently generated and collected increase not only in volume, but also in complexity, requiring
new query operators to be searched. Similarity queries have been acknowledged as one of the most useful resources to
retrieve complex data, but the basic similarity operators are not enough to meet the requirements of the applications,
largely because their result sets tend to include many elements too similar to the query center and among themselves.
To tackle this problem, variations and extensions of basic operators have been studied pursuing result diversification,
i.e, to search for elements sufficiently similar to the query center, but also diverse from each other. Result diversification
has been studied considering either extra information related to the data or the distance among result set elements. The
problem with the former approach is that “extra information” rarely exists and, even when it does, the corresponding
processing cost is commonly too high. Moreover, the distance-based algorithms are often good alternatives even for
data domains that can rely on other information, besides the elements and their distances. The main drawback of
distance-based algorithms is the lack of evaluation methods to understand how diverse the retrieved answer is. This
article reports on the development of several statistical measurements able to evaluate the diversity of the result set.
The concept of the “answer space”, has also been created, aimed at highlighting the distribution of the several result
sets that can be the answers to a given similarity-diversified query, which enables the evaluation of the query quality
regarding several different criteria. Finally, we describe an extensive set of experiments to validate our proposals and
highlight the analysis that could be performed by the system analyst, using four real datasets that span up to 72k
elements and 761 dimensions.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous; H.3 [Information Storage and
Retrieval]: Miscellaneous

Keywords: evaluation methods, result diversification, similarity search, space mapping

1. INTRODUCTION

Recently, several studies have been conducted aimed at getting more efficient similarity query execu-
tion [Skopal et al. 2009]. Better performance is commonly obtained by indexing structures, which is
even more demanded when applied to large, complex data. Another issue of foremost importance is
the improvement of the efficacy of the answers, i.e, by avoiding returning too similar elements in the
result set. For example, assume that a student will join a conference in São Paulo and decides to seek
information in a search engine on the Internet. It is easy to observe that a search for the term “São
Paulo” has more interesting results if there are references to the city, the state, the soccer team, the
aircraft, the saint, restaurant guides and cultural spots, than if they are all concentrated in one of
those topics. To deal with this problem, research areas, such as information retrieval [Ziegler et al.
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2005] and recommendation systems [Agrawal et al. 2009] have introduced the “diversity property” to
result sets, whose goal is to retrieve elements similar enough to the query center to meet the query
predicate, but also diverse enough to generate a heterogeneous, more interesting and useful result set.

Most of the result diversification approaches take advantage of extra information related to the
data (i.e., metadata), such as taxonomies [Ziegler et al. 2005; Agrawal et al. 2009], spatial structure
of the data [Vee et al. 2008], cluster attributes [Chen and Li 2007; van Leuken et al. 2009], query logs
and users’ expectation [Capannini et al. 2011]. Following this idea, the quality of query answers is
dependent on the existence of a priori extra information. Unfortunately, extra information is rare in
many real scenarios, and processing it always leads to higher computational costs.

Another result diversification approach is based on the exploration of the domain of distances
among elements in the target data space. The distance-based approaches do not require any other
information besides the data elements and their pair-wise similarities, which are evaluated by a dis-
tance function [Carbonell and Goldstein 1998; Vieira et al. 2011; Yu et al. 2009; Gollapudi and Sharma
2009; Drosou and Pitoura 2012; Skopal et al. 2009]. However, there are few evaluation methods able to
accurately measure the diversity of the result sets retrieved by such algorithms, aimed at highlighting
one’s understanding of what kind of diversity is retrieved by each of the existing approaches.

In this article we focus on the effectiveness evaluation of distance-based approaches, and we propose
a novel set of methods to measure the accuracy of similarity-with-diversity retrieval algorithms, based
on the use of several statistical analyses obtained from different strategies for measuring result set
diversity. We also propose the definition of an “answer space”, in which each element is a possible
query solution. The space enables the comparison of queries and the definition of properties that
allow developing guidelines to choose the best-suited similarity-with-diversity retrieval algorithm to
answer queries over a given dataset. To validate our proposals, we performed an extensive experimental
evaluation using four real datasets that span up to 72k elements and 761 dimensions. Our experiments
show how each existing algorithm compares with each other, and confirm that those considered to the
best ones indeed perform better than the others in most situations. Moreover, our results pinpoint for
which types of datasets these algorithms in fact thrive and for which ones they do not, thus indicating
“where” there is still room for improvement in result diversification research.

The remainder of the article follows a traditional organization: related work (Section 2), proposed
techniques (Section 3), experiments (Section 4), and conclusions (Section 5). The symbols of our
notation are listed in Table I.

Table I: Table of Symbols

Symbols Definitions
F Diversity algorithm
L Diversity metric extractor
S Similarity domain
L Answer space
S Dataset (S ∈ S)
sq Query center (sq ∈ S)
R Set of result sets (R =

⋃
Ris)

Ri ith result set (Ri ⊂ S, Ri ∈ R)

Symbols Definitions
Rt Target result set (Rt ∈ R)
Rr Reference result set (Rr ∈ R)
ru, rv Result set elements (ru, rv ∈ Ri)
k Number of elements in the result set
δdiv Diversity distance
δsim Similarity distance
DV Set of diversity feature vectors
dvi ith diversity feature vectors (dvi ∈ L)
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2. RELATED WORK

2.1 Result Diversification Methods

Result diversification has been examined in various ways of different areas [Drosou and Pitoura 2012].
Most approaches use metadata, besides similarity and diversity distances among the elements [Vieira
et al. 2011; Agrawal et al. 2009; Gollapudi and Sharma 2009; Carbonell and Goldstein 1998]. Examples
of such additional information are user expectation and query logs in web searches [Angel and Koudas
2011; Capannini et al. 2011], taxonomies of terms when searching in textual datasets [Agrawal et al.
2009; Ziegler et al. 2005], and cluster attributes in annotated data [Chen and Li 2007; van Leuken
et al. 2009]. However, the processing of external information is often computationally expensive and
it commonly provides suboptimal results, since workloads and query requirements are seldom known
in advance [Vieira et al. 2011].

Other approaches for result diversification have also been pursued without extra information. The
existing methods can be classified into two main groups: optimization and separation distance. The
optimization approaches target k-nearest neighbor queries only. In such approaches, similarity and
diversity compete with each other, taking one user-defined diversity preference (λ) as input, so that
the result of basic similarity algorithms can be re-ranked, inducing diversity among elements based
on a trade-off objective function F [Carbonell and Goldstein 1998; Yu et al. 2009; Vieira et al. 2011].

When λ > 0, the exhaustive solution for the k-nearest diversification set can be found by a brute
force algorithm. It tests every possible subset R ⊆ S of size k to find the highest F value. As the
worst case solution is NP-hard, greedy algorithms are employed to build the result set incrementally.
Such algorithms often use the initial result set produced by a similarity-based algorithm in which the
result elements are as similar as possible to the query center, but ask for more elements than the k
required. Thereafter, the desired k elements are selected considering the objective function F . In this
article we focus on the max-sum diversification approach, i.e., maximize both, the sum of similarity
and diversity distances between result set elements, since it seems the most widely accepted among
previous approaches [Carbonell and Goldstein 1998; Gollapudi and Sharma 2009; Yu et al. 2009;
Drosou and Pitoura 2010; Vieira et al. 2011].

The performance of the greedy algorithms also differs in function of the construction strategy
adopted for the result set R. Thus, we can classify the existing methods based on this characteristic:

Incremental : The result set R starts empty and is iteratively increased by selecting the element
in S that maximizes the objective function.

Exchanging : An initial result set R is chosen. Thereafter, the remaining elements in S are
evaluated as candidates to replace an element from the current solution R.

Meta-heuristic: An initial result set R is chosen by a heuristic-based ranking function. Then, a
local search improves the current solution R by iteratively swapping an element in the result set
for another.

Several optimization methods have been proposed to efficiently compute R , based on one of those
construction strategies. Table II classifies some representative methods according to the construction
strategy used.

The Maximal Marginal Relevance (MMR) [Carbonell and Goldstein 1998] iteratively constructs the
result set R by selecting a new element in S that maximizes the following function:

MMR(si) = (1− λ)δsim(si, sq) +
λ

|R|
∑
sj∈R

δdiv(sisj) .
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Table II: Description of some representative optimization approaches in diversification quality separated by the con-
struction strategies

abbreviation method name construction strategy

MMR Maximal Marginal Relevance incremental
Swap Swap exchanging
GNE GRASP with Neighbor Expansion meta-heuristic

The MMR method has two critical properties that influence the elements of the result set R. First,
R always starts with the element of the highest δsim in S, regardless of the value λ. Second, since the
result is incrementally constructed by inserting a new element into previous results, the first element
chosen has a larger influence on the quality of the final result set R, which may display lower or higher
quality in terms of F , according to the first element chosen.

The Swap method [Yu et al. 2009] is twofold. In the first step, the top-k relevant elements in S
define the initial result R. In the second phase, each remaining element in S, ordered by decreasing
δsim values, is tested to replace an element of the current solution R. If the tested element improves
F , then a replace operation is permanently applied to R. This process continues until every element
in the candidate set S has been checked. The final result set may not be optimal, since the candidate
set S is analyzed with respect to their δsim order and does not consider the order of δdiv values in S,
which can result in solutions that do not maximize F .

The GNE method was proposed by Vieira et al. [2011]. It uses a Greedy Randomized Adaptive
Search Procedure (GRASP) [Feo and Resende 1995] for diversifying query results. Each iteration
chooses a random element among the top ranked ones and builds the result set R by selecting the
element of highest maximum marginal contribution (mmc) to the current solution, using the function:

mmc(si) = (1− λ)δsim(si, sq) +
λ

k − 1

∑
sj∈Rp−1

δdiv(si, sj) +
λ

k − 1

l≤k−p∑
l=1 sj∈S−si

δldiv(si, sj) .

In this equation, Rp−1 is the partial result of size p − 1, 1 ≤ p ≤ k, and δldiv(si, sj) gives the lth
highest δdiv value in {δldiv(si, sj) : sj ∈ S −Rp−1−si}.

GNE has two phases. In the Construction Phase, at each iteration, the choice of the next element
to be added in R is determined by a greedy randomized ranking function, which ranks the elements in
S according to mmc. Only elements of highest mmc, are considered to be stored in a list named the
Restricted Candidate List (RCL). An initial result set R is then randomly chosen from the RCL. Note
that it may not be the element of highest contribution in the RCL. In the Local Search Phase, the initial
result set is progressively improved by applying a series of local modifications to the neighborhood
of the current solution. The local search algorithm swaps elements in the result set R with the most
diverse elements regarding a reference element in R, whenever it improves the current solution.

The separation distance approach considers that there must exist a minimum distance ξp among
pairs of elements in the answer. Pairs of elements closer than ξp are considered too similar to each
other and only one element of each pair is included in the answer [Skopal et al. 2009; Haritsa 2009; Gil-
Costa et al. 2011; Drosou and Pitoura 2012]. An example of the usage of this approach appears in the
k-Distinct Nearest Neighbors (kDNN) query, proposed by Skopal et al. [2009]. The First-Match (FM)
algorithm uses a fixed user-defined separation distance that specifies the required diversity between
result set elements. The kDNN query builds on the classic k-NN query, but excluding all elements
that are too similar to any of the reported elements.
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The First-Match (FM) algorithm is a representative kDNN variant that can be considered as an
extension of the classic k-NN one. Given a query element sq, the algorithm retrieves elements in
ascending order with respect to their distances to sq. Whenever a distinct element is retrieved from
the ordering, it is added to the query result, therefore the elements already reported to the query
result have to be far enough from each other.

2.2 Diversification Evaluation Methods

In order to evaluate the accuracy of diversification, various measurements have been proposed in the
literature [Drosou and Pitoura 2010; Agrawal et al. 2009]. The field of Information Retrieval (IR)
systems has been adapting the traditional evaluation measures to take into account the diversity level
of query results. The traditional measures, namely NDCG (normalized discounted cumulative gain),
MRR (Mean Reciprocal Rank) and MAP (Mean Average Precision) evaluate the result sets based on
the position that the elements appears in an ordered list of relevant elements to the query.

An example of this adaptation is provided by Clarke et al. [2008]. The α-NDCG extends the
traditional NDCG to measure the gain of an item being at a specific position of the list taking
into account the items that precede it. This measurement is based on the concept of information
nuggets, which represents a small piece of similar information, as it is commonly referred to in the
summarization and question answering communities [Clarke et al. 2008]. The main drawback of this
measurement is to require a priori knowledge of the nuggets and also considerable amount of human
effort to judge the relevance of elements in the list [Drosou and Pitoura 2010]. The Intent-Aware
Normalized Discounted Cumulative Gain Measure (NDCG-IA) was proposed by Agrawal et al. [2009]
and considered the importance of the elements in different categories for the same query, forcing
a trade-off between adding elements with higher relevance scores and those that cover additional
categories. The same intuition is applied to adapt the MRR and MAP. The main drawback of
these measurements is being dependent of on extra information, such as taxonomies. Thus, the
adapted version provided by the IR field cannot be applied on distance-based approach, where the
only information available are the elements and the distance among them.

To evaluate the accuracy of diversification in distance-based approaches, two measurements are
commonly used: the Gap and the objective function measurements [Vieira et al. 2011; Yu et al. 2009;
Drosou and Pitoura 2010]. The main difference of these measurements to those from the IR field
is that the results are viewed as a set instead of an ordered list. The objective function measure
evaluates the maximization in the result sets based on its defined diversity function. For example,
considering that two algorithms (A and B) were defined using the same objective function F. The
algorithm A is considered better than B if FA value is higher than FB . The Gap measure is a version
of the objective function measure that normalizes the results using the optimal value provided by an
exhaustive algorithm (optimal value) [Vieira et al. 2011]. For example, considering that FA and FO

are the values reached by the algorithm A and the exhaustive algorithm O, respectively. The Gap
measure is the difference between FO and FA, divided by FO .

3. DIVERSITY EVALUATION

This section presents our novel concept of the answer space based on a set of statistical measurements
over query answer sets, aims at comparing the different answers from the algorithms with the plain
query answer. We conduct our discussion assuming that S = {s1, . . . , sn} is a dataset of n elements
taken from a domain S and sq ∈ S is a query center. Let Ri ⊂ S be a result set for the query
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centered at sq, which selects in S elements similar to sq, and also diverse among themselves, following
a diversity algorithm F. The set of result sets R is the union of all result sets Ri centered at the
same sq (R =

⋃
Ri). Our goal is to evaluate the quality of the distance-based result diversification

algorithms following two strategies to measure diversity: 1) result-based statistics and 2) result set
comparisons. The first strategy extracts features from each Ri ∈ R and compares them using our
proposed Dissimilarity Feature method (DiFM ), which is detailed in the upcoming Section 3.2.1. The
features are obtained by the diversity metric extractor L, which is based on the distances between
elements in Ri, since it is the only information available. The second strategy of evaluation directly
compares the elements of the result sets applying the new Dissimilarity (DM ) and the Dissimilarity
Error (DEM ) evaluation methods, proposed in the upcoming Sections 3.2.2 and 3.2.3, respectively.

Figure 1 illustrates the main components of our proposal. The toy dataset S = {s1, s2, . . . , s10}
shown in Figure 1(a) is the search space composed of elements from domain S. The diversity algorithm
F is executed using S and query center sq. Figure 1(b) shows its execution with three different input
parameter configurations, generating the set of result sets R = {R1, R2, R3}. For each result set Ri,
the diversity metric extractor L extracts appropriate features and maps them into the answer space
L (Definition 3.1), as shown in Figure 1(c). Aimed at evaluating the quality of the result, the result
sets R1, R2 and R3 can be analyzed by our proposed ‘Diversification Evaluation Method’, using our
Dissimilarity and/or Dissimilarity Error evaluation methods (Arrow 1© of Figure 1), and/or L by our
Dissimilarity Feature Method, also presented in the ‘Diversification Evaluation Method’ (Arrow 2© of
Figure 1). This choice depends on the information pursued by the user during the analysis.

Definition 3.1. Answer Space (L): Given R a set of result sets and a diversity metric extractor
L, an answer space L is an m-dimensional space in which m is the number of features extracted by L
and each element in L is a distance distribution of a possible diversity solution for a query center sq.

The following sections detail the features extracted by our Diversity Metric Extractor L from each
result set and the evaluation methods that compose the ‘Diversification Evaluation Method’.

3.1 The Diversity Feature Vector

The Diversity Feature Vector dvi represents the features extracted from each result set Ri ∈ R in the
Answer Space L. In this process, the Diversity Metric Extractor L uses each Ri to extract features
that will be used for comparisons among the algorithms. We propose quantitative features that can
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be directly calculated by L using only the distances between elements of the result set, which is the
only information available. These features capture different statistics that are used by the result-based
statistics evaluation method to measure the quality of a result set in the answer space L.

Let DV = {dv1, . . . , dvn} be the set of diversity feature vectors extracted by L from the set of result
sets R = {R1, . . . , Rn}, that is, L(Ri) = dvi. Therefore, each dvi has features (f1, . . . , fm), in which
m is the number of features extracted by L, i.e, the number of dimensions of the answer space L. We
have assumed that L is 6-dimensional and dvi is composed of the six features described as follows:

i. Average Diversity Distance (AvgDivDistance), which represents how diverse the result set ele-
ments are among each other. It is estimated by the average diversity distance from the result set
elements, as shown in Equation 1.

AvgDivDistance (Ri) =

∑|k−1|
u=1

∑|k|
v=u+1 δdiv(ru, rv)

k · (k − 1)
. (1)

ii. Average Similarity Distance (AvgSimDistance), which represents how similar the result set ele-
ments are to the query center. It refers to the average similarity distance between sq and every
result set element, as shown in Equation 2.

AvgSimDistance (Ri, sq) =

∑|k|
u=1 δsim(ru, sq)

k
. (2)

iii. Standard Deviation Diversity Distance (SDDivDistance), which measures the dispersion of indi-
vidual diversity distances on Ri in comparison to AvgDivDistance, i.e, SDDivDistance checks
whether or not the distances between the elements in the result set are equally distributed. If
SDDivDistance has a value close to zero, the elements are equally spaced, while higher values
indicate the presence of clusters in Ri. SDDivDistance is calculated by Equation 3.

SDDivDistance (Ri, sq) =

√∑|k−1|
u=1

∑|k|
v=u+1 (δdiv(ru, rv)−AvgDivDistance(Ri))2

k · (k − 1)
. (3)

iv. Standard Deviation Similarity Distance (SDSimDistance), which measures the dispersion of
individual similarity distances in comparison to AvgSimDistance, i.e, SDSimDistance checks if
the distances between every result set element and sq are equally distributed. SDSimDistance
is calculated by Equation 4.

SDSimDistance (Ri, sq) =

√∑|k|
u=1 (δsim(ru, sq)−AvgSimDistance(Ri))2

k
. (4)

v. Minimum Distance (MinDistance), which represents the smallest diversity distance between any
pair of elements in the result set. It is defined in Equation 5.

MinDistance (Ri) = minru,rv∈Ri
(δdiv(ru, rv)) . (5)

vi. Maximum Distance (MaxDistance), which represents the largest similarity distance between the
query center and any result set element. It is obtained by Equation 6.

MaxDistance (Ri, sq) = maxru∈Ri
(δsim(ru, sq)) . (6)

Once the features of the result set Ri have been obtained, the resulting Diversity Feature Vector
dvi is mapped into the answer space L. Thereafter, the accuracy of each result set Ri is evaluated by
analyzing L, as described in the following sections.
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3.2 Diversification Evaluation Method

The diversification evaluation method is composed of result-based statistics and result set comparisons.
The former compares pairs of diversity feature vectors dv1 and dv2, mapped into the answer space
L (dv1, dv2 ∈ L), while the latter measures how dissimilar two result sets Rr and Rt (Rr, Rt ∈ R)
are. The reference result set Rr refers to the best possible solution, which must be provided by an
exhaustive algorithm. The target result set Rt is the one to be evaluated. Generally speaking, all
methods that we have proposed for result set comparisons receive as input a result set, generated by
the diversity algorithm to be evaluated and return a value that expresses the diversity between the
result set elements regarding diversity criteria.

3.2.1 Dissimilarity Feature Method (DiFM ).

This section proposes the Dissimilarity Feature MethodDiFM to represent the dissimilarity between
a target result set Rt and the reference result set Rr, based on the evaluation of their feature vectors
dvt and dvr. The main benefit of DiFM is that it allows evaluating result sets without comparing the
elements, while still allowing the user to define and use personalized features with DiFM besides those
proposed in Section 3.1. Low values for DiFM imply that dvt is very similar to dvr, while higher values
imply larger dissimilarity. Intuitively, our Diversity Feature Extractor L assumes that it is possible
to interpret the distance distribution between result set elements as a probability distribution, aimed
at describing the similarity and diversity distances by a Gaussian distribution. To establish the
dissimilarity between dvt and dvr we propose the use of the distance function defined in Equation 7,
i.e. the weighted sum of the differences between features of the diversity vectors. For the sake of
simplicity, we used Wi = 1 for all features in our experiments, but different weights Wi can be used
for each feature when it is previously known that some features are more relevant than others to
perform a specific diversity task.

DiFM (dvr, dvt) =

n∑
i=1

|dvr[i]− dvt[i]| ∗Wi . (7)

3.2.2 Dissimilarity Evaluation Method (DM ).

This section presents the Dissimilarity Evaluation Method DM . It represents the discrepancy be-
tween a target result set Rt and the reference result set Rr. This relationship is defined as the relative
similarity between both result sets. Aimed at establishing the dissimilarity between Rt and Rr, we
propose to apply the Jaccard distance to compare their result set elements, as defined in Equation 8.
Low values of DM imply that Rt is similar to Rr, while higher values imply larger dissimilarity. Thus,
the DM method targets on result sets that are as similar as possible.

DM (Rr, Rt) = 1− |Rr ∩Rt|
|Rr ∪Rt|

. (8)

Figure 2 illustrates our DM method for two distinct cases, (a) and (b). The black circles represents
the data elements of each result set, while the black diamonds represent those elements in the inter-
section of Rr and Rt (areas in gray). In Figure 2(a), the result sets share only one element, thereafter,
DM = 0.8. On the other hand, in Figure 2(b), Rt shares all elements with Rr, leading to DM = 0.0,
and our DM measurement correctly spots that the result sets in Figure 2(a) are more dissimilar than
those in Figure 2(b).
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Fig. 2: DM method. (a) Dissimilar result sets (DM = 0.8). (b) Similar(same) result sets (DM = 0.0)

3.2.3 Dissimilarity Error Evaluation Method (DEM ).

The DM method presented in the previous subsection compares the result set elements in a binary
way, i.e. it spots whether or not the elements in Rt are the same ones of Rr. Therefore, DM

is insensitive to whether each target result set element is a close neighbor of a counterpart in the
reference result set or if they are far apart, which restricts DM to evaluate data elements only by
exact match (equality). To tackle this issue, here we extend DM to present the Dissimilarity Error
Evaluation Method DEM . If Rt has the same elements as Rr, their dissimilarity remains zero as in
DM . However, if the elements in Rt are similar but not quite the same of Rr, a degree of similarity
will be considered. To achieve that goal, we have assumed that the elements in Rr are cluster centers
to which the elements in Rt must be assigned to. Each element in Rt is associated with a unique
element in Rr: its nearest neighbor. Thereafter, DEM represents the error estimated by the distance
from each element Rti ∈ Rt to its “cluster representative” Rri ∈ Rr, as shown in Equation 9. Low
values indicate that Rt is similar to Rr, while higher values imply larger dissimilarity.

DEM (Rr, Rt) =

|k|∑
i=1

δsim(Rti, Rri) . (9)

In Equation 9, δsim(Rti, Rri) is the distance between the ith element in Rt and its counterpart
in Rr. Figure 3 illustrates the intuition of our DEM method for two distinct cases, (a) and (b),
considering k = 3. The black circles represent result set elements only in Rr or only in Rt, while the
black diamonds represent elements that appear in both result sets, i.e. the distance from an element
rti ∈ Rt to its cluster representative rri ∈ Rr is zero. The size of the arrow represents the error
(distance) from the element Rti to its counterpart Rri. In Figure 3(a), the two result sets Rr and Rt

have a single element in common (rr1 = rt1), thus their distance is zero (d = 0). For elements rt2
and rt3, the distances to the cluster representatives rr2 and rr3 are two (d = 2) and three (d = 3),
respectively, therefore, DEM = 5. On the other hand, in Figure 3(b), the two result sets have no
elements in common, but the elements in Rt are similar to those in Rr. The distances from rt1 to rr1,
from rt2 to rr2 and from rt3 to rr3 are all equal to one (d = 1), thus DEM = 3, therefore the error
score in the result in Figure 3(b) is smaller than that in Figure 3(a).

4. EXPERIMENTS

This article reports on the accuracy evaluation of the result diversification approaches based only on
distances between result set elements. We follow two strategies to measure diversity: extraction of
statistics of the result sets to compare the algorithms and a direct comparison of the elements of
each result set. We conducted our experimental studies in two parts: (1) In Section 4.1, we perform
analyses to validate our proposed evaluation methods, presented in Section 3.2, comparing them with

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.



Evaluating the Diversification of Similarity Query Results · 197

rr1 = rt1

d = 0
rt3

rr3

d
=

3 rr2

rt2

d
=

2

(a)

Rr = {rr1, rr2, rr3} Rt = {rt1, rt2, rt3}

rr1
rt1

d = 1

rt3

rr3

d
=
1

rr2

rt2

d
=
1

(b)

Rr = {rr1, rr2, rr3} Rt = {rt1, rt2, rt3}

Fig. 3: DEM evaluation method. (a) DEM = 5 (b) DEM = 3

Table III: Datasets used in our experimental evaluation

Dataset # of elements # of dimensions δsim, δdiv Description
Aloi 72,000 144 L2 Set of color image objects rotated in 5 de-

gree steps, obtained from the Amsterdam
Library of Object Images website1.

USCities 25,375 2 L2 Geographical coordinates and economic
characteristics of the American cities, from
the U.S. Census Bureau website2.

Nasa 40,150 20 L2 Set of 20-dimensional vectors, extracted
from NASA images. Source: Metric Space
Library3.

Faces 1,016 761 L1 Set of features extracted from human face
images. Source: Metric Space Library3.

two measurements commonly used to evaluate optimization algorithms, i.e the Gap and the objective
function; and (2) In Section 4.2, we explore the diversity features extracted from each result set
provided by the tested algorithms, comparing them with the features of the traditional k-NN result
set to identify the features transformed in the diversification process.

We implemented the well-known diversification algorithms shown in Table II (see Section 2) in C++,
using the same programming framework to allow fair comparisons. The experiments were performed
on a computer with an Intel Core i7 processor and 8 GB of main memory, under Ubuntu Linux 11.10.
We describe the results of the four real datasets presented in Table III. For each dataset, the table
shows the dataset name, its number of elements (# of elements), its dimensionality (# of dimensions)
and the distance functions used (δsim and δdiv), along with a brief description and its source. Notice
that our techniques operate on result sets returned by the algorithms tested, so they are insensitive
to the dataset cardinality — instead they are sensitive to the density of the dataset, which is only
indirectly related to its cardinality.

4.1 Comparing Evaluation Methods

We compared the evaluation methods proposed in Section 3.2 with the Gap and the objective function
measurements commonly used to evaluate optimization algorithms, considering the reference result
set (Rr) provided by the exhaustive algorithm as the ground truth. Due to the high computational

1Amsterdam Library of Object Images Homepage. Accessed: Jan 14, 2013. Available from: <http://staff.science.
uva.nl/~aloi/>
2U.S. Census Bureau Homepage – American Census 2000. Accessed: Jan 14, 2013. Available from: <http://www.
census.gov/>
3International Workshop on Similarity Search and Applications (SISAP). Accessed: Jan 14, 2013. Available from:
<http://www.sisap.org/library/dbs/>
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cost (NP-Hard) required to obtain an exhaustive result set, we restricted the size of the search space
to the 200 elements most similar to the query center and the number of similar-diversified elements
was always defined as k = 5 for all datasets. F is the objective function used by all optimization
algorithms to ensure fair comparisons, F (sq, S) = (k − 1)(1− λ) · δsim(sq, S) + 2λ · δdiv(S). For each
dataset, the parameter λ varied between 0.1 to 0.9. To generate the query set, we randomly chose 100
different elements to be used as the query centers. Each point shown in the quality graphs represents
the average quality measured for 100 queries with constant values of k and λ, but using distinct query
centers. In the Graphs (a), (f), (k) and (p) of Figure 4 higher values indicate better algorithms. The
remaining graphs of Figure 4, low values indicate better answers. However, the interpretation may be
different for each evaluation method. For example, low values for the DM method represent that the
result set has many elements in common with the exhaustive result set, whereas low values for DEM

indicate that the result has the smallest error in the selection of elements regarding the elements of
the exhaustive result set, which does not mean that the elements are the same, except when the values
for DM and DEM are both zero.

The parameter of the FM algorithm (separation distance) was manually tuned to each dataset,
varying the separation distance in steps of 0.1 until the result set has the exact number of diverse
elements required in a search space of 200 elements most similar to the query center. Thus, we
chose two possible values (average and highest) for the separation distance that preserves the input
and output conditions of the GNE, MMR and Swap algorithms, using the same search space and
returning the exact number of diverse elements, to allow fair comparison.

EXPERIMENTS USING THE USCities DATASET. In the first set of experiments, we aimed
at evaluating our methods over low-dimensional data. The first experiment evaluates the quality of
the result provided by each algorithm in comparison to the exhaustive result set for diversity queries
posed over the USCities dataset, with λ varying from 0.1 to 0.9. We set the separation distance of
the FM algorithm to FMconf1 = 0.5 and FMconf2 = 1.0. The experiment compared elements based
on their geographical coordinates (latitude and longitude).

Figure 4 (from (a) to (e)) shows the results for the USCities dataset. Figures 4(a) and (b) provide
the values for the objective function (F), besides the “gap” between the value found for a specific
algorithm and that obtained for the exhaustive one, respectively. As can be seen in Figure 4(a), all
algorithms, including the traditional k-NN algorithm, have similar values for the objective function
and, according to Figure 4(b), the largest difference to the exhaustive value is 20%. These results
suggest that the existing evaluation methods return similar values for the quality of the algorithms
evaluated, even for the k-NN, which does not consider diversity to select elements.

On the other hand, using our proposed evaluation methods, it is possible to clearly understand the
differences between the results of the algorithms tested. For example, Figure 4(c) shows the results
for our evaluation method DM and, as can be seen, there are discrepancies between the methods.
As expected, the Swap and MMR methods practically recover the same elements returned by the
exhaustive algorithm for λ < 0.3, but for higher values of λ, MMR retrieves only two elements of the
exhaustive result set, while Swap recovers only one. This figure also shows that k-NN does not recover
the same elements as the exhaustive algorithm. Thus, DM can distinguish between an algorithm that
uses diversity to select elements of the result set and another that does not (i.e., k-NN). The same figure
shows that DM considered the results of the FM algorithm similar to those of the k-NN algorithm
(i.e., undesired results). These results are expected, since FM has the definition of diversity for the
result set keeping the elements away from each other to at least the separation distance, which is
different from the optimization approaches. On the other hand, the GNE method proved superior to
all the other methods tested and, selected at least 4 of the 5 elements in the exhaustive result set.
Thus, DM was indeed able to spot the superiority of GNE in comparison to the other methods.
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Figure 4(d) reports the results for our DEM method, aimed at highlighting the distance between
the elements retrieved from a specific algorithm with respect to the result set elements provided by the
exhaustive algorithm. As it can be seen, the GNE algorithm has the lowest error, indicating that GNE
as indeed able to choose elements very close to the elements of the exhaustive result set. For λ ≤ 3,
the k-NN algorithm has the same error as the one obtained by the diversity algorithms, indicating
that for λ values favoring the similarity, the diversity algorithms practically do not change the answer
of k-NN, including the exhaustive algorithm. The FM algorithm has a lower error in comparison to
the exhaustive algorithm, when λ is greater than 0.5, thus it performed better than k-NN, which
shows that DEM distinguishes the quality between these algorithms. Therefore, considering only the
evaluation of the result set elements in a binary way (in or out) in comparison to the exhaustive result
set is not enough to ensure the quality of an algorithm.

Figure 4(e) shows the results for the DiFM method, aimed at comparing the results of the tested
algorithms based on the diversity feature vectors. The features extracted also indicate that the GNE
algorithm is the one that best replicates the ideal results (those of the exhaustive algorithm), followed
by MMR. However, in Figure 4(e) both GNE and MMR are considered equivalent for λ ≤ 0.5, as
opposed to what occurs to DEM and DM , which are equivalent only for λ ≤ 0.3. This result shows
that, despite the distinct elements selected, the distance distributions of the results sets are equivalent
for GNE and MMR. Although the results for the Swap method were attenuated, it is still the third
best algorithm. Regarding FM, the features were able to differentiate it from the k-NN algorithm,
showing that the distance distribution varies for those algorithms.

EXPERIMENTS USING THE Aloi DATASET. The second experiment aimed at evaluating
our methods over high-dimensional data. It uses the Aloi dataset, which has 144 features extracted
by the color moment extractor [Stricker and Orengo 1995]. We set the separation distance of the FM
algorithm to FMconf1 = 0.5 and FMconf2 = 1.0.

Figures 4(f) and (g) show the values for the objective function (F) and the “gap” between the
algorithms with respect to the value of the exhaustive result set. As it can be seen, all algorithms
reached similar values, but their differences were more evident for λ ≥ 0.7.

Figure 4(h) shows the results for our DM measurement. Although Swap reached a better value for
the objective function in comparison to that of the traditional k-NN in Figure 4(f), when analyzed by
DM , Swap follows the k-NN, having the same value for λ = 0.5. GNE was again the best algorithm,
but its distance to the exhaustive result increased. For the separation distance 1.0, FM had the
same quality as GNE, which was better than that of MMR. In summary, compared to the exhaustive
result set, all algorithms shared fewer elements for high-dimensional data. However, the proposed DM

method allows a better analysis compared to the existing evaluation methods.

Figure 4(i) shows the results regarding our DEM measurement. For λ ≥ 0.5, Swap, FM (for all
configurations) and the k-NN algorithms had similar error scores in comparison to the exhaustive
solution. By analyzing this result together with the one in Figure 4(h), we can infer that, besides
choosing different elements from the exhaustive result set, these algorithms remained with the same
error score, indicating a possible existence of small clusters around the exhaustive result set elements.

Figure 4(j) shows the results for our DiFM measurement. Considering only the diversity features,
the FM algorithm for separation distance 1.0 was again very dissimilar with respect to the exhaustive
result set in comparison to the k-NN algorithm. Such a dissimilarity can be explained by the fact
that FM selects elements that are equally distant from each other, which is not ensured for the other
algorithms.
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EXPERIMENTS USING THE Nasa DATASET. The third experiment aimed at evaluating
our methods with medium-dimensionality data. It uses the Nasa dataset, which has 20 dimensions.
We set the separation distance of the FM algorithm to FMconf1 = 0.5 and FMconf2 = 1.0. Figure 4
(from (k) to (o)) shows the results. As can be seen, all the evaluation methods separated the accuracy
of algorithms GNE, MMR and Swap quite well. Figure 4(m) shows that FM and k-NN display similar
quality considering the DM method. We believe that their separation distances were too small to
increase diversity. This assumption is confirmed in Figure 4(n), since FM and k-NN have almost the
same distance error as the exhaustive solution, showing that FM selected elements closer to the answer
of k-NN. Regarding the results of DiFM (Figure 4(o)), FM continues following the k-NN behavior,
which is expected due to the results in Figures 4(k) and (l). This fact has confirmed our assumption
that the separation distances were too small to change the answer of k-NN.

EXPERIMENTS USING THE Faces DATASET. The last experiment aimed at evaluating
our methods with high-dimensional data. It uses the Faces dataset, which has 761 dimensions. We
set the separation distance of the FM algorithm to FMconf1 = 0.3 and FMconf2 = 0.6. Figure 4(q)
reports the results. As can be seen, FM displayed the same quality of k-NN, showing that a separation
distance was again too small to diversify the answer of k-NN. Figures 4(r), (s) and (t) show that all
the proposed evaluation methods separate the construction strategies for the optimization algorithms,
proving that the exchange strategy is more sensitive to dimensionality variations due to its behavior
and the only one that follows the k-NN among the optimization algorithms. Regarding Figure 4(t),
the DiFM method considered that FM and k-NN have the same distance distribution. Moreover,
MMR and GNE display the same quality for λ ≤ 0.3, showing that although these algorithms choose
different elements (Figures 4(r) and (s)), the distance distributions among the result set elements was
similar.

4.2 Analysis of Diversity Features

We also evaluated the diversity features extracted by our proposed diversity metric extractor L for
each result set provided by the tested algorithms, regarding the features obtained from the traditional
k-NN algorithm. We show which features are transformed in the diversification process for each tested
algorithm. To capture this information, we considered the ratio of each feature extracted from each
algorithm tested to the corresponding value for the k-NN algorithm.

To generate the query set, again we randomly chose 100 different elements to be used as query
centers. We used the same objective function (F) used in the previous section for all optimization
algorithms to ensure fair comparisons. For each dataset, the parameter λ varied between 0.1 and 0.9.
The search space was again restricted to the 200 elements most similar to the query center, due to
the high computational cost involved and the number of diverse elements, we defined k = 5. Here,
we omitted the results for the FM algorithm, since its definition of diversity (separation distance) is
different from the optimization approaches, considering that the feature comparisons are dependent
on the extracted features.

Figure 5 shows the ratio of each diversity feature vector extracted compared to the k-NN one regard-
ing the Nasa and Faces datasets, using 3 values of diversity preference (λ) [0.1, 0.5, 0.9], respectively.
Figure 5(a) shows the results for the Nasa dataset, which has 20 dimensions. We set λ = 0.1. As can
be seen, all algorithms changed the same features. The increase in features mD, SDS, SDD and DD
suggests that, for low values of λ, the algorithms change only the closest pair of elements. However,
the elements are still very similar to the query center, since the SD feature has the same value of k-NN.
Figure 5(b) shows the results for the Nasa dataset, using λ = 0.5. As expected, all algorithms contin-
ued to increase mD, DD and SDD. It is important to highlight that GNE was the only algorithm that
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Fig. 4: Graphs comparing the 5 methods considering the measure value on the y axis and λ in the x
axis. In the Graphs (a), (f), (k) and (p) higher values mean better algorithms, and, in the remaining
graphs, lower values mean better algorithms. GNE . MMR . SWAP . kNN .
FMconf1 . FMconf2 .

changed all features similarly to the exhaustive algorithm. The MMR algorithm modifies the features
very similarly to the behavior of GNE, but MMR increases the SDS, which is expected, since MMR
always selects the element more similar to the query center and thereafter selects the most distant
elements (incremental strategy). The results for Swap show that the commitment to the similarity
measure is maintained, even for diversity preference values that benefit both similarity and diversity
measures. The algorithm slightly increased the mD feature, maintaining the similarity features al-
most unchanged. Figure 5(c) reports the results for the Nasa dataset, using λ = 0.9, which favors
the diversity measure. As expected, both GNE and exhaustive algorithm reduced the importance of
similarity features in favor of diversity. It is interesting to note that the SDS, MD and SD features
were greatly reduced indicating that those algorithms choose only elements distant from the query
center due to the high probability of maximization of the diversity measures. On the other hand,
both MMR and Swap increased the SDS feature, indicating that they sacrifice diversity to maintain
the similarity to the query center, in spite of the diversity preference value.

Figure 5(d) reports the results for the Faces dataset, which has 761 dimensions. We set λ = 0.1.
For high-dimensional data, all algorithms displayed feature values similar to those of k-NN, showing
that for low values of λ the algorithm slightly increases the mD feature, different from the results for
lower dimensional data (Figure 5(a)). Figures 5(e) and (f) show the results for the Faces dataset,
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Fig. 5: Radar charts for Nasa and Faces datasets, respectively. SD stands for the AvgSimDistance feature, DD stands for
the AvgDivDistance feature, SDS stands for the SDSimDistance feature, SDD stands for the SDDivDistance feature, MD
stands for the MaxDistance feature and mD stands for the MinDistance feature. GNE . MMR . SWAP .
Exhaustive .

using λ = 0.5 and λ = 0.9, respectively. As can be seen, the results are very similar to those reported
for the Nasa dataset, showing that, for these values of diversity preference, the algorithms changed the
same features, in spite of the dataset dimensionality. Similar results were achieved for the USCities
and Aloi datasets. They are omitted due to space limitations.

5. CONCLUSION

Similarity queries are one of the most pursued resources for the analysis of complex data, but the basic
similarity operators do not meet the requirements of many modern applications, mainly because their
result sets tend to have many elements too much similar both to the query center and among them-
selves. To tackle this problem, variations and extensions of the basic operators have been proposed in
the literature aimed at achieving result diversification. Among the existing proposals, distance-based
algorithms are the only alternative for data domains that do not have any additional information (i.e.,
metadata), besides the data elements and their distances. However, evaluation techniques are still
largely required to help understand what type of diversity is retrieved by such methods, in which the
evaluation must also rely only on distances among elements.

In this article, we tackle such a problem by creating an answer space that highlights information
on the distribution of result set elements (i.e., minimal distance and maximal distance), based on a
novel technique proposed to obtain several statistics from the diversified result set. To validate our
proposal, we performed experiments using four real datasets that span up to 72k data elements and
761 dimensions. The experiments show how each existing algorithm compares with each other and
have confirmed that those algorithms considered the best from the literature (e.g., the GNE method)
indeed perform better than the others in most situations. More importantly, our proposed techniques
also pinpoint for which types of datasets the best algorithms in fact thrive and for which ones they
do not, thus indicating “where” there is still room for improvement in result diversification research.
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