
ObInject: a NoODMG Persistence and Indexing Framework for
Object Injection

Luiz O. Carvalho1,2, Thatyana F. P. Seraphim1, Caetano Traina Júnior2, Enzo Seraphim1,∗

1 Universidade Federal de Itajubá, Brazil
2 Universidade de São Paulo, Brazil

olmes@icmc.usp.br, thatyana@unifei.edu.br, caetano@icmc.usp.br, seraphim@unifei.edu.br

Abstract. The object-oriented model has become standard for developing information systems. Consequently, more
and more classes have been created to embed business rules and are been instantiated several times, generating a huge

amount of objects. In several scenarios, objects must change their state from transient to persistent. Thus, several

solutions have been created to meet this need for persistence. Many solutions use frameworks to perform the mapping
from objects to relations in database schemas. However, few object persistence frameworks pursue efficiency as a

target, for example dealing with index structures like B-Tree, M-Tree and R-Tree simultaneously. This article presents

ObInject, a NoODMG framework to support object persistence and indexing (www.obinject.org). Its main feature is to
allow objects to be persisted and indexed into any data structure. The framework is divided into four modules based

on Design Patterns and provides abstractions for persistence and indexing controllers that are specialized from the user
class. We performed extensive experiments evaluating several of its properties and target abstractions, and show that

it allows the implementation to achieve significant performance improvements in relation to the existing alternatives.

Categories and Subject Descriptors: H.3 [Information Storage and Retrieval]: Information Search and Retrieval;

E.2 [Data Storage Representation]: Object representation

Keywords: framework, indexing, noODMG, persistence

1. INTRODUCTION

Conceived at the beginning of the 1990s, the Object Database Management Group (ODMG) proposed
a list of specifications for developers to write portable applications. Such applications should run on
distinct products using common and portable data schemes, query languages, data manipulation and
programming language bindings. Less than a decade later, contributions and discussions [Barry and
Stanienda 1998; Carey and DeWitt 1996] to the ODMG standard [Cattell and Barry 2000] pushed the
ODMG evolution to cover Object Database Management System (ODBMS) and the Object-Relational
Mapping (ORM) standards. Early in the 2000s, when the standard reached enough maturity, the
attention of the ODMG organization shifted to its implementation and promulgation as a standard
for the industry. In addition, the ODMG community concentrated their efforts on the specification
of the ODMG Java Language Binding. The current specification is known as the Java Data Objects
(JDO). Currently, in its fourth generation, the ODMG standard aims at aiding the large use of
standard-based object database technology.

Even with the innovation introduced by the ODMG standard, it was not widely disseminated
and the reason ranges from differences between companies and applications that did not follow the
standard. Nevertheless, the main reason is that it does not address data indexing. Thus, corporations,
middle/final users and developers adopted solutions to add persistence resources that did not follow
the ODMG standard.

* Corresponding author. Phone: +55 (35) 3629-1669

This material is based upon work partially supported by CAPES, CNPQ, FAPEMIG, FAPESP, and MEC.

Copyright c©2013 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission

of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013, Pages 220–235.

ObInject: a NoODMG Persistence and Indexing Framework for Object Injection · 221

Still in the 2000s, a number of non-relational database solutions known as NoSQL emerged. Such
solutions relax the ACID properties in order to improve the scalability for specific data storage types
[Thomson and Abadi 2010]. In a general view, SQL solutions follow the Relational Model [Codd 1970].
ODMG solutions are based on the model presented by Cattell and Barry [2000]. NoSQL solutions
are not limited to the Relational Model. Their storage data types are classified by Leavitt [2010] as
Key-Value, Big Table, Document and Graph Database. NoSQL was stimulated by works like the ones
by Chang et al. [2006] and DeCandia et al. [2007]. NoODMG solutions do not follow the ODMG
standard, relax the ACID to achieve performance and present a data model distinct from NoSQL
models. In this work, we explore a technique based on flexible indexing for object persistence.

This article presents a NoODMG framework, named Object-Injection, to support object persistence
and indexing. This framework contributes with the following features:

—Loose coupling of classes: User classes are directly handled to enable the persistence solution.
The coupling between user classes and the framework is performed without information redundancy
in order to save computational resources.

—Storage flexibility: The storage of persistent entities can be performed relaxing or not the ACID
properties. Relaxing ACID properties ensures better performance because transaction processing
is easier. For this purpose, storage media such as disk or memory might be used. ACID properties
are available, although requiring lengthier transaction processing.

—Multiple indexing: Index structures are used to speed up query processing. Generally, user
queries employ structures that handle data presenting the total order relation. However, queries
using metric or spatial data have become popular among users. Once a new query type is required,
the user can define indexes on the queried fields.

—Object identification: Objects are tagged with a unique identifier that allows retrieving objects
regardless of their storage type.

—Object serialization: Object attributes are represented as a concatenated data string. The
major advantage of a data string is to allow the data to move to different devices and operational
environments.

—Non-intrusive: Intrusive solutions force the user to model classes that inherit a persistent class
or that must be modified, with addition of methods, to achieve persistence. Our solution is non-
intrusive and does not require modifications on the user-defined classes.

—Not restricted to the ODMG standard: The ODMG standard defines its own model for
objects, language specification and language binding. However, several applications that do not
follow the standard, or that just implement some parts of the standard, also require persistence and
can benefit from the Object-Injection technique.

This article is organized as follows: Section 2 describes related work. Section 3 presents a ba-
sic description of Object-Injection Framework, hereafter named ObInject. Experiments, results and
discussions are presented in Section 4. Finally, in Section 5, general considerations conclude the work.

2. RELATED WORK

Despite the existence of many studies and contributions such as the ones by Mattsson and Bosch [2000],
Kienzle and Romanovsky [2002], Leist and Zellner [2006], Oliveira et al. [2012] and Levandoski et al.
[2013] regarding framework development, few of them focus on combining indexing, persistence and
all of the features described in Section 1. The first work that focuses on persistence was the Volcano
system [Graefe 1994]. Volcano was an application, strongly coupled in C++, that implemented
mechanisms for data persistence and query processing. Its query mechanism provided basic operators,
such as select, project and join, and some extra functions to allow the users to define their own
operators. In its first versions, Volcano did not provide indexing but, in subsequent versions, a B+-
Tree [Comer 1979] was included. In addition, the query mechanism was based only in queries using
the attributes of the stored data.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

222 · Luiz O. Carvalho et al.

The GiST library [Hellerstein et al. 1995] implements in C++ an indexing data structure known
as Generalized Search Tree. This structure, conceptually based on the B+-Tree and on the R-Tree
[Guttman 1984], can be customized to index different data types, including multidimensional and
metric data. The library also offers a basic query mechanism, where the processing is based on the
attributes of the stored objects, but does not make these objects persistent.

With respect to data indexing, Ogasawara and Mattoso [1999] evaluated the use of indexes for query
processing on ODMG database GOA++. As noted in that work, it was not possible to define indexes
to the user application classes.

The work of Camargo et al. [2003] introduces a framework that explores the use of Aspect-Oriented
Programming (AOP) to persist Java classes on RDBMS. This intrusive framework forces the user-
application classes to inherit its persistence mechanism. This framework uses relational databases,
therefore the ACID properties are always enforced and it does not present storage flexibility regarding
transaction processing. However, modeling applications using AOP leads to classes that are loosely
coupled and easy to extend. Still in the AOP line, Kienzle and Gélineau [2006] re-implement the
ACID properties using AOP and applies its implementation to transactional object persistence.

Other approach for persistence is presented by Alia et al. [2004] and Weske and Kuropka [2001].
These works propose strategies and framework solutions for persistence in middleware environments.

Arboretum [Arboretum 2005] is a C++ framework that provides several index structures, such as
M-Tree [Ciaccia et al. 1997] and Slim-Tree [Traina Júnior et al. 2000]. This framework implements
facilities to use, to develop and to evaluate metric data structures and similarity search operations.
Although some of its indexing abstractions have inspired the Object-Injection modeling, it does not
provide object identification and most of its indexing mechanism targets the metric space. Arboretum
also does not separate the user persistent objects in entities and keys.

The work of Batko et al. [2007] proposes a framework called Messif. This framework implements
some metric data structures, such as M-Tree and Slim-Tree. Those authors describe Messif as a mod-
ularized and easily extensible framework, facilitating the development of similarity search algorithms.
However, this framework does not support object persistence and, although some parts of its source
code are freely available, its core engine is not open source.

Applications introduced by Achtert et al. [2008], Kaur et al. [2012], and Zhu et al. [2012] are
frameworks that present some outline in indexing, but their main goal is to mine, respectively, general
databases, spatial medical databases and string sequence databases.

Alternatives such as Hibernate [Bauer and King 2004], JDO1 and JPA2 are widely used to per-
form object persistence. Hibernate is a Java object-relational mapping framework which relates an
object-oriented data domain, based on plain Java objects, to RDBMS. Hibernate does not provide
indexing, serialization and storage flexibility. Its classes are strongly coupled and use a meta-scheme
to create redundancy among objects and relations. Moreover, this framework is non-invasive and
object identification is implemented using Java annotations.

Java Persistence API (JPA) is a Java framework to allow persistence management and object-
relational mapping with Java SE and Java EE. Nevertheless, JPA does not follow the ODMG spec-
ification for Java binding. The ODMG Java binding standard is defined and specified by Java Data
Objects (JDO). JDO is a standard model abstraction for persistence based on Java interfaces and
constitutes an alternative to JPA. The main benefit of JDO technology is the direct storage of a Java
domain model instance into the persistent store (database). JPA and JDO are dependent on RDBMS
and do not perform multiple indexing and serialization. They also do not define object identification.

1JSR-12 (JDO): www.jcp.org/en/jsr/detail?id=12 Access: May 5, 2013
2JSR-220 (JPA): www.jcp.org/en/jsr/detail?id=220 Access: May 5, 2013

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

ObInject: a NoODMG Persistence and Indexing Framework for Object Injection · 223

Perst Lite [Graves and Knizhnik 2009] and db4o [Breunig et al. 2013] are open source commercial
solutions that do not depend on RDBMS in order to achieve object persistence (Java and .Net). Those
solutions present multiple indexing mechanisms employing data structure such as B-Tree and R-Tree.
However, none of them supports data indexing in metric spaces (M-Tree). Moreover, the abstractions
that control persistence and indexing are not specialized from the user class.

The Extensible and Flexible Library (XXL) [Bercken et al. 2000] is the most related work to ours.
XXL is a high level application, with its open source code written in Java. Its main goal is to support
the development of data structures and algorithms for query processing. XXL provides collections of
index structures, such as B-Tree, M-Tree, R-Tree, and others, as well as query operators, aiming at
facilitate the evaluation of new query algorithms. It does not use RDBMS to persist objects, but its
persistence mechanism is strongly based on Java serialization, forcing users to extend its class model
and override the required methods for persistence, so it is an invasive framework.

In order to support object persistence, many of these solutions use external systems. In this way,
they end up overloading the application. Our framework differs from them, being easily coupled
to the applications to provide indexing and persistence. In addition to the features aforementioned
in Section 1, its persistence mechanism does not rely on any (R)DBMS. Moreover, it offers a class
architecture that can be easily extended to support new query algorithms and indexing data structure
development.

3. OBJECT-INJECTION FRAMEWORK

This section presents the Object-Injection Framework (ObInject) in more details and explains the
concepts that guided its design. The framework does not focus on any particular programming
language and only uses object-oriented programming fundamentals. Most of its modeling is based on
the Curiously Recurring Template Pattern (CRTP) [Coplien 1995] and Design Patterns, in order to
abstract semantic issues. The Design Patterns, when mentioned, behave and refer to those described
by Gamma et al. [1995].

ObInject has four abstraction modules, organized according to Figure 1. The Metaclass module
defines persistent entities and the domain of indexed keys. The Storage module defines the primary
indexes for persistent entities and secondary indexes for indexed keys. These indexes are responsible
for managing and organizing data from the Metaclass module, which are kept by the Block module.
The Device module defines computational resources in charge of managing the storage of the data
structure. This module constructs blocks requested by and passed on to the Storage module. Lastly,
the Block module defines how the persistent entities and the indexed keys are stored in blocks or
pages. Then, these modules are detailed using UML Class Diagrams, but only the most important
classes, attributes and methods are shown.

3.1 The Metaclass Module

The Metaclass module defines the bind between the user application classes and the framework,
expressed by two class groups: persistent entities and indexed keys, as shown in Figure 2.

storage: primary/second. indexes

device
metaclass: entity/key

block

Fig. 1. Module organization

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

224 · Luiz O. Carvalho et al.

U
s
e
r c

la
s
s

P
e
rs

. E
n

t.
In

d
e
x
e
d

 K
e
y
s

Fig. 2. The Metaclass module

The first group, the persistent entities, extends the user-defined classes and implements the Entity
interface. The extension avoids modifications in the user-defined classes. The Entity implementation
provides the methods required for persistence. An example of a persistent entity is EntityCity, as
shown in Figure 2. This class implements the Entity interface and specializes the City class, here
assuming that “cities” would be what the user wants to persist.

The Entity interface assigns four responsibilities to persistent entities: object serialization, object
equivalence, object uniqueness and class identity.

Object serialization is performed by using auxiliary stream handler classes (omitted in Figure 2).
These classes are used in push and pull methods in order to convert objects to their serialized format.

Object equivalence checks if two distinct entities have the same attribute values. To ensure that only
objects from the same class are compared, Entity is a parameterized class and their specializations
follow the CRTP. A Boolean method, called equal (Figure 2) performs the comparison.

Object uniqueness and class identity are achieved using two UUID [Leach et al. 2005] attributes. The
first one, called uuid, is used by the data structure to retrieve instances of each stored object. Its value
is always unique, ensuring the uniqueness of each object instance. The other attribute, named classId,
is a class scope attribute whose value is unique among all Entity class implementations, regardless
of the application. The classId is used to ensure that a retrieved object is indeed an instance of the
correct class.

The second group, indexed keys, allows persistent entity attributes to be associated to a key domain.
Key domains are classified as ordered, punctual, rectangular and edition.

The ordered domain satisfies the total order relation (transitivity, antisymmetry and totality) by
using the Order interface, as shown in Figure 2. Order delegates to indexed keys three responsibilities:
serialization, object equivalence and object ordering. Serialization and object equivalence work as
aforementioned. Object ordering ensures the total order relation. It is implemented in the compareTo
method, from the Order interface (Figure 2). This method compares two keys to establish a total
order over a set of objects. Therefore, the compareTo implementation determines which attributes of
an object will compose the index.

Figure 2 illustrates these concepts. The OrderNameCity class is a Key to a City object, in which
the index attribute is the name of the city. Here, the compareTo method receives an OrderNameCity

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

ObInject: a NoODMG Persistence and Indexing Framework for Object Injection · 225

argument and evaluates if its own name comes lexicographically before the argument name. This class
can be indexed in a secondary index such as a B+-Tree.

The punctual domain associates a set of coordinates to a key, using the Point interface. Point
delegates to indexed keys four responsibilities: serialization, object equivalence, metric calculation
and spatial position definition. Metrics satisfy the postulates of a metric space (symmetry, non-
negativity, identity and triangle inequality) and are implemented by the distanceTo method from the
Metric interface. The most common metrics for points (Lp family) were implemented in auxiliary
classes (omitted in Figure 2). Spatial position defines the number of dimensions and the coordinates
on each dimension.

In Figure 2, the PointLatitudeLongitudeCity class represents a Key to a City. Here, a point, given
by latitude and longitude values, defines cities, and the distanceTo method computes how far apart
two cities are, according to the L2 metric. The PointLatitudeLongitudeCity objects can be indexed in
data structures like M-Tree or R-Tree.

The rectangular domain associates an area, volume or hyper-volume to a key by using Rectangle
interface. Rectangle delegates to indexed keys the same responsibilities of the Point and a spatial
extension, that is, the size in each dimension (width, height, depth...). Rectangles are used as a
simplified geometry for line and polygon objects in spatial databases and such representation is referred
as Minimum Bounding Rectangle (MBR).

In Figure 2, the main task of the RectangleLatitudeLongitudeCity class is to index cities like regions
in space, using their latitude, longitude and dimensions to locate them. Generally, this class is indexed
by a secondary index such as an R-Tree. However, it is possible to index Rectangle objects in an M-
Tree, since the Metric interface defines a distance calculation to these objects. Roussopoulos et al.
[1995] and Manolopoulos et al. [2006] briefly discuss how to compute distances between rectangles.

Finally, the edition domain establishes metric distances to chains of symbols by using the Edition
interface. Its responsibilities are serialization, object equivalence and metric distance calculations, as
previously described. The metric distances implemented for a chain of symbols are the Levenshtein
family and their variations.

The EditionNameCity class in Figure 2 indexes cities according to a string distance between their
names. This class is indexed in a secondary index such as an M-Tree.

Multiple indexing is achieved by the definition of several indices over an object. In Figure 2, there
are different key domains associated to the same instance of a City object. Thus, this instance can
be indexed in ordered, punctual, rectangular and edition domain, simultaneously.

3.2 The Storage Module

The Storage module specifies the implementation of primary and secondary index structures. These
structures hold block collections in order to organize and store the previously defined objects.

The Storage module has two basic interfaces, which are depicted in Figure 3: EntityStructure and
KeyStructure. The former defines primary index structures, responsible for storing the whole instance
of an entity. The latter defines secondary indexes, storing only the indexed keys to these entities.

ObInject provides a Sequential list and an Extendible Hash [Fagin et al. 1979] for use as primary
index structures. The secondary indexes can be either a B+-Tree [Comer 1979], an M-Tree [Ciaccia
et al. 1997; Zezula et al. 2006] or an R-Tree [Guttman 1984; Manolopoulos et al. 2006].

The Storage module enables new data structures to be easily created, by simply deriving them
from the Storage classes and implementing the required methods. Moreover, this approach allows
more than one data structure to share the same objects.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

226 · Luiz O. Carvalho et al.

B
l
o
c
k

D
e
v
i
c
e

S
t
o
r
a
g
e

Fig. 3. The Block, Device and Storage hierarchy

The Storage module is directly linked to the Device module (Section 3.3) through a Bridge.
This pattern decouples the data structures (B+-Tree, Sequential, etc.) from their storage devices
(File, Memory). Thus, they can be extended independently. According to the Bridge pattern, the
Structure class is the ‘abstraction’; in Device, the AbstractWorkspace class is the ‘implementor’, and
its subclasses are the ‘concrete implementor’.

3.3 The Device Module

The Device module isolates persistent objects from storage abstractions. An object does not need to
know about storage devices or about the data format used when it is persisted. Since different types
of storage devices present particular properties, the natural approach to represent them is through an
abstract class hierarchy. Therefore, each distinct storage type derives from this abstract hierarchy and
implements the required operations. In this way, defining other storage types are easily performed.

In Figure 3, the AbstractWorkspace class is the common interface from which all types of storage
devices are specialized. It represents an area that any data structure can use to access and share data.
This class is specialized into File and Memory. A File object handles data in a persistent storage and
is keep saved even after application termination, whereas an Memory object handles data in a volatile
storage, and these data are lost when the application finishes. These classes do not implement ACID
properties, although the AbstractWorkspace can be extended to ensure ACID.

The Session class acts as a temporary storage area, keeping the recently used pages in an internal
hash map to speed up access. Thus, Session connects Device and Block modules maintaining a
hash of Nodes. Another responsibility of the Session class is to allocate space for a new block when
requested by data structures.

A Session ensures that the data structures will not access the AbstractWorkspace methods directly.
For this purpose, the Workspace class provides the openSession method, which returns a Session
instance. Using that instance, a data structure is able to perform storage operations regardless
of the workspace, without knowing where the workspace is stored and without knowing how these
operations are implemented in the corresponding workspaces. The openSession method follows the
Factory Method pattern: the Session instances are its ‘products’ and the Workspace is the ‘creator’.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

ObInject: a NoODMG Persistence and Indexing Framework for Object Injection · 227

features

number of

entities

entries

entry[0] entry[1]

o�set o�set

entities

entity

[0]

entity

[1]

free space

(a) Sequential Node

features

number

of keys

keys

key

[0]

key

[1]

entries

entry[0] entry[1]

uuid uuid

free space

(b) R-Tree Leaf

entities

ent.

[2]

ent.

[3]

entriesfeatures

number

of bits

local

depth

o�set

[0]

o�set

[1]

o�set

[2]

o�set

[3]

available

free space

(c) E-Hash Bucket

entriesfeatures

number

of bits

local

depth

direc

[0]

direc

[1]

direc

[2]

direc

[3]

free space

(d) E-Hash Directory

features

number

of keys

keys

key

[0]

key

[1]

entries

entry[0] entry[1]

uuid uuido�set o�set

free space

(e) B-Tree Leaf

keys

key

[0]

key

[1]

entries

free space

features

number

of keys

�rst

sub

entry[0] entry[1]

sub subo✁set o✁set

(f) B-Tree Index

features

number

of keys

entries
free

space

keys

key

[0]

key

[1]

entry[0] entry[1]

uuid uuiddist disto�set o�set

(g) M-Tree Leaf

features

number

of keys

entries
free

space

keys

key

[0]

key

[1]

entry[0] entry[1]

sub subrad raddist disto� o�

(h) M-Tree Index

Fig. 4. Blocks organization

3.4 The Block Module

The Block module defines the format to store and retrieve data from pages (or blocks). A page is
defined as an array of bytes. This is the usual format to store data on disk, memory or to move them
through the network. Here, pages are part of the data structures and are represented by the Node
class, as shown in Figure 3. This class provides methods allowing data structures to read and write
primitive data types in a page.

The Node class defines a numeric identifier that allows the retrieval of a Node instance from a
storage device. The identifier can be used as the reference to navigate to other Nodes.

As different data structures (e.g.: B-Tree, Sequential, etc.) may arrange a Node into different formats
(respectively B-Tree Node, Sequential Node, etc.), it is required to abstract a Node in such a way that
it can be specialized. For this purpose, the modeling of the node hierarchy follows the Decorator
pattern. It provides a flexible alternative for the Node subclasses to extend their functionality. In this
pattern, a Node acts both as a ‘component’ and as a ‘concrete component’ (as it can have instances),
an AbstractNode is the ‘decorator’ and their subclasses are the ‘concrete decorators’.

Data inside Nodes are organized into five sections: (i) header, containing the node identification
(omitted in Figure 4); (ii) features, storing general data about blocks; (iii) entries, with information
about objects; (iv) entities/keys, which are the objects themselves; and (v) a free space area. The
Node customization for each data structure is shown in Figure 4 and described as follows.

Sequential : SequentialNodes stores persistent entities into blocks of a Sequential structure. This
class derives from EntityNode and its block is modeled according to Figure 4(a). In this figure, the
features section retains particular information about the block, such as the current number of entities
or objects present in the node. Each object stored in a SequentialNode has an offset field, in the entry
section. An offset points to the first byte of the object, at the end of the block. Between entries
and entities sections, there is free space, used for the insertion of new objects. Since the objects

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

228 · Luiz O. Carvalho et al.

are size-variant, all fixed-size information is stored at the beginning of the node, and non-fixed size
information at the end. Thus, an object can be quickly located using the offset, besides being this
the most convenient way to provide direct access to objects of any size inside a block. This approach
is particularly practical because a node is not restricted to a defined number of entities, but only to
the block size. In the insertion process, there must be sufficient free space in the node to insert a new
object and an entry to this object. If there is not, the data structure splits the node, according to the
split policy.

E-Hash: Extendible Hash nodes are specialized into leaves (buckets) and indexes (directories) and
they derive from EntityNode. An EHashBucket (Figure 4(c)) corresponds to the last level of its
primary index and stores persistent entities. In the features section, the number of bits parameter
determines the number of entries in the block. The local depth indicates the initial position of bits-
counting with respect to total number of bits in EHash. The entries section contains offsets for the
objects; however, not all positions may have been mapped for the objects, therefore some offsets
may be null. As it occurs in SequentialNode, there is a free space area between the entries and the
entities sections. The EHashDirectory (Figure 4(d)) stores just the directory entries to navigate to
the sub-levels. The features section contains the same fields described in EHashBucket.

B-Tree: The B-Tree Nodes derive directly from KeyNode, storing only the indexed keys. The B-Tree
blocks are specialized into leaf and index blocks. A B-Tree Leaf, shown in Figure 4(e), stores keys
inserted into the B-Tree, whereas a B-Tree Index stores routing objects to reach these keys. In B-Tree
Leaves, the features section contains the number of keys inserted into the node. Each entry consists of
an offset and a uuid, which is employed to retrieve the whole object associated to that key. The entries
and keys sections are separated by a free space area. A B-Tree Index block is shown in Figure 4(f).
Instead of storing a uuid, each entry has a sub value, which refers to the root of a subtree, which may
be either another B-Tree Index or a B-Tree Leaf. This subtree contains keys equal or greater than the
key of its entry. Since the index nodes of a B-Tree have a number of keys and an additional reference
to subtrees, the first sub attribute in the features section refers to the subtree that stores the keys
that are lower than the first key.

R-Tree: R-Tree Nodes also derive into leaf nodes and index nodes. Both of them are specialized
from the KeyNode class. Figure 4(b) shows the R-Tree Leaf modeling. Unlike other data structures,
keys in an R-Tree cannot be size variant. Since the Minimum Bounding Rectangle (MBR), whose size
in bytes is fixed, represents the keys, they will always have the same size. Thus, its position can be
directly calculated and an offset is not necessary. Each entry in an R-Tree Leaf stores just one uuid.
Although the union of one uuid and one R-Tree key has the same size in bytes, and could be joined,
the uuids and keys are kept separated, because uuids are not part of keys. The R-Tree Indexes are
identical to the R-Tree Leaves, except for the uuid field. In an R-Tree Index, the uuid is replaced by
the sub value pointing to a subtree.

M-Tree: The M-Tree Nodes follow the same design of the other nodes. The main difference of the
M-Tree Nodes from the other structures is the entry section. Entries in an M-Tree Leaf have their
fields adjusted to the peculiarities of the M-Tree, as shown in Figure 4(g). In this case, a leaf contains
a uuid, the distance from the representative node (the dist attribute) and the offset. Unlike R-Trees,
the M-Tree keys present a variant size. The entries in an M-Tree Index consist of a sub-value as shown
in Figure 4(h), which points to the root of a subtree; a covering radius (rad), which is used in insertion
and query operations; the distance to the representative object (dist) and the key offset.

4. EXPERIMENTS

Three datasets were used to perform the experiments. The first dataset – Words – consists of words
extracted from OpenOffice dictionaries3. This dataset combines words from 28 different languages

3OpenOffice dictionary extension: http://extensions.openoffice.org/en/dictionaries Access: May 5, 2013

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

ObInject: a NoODMG Persistence and Indexing Framework for Object Injection · 229

Fig. 5. GEONet points distribution

that use the Latin alphabet, totaling 4.621.240 distinct words. The dataset was pre-processed to
eliminate duplicates and later shuffled at random.

The second dataset – Points – comes from the U.S. GEONet Names Server4 and from the U.S.
Board on Geographic Names5. This set contains information about geographic points (latitude and
longitude) of several geopolitical areas. This file was pre-processed to eliminate duplicates and shuffled
to avoid clusters, totaling 6.066.616 distinct points, distributed according to Figure 5.

The third dataset – Proteins – was obtained from UniProt Project6 and consists of 78.221 pro-
teins (chains of amino acids). This dataset was shuffled to avoid clusters and pre-processed to avoid
duplicates. We retain only proteins whose length is less than or equal to 32 amino acids.

The experiments evaluated the execution time, the number of block accesses and the numbers of
comparison operations on both insert operations and point query execution (i.e. retrieval of inserted
objects) on secondary indexes. The experiments were performed using a computer with an Intel R©

Core
TM

i7-9200 processor, running at 2.67 GHz, with 6 GB of RAM, on the operating system GNU
Linux, distribution Kubuntu 13.04 and HD SATA 1 TB 7200 RPM. ObInject was implemented in
Java, using Oracle R© JDK 7u21.

In order to evaluate the ObInject performance, the evaluations were conducted increasing the num-
ber of objects inserted into the framework. For the Words dataset, we considered intervals of 600.000
objects, i.e., 600.000 objects were inserted in the first measure, 1.200.000 in the second measure and so
on, until completing the total size of this dataset. For the Proteins dataset, the interval was 10.000
objects and for the Points, it was 760.000 objects. We used 4096 bytes as block size for all datasets.

Each experiment was also executed on the XXL Framework. We consider only the XXL among the
applications cited in Section 2 because this is the one entirely open source, it is also available in Java
and, similar to our prototype, it does not perform object-relational mapping. Since XXL does not
implement primary indexes, the comparison evaluations were run only with secondary indexes.

Once the XXL persistence is based on Java serialization, one of the difficulties in deal with XXL
was adjust the block size. In XXL, the block size is defined as a balance between the minimum and
maximum number of objects to be stored inside of them. When the objects have a fixed size, as is
the case of the Points dataset, this balance ensures a proper utilization of the block. However, when
the keys have varying sizes, their average length was used as a parameter to adjust that property.

4GEONet: http://earth-info.nga.mil/gns/html/namefiles.htm Access: May 5, 2013
5USGS: http://geonames.usgs.gov/domestic/download data.htm Access: May 5, 2013
6UniProtKB/TrEMBL Fasta: http://www.uniprot.org/downloads Access: May 5, 2013

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

230 · Luiz O. Carvalho et al.

0

100

200

300

400

500

600

6 12 18 24 30 36 42 46.2

T
im

e
 (

x
 1

0
0
0
)

(m
ill

is
e
c
o
n
d
s
)

Objects (x 100000)

Words: Total Time on Insertion

OI

XXL

(a)

0

50

100

150

200

250

300

350

400

6 12 18 24 30 36 42 46.2

#
 A

c
c
e
s
s
 (

x
 1

0
0

0
0
0
)

Objects (x 100000)

Words: Block Access on Insertion

OI

XXL

(b)

0

100

200

300

400

500

600

700

800

6 12 18 24 30 36 42 46.2

#
 C

o
m

p
a

ri
s
o
n
s
 (

x
 1

0
0
0
0
0
0

)

Objects (x 100000)

Words: Objs. Compar. on Insertion

OI

XXL

(c)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

6 12 18 24 30 36 42 46.2

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

Objects (x 100000)

Words: Avg. Time on Ex. Match Qry

OI

XXL

(d)

0

1

2

3

4

5

6

7

6 12 18 24 30 36 42 46.2

#
 A

c
c
e
s
s

Objects (x 100000)

Words: Block Acc. on Ex. Match Qry

OI

XXL

(e)

0

50

100

150

200

250

6 12 18 24 30 36 42 46.2

#
 C

o
m

p
a

ri
s
o
n
s

Objects (x 100000)

Words: Comp. on Exact Match Qry

OI

XXL

(f)

Fig. 6. Experiments over the Words dataset

ObInject does not need this setup, since the keys are inserted while there is available space in the
block, as described in Section 3.4.

The XXL buffer cache was set to have the same height of the tree in order to minimize the gain
of this resource. Since XXL does not clear its buffer cache, we perform this configuration to force
XXL to retrieve a page from the disk, similar to our framework. ObInject uses a similar technique,
the Session (see Section 3.3), but it is flushed and reinitialized for each operation invoked. Both
mechanisms improve the bottom-up and top-down navigations over the tree.

The Words dataset was inserted in a B+-Tree. In this experiment, to satisfy the total order relation,
the lexicographical order of the words was considered. The results obtained are shown in Figure 6, in
which “OI” indicates ObInject and “XXL” refers to XXL.

Figure 6(a) shows the total time for the insert operation and Figure 6(d) shows the average time
for exact match queries. It can be seen that the behavior of both frameworks is sub-linear regarding
processing time and both present an equivalent behavior. Anyway, ObInject is always at least 10%
faster on both insertion and query operations.

Figure 6(b) presents the total number of disk accesses during insert operations. ObInject manages
the blocks using the classes described in Section 3.3, whereas XXL delegates this responsibility to the
Java serialization extensions. It can be seen that both frameworks presents a linear behavior regarding
the number of objects inserted. Remarkably, ObInject performs 56% less disk access than XXL.

Figure 6(e) presents the average number of disk access for the exact match query operation. It can
be noticed that for both 600.000 and 1.200.000 objects, the amount of disk accesses is the same. This
occurs because both trees built by ObInject have the same height, but the leaves of the tree with
600.000 objects are sparser than the leaves of the tree with 1.200.000 objects. This also occurs in
the range from 1.800.000 to 4.621.240 objects. This same figure suggests that XXL does not keep its
B+-Tree balanced, since the average number of disk access is fractional.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

ObInject: a NoODMG Persistence and Indexing Framework for Object Injection · 231

0

100

200

300

400

500

600

700

800

900

76 152 228 304 380 456 532 606

T
im

e
 (

x
 1

0
0
0
)

(m
ill

is
e
c
o
n
d
s
)

Objects (x 10000)

Points: Total Time on Insertion

OI

XXL

(a)

0

100

200

300

400

500

600

76 152 228 304 380 456 532 606

#
 A

c
c
e
s
s
 (

x
 1

0
0

0
0
0
)

Objects (x 10000)

Points: Block Access on Insertion

OI

XXL

(b)

0

20

40

60

80

100

120

140

160

76 152 228 304 380 456 532 606

#
 M

B
R

s
 C

re
a
te

d
 (

x
 1

0
0
0
)

Objects (x 10000)

Points: MBRs Creation on Insertion

OI

XXL

(c)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

76 152 228 304 380 456 532 606

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

Objects (x 10000)

Points: Avg. Time on Point Query

OI

XXL

(d)

0

5

10

15

20

25

30

76 152 228 304 380 456 532 606

#
 A

c
c
e
s
s

Objects (x 10000)

Points: Block Access on Point Query

OI

XXL

(e)

0

100

200

300

400

500

600

700

800

900

76 152 228 304 380 456 532 606

#
 C

a
lc

u
la

ti
o
n
s

Objects (x 10000)

Points: Overlap Calcs. on Point Query

OI

XXL

(f)

Fig. 7. Experiments over the Points dataset

Regarding comparison operations, Figure 6(c) shows the total number of object comparisons for
the insert operation and Figure 6(f) the average number for the exact match query operation. It is
important to know that ObInject uses the Insertion-Sort algorithm to add a new key into the block
whereas XXL uses the Merge-Sort algorithm provided by Java. Both approaches keep the keys sorted
inside each block even during split operations. Therefore, it is expected that ObInject will perform a
larger number of comparisons for the insert operation when compared to XXL. This in fact happens,
as it is shown in Figure 6(c). However, the average number of object comparisons performed by the
query operations should not be affected by that approach, since both frameworks use binary search
to locate the most suitable subtree to descend, and in fact this happens, as shown in Figure 6(f).
Altogether, the tree that XXL constructs is higher than the one constructed by ObInject and XXL
performs more comparisons to reach a leaf.

The Points dataset employed an R-Tree, and Figure 7 shows the results. For both frameworks, the
quadratic split algorithm was used to divide nodes. Geographical coordinates are represented as double
precision floating point numbers (double) in both frameworks, but ObInject is more flexible and is
able to supports other types. Here, MBRs are collapsed to a point, i.e., the corners of the rectangles
coincide. It can be seen that the behavior of both frameworks is sub-linear regarding processing time
and both present equivalent behavior. However, ObInject is always at least 57% faster.

Figure 7(a) shows the total time required for the insert operation and, as expected, it confirms that
the behavior of both frameworks is linear regarding processing time. The same behavior occurs for
the query operation, as shown in Figure 7(d), but in a more pronounced way, since the quadratic
split algorithm generates a reduced overlap among MBRs. Figure 7(d) also shows that the sub-linear
scalability of the ObInject framework is even more remarkable for this dataset. ObInject creates a
smaller number of MBRs during insertion as shown in Figure 7(c), and there are fewer intersections
among them than in XXL, as shown in Figure 7(f), which shows the average number of overlap
calculation in queries. Figure 7(b) shows that the total number of disk accesses to insert objects

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

232 · Luiz O. Carvalho et al.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 7.8

T
im

e
 (

x
 1

0
0
0
)

(m
ill

is
e
c
o
n
d
s
)

Objects (x 10000)

Proteins: Total Time on Insertion

OI

XXL

(a)

0

100

200

300

400

500

600

1 2 3 4 5 6 7 7.8

#
 A

c
c
e
s
s
 (

x
 1

0
0

0
)

Objects (x 10000)

Proteins: Block Access on Insertion

OI

XXL

(b)

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 7.8

#
 C

a
lc

u
la

ti
o
n
s
 (

x
 1

0
0
0

0
)

Objects (x 10000)

Proteins: Dist. Calcs. on Insertion

OI

XXL

(c)

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 7.8

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

Objects (x 10000)

Proteins: Avg. Time on Point Query

OI

XXL

(d)

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 7.8

#
 A

c
c
e
s
s

Objects (x 10000)

Proteins: Block Acc. on Point Query

OI

XXL

(e)

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 7.8

#
 C

a
lc

u
la

ti
o
n
s

Objects (x 10000)

Proteins: Dist. Calcs. on Point Query

OI

XXL

(f)

Fig. 8. Experiments over the Proteins dataset

is stable in both frameworks, and Figure 7(e) (average number of disk accesses in query operation)
presents the same behavior as the amount of objects increases.

The Proteins dataset was indexed using an M-Tree. A Damerau Levenshtein metric variant was
used to compare elements. This metric combines the cost of insertions, replacements, deletions and
transposition with the cost of substitution of an amino acid by another, following the Matrix Point
Accepted Mutation (mPAM) algorithm [Xu and Miranker 2004]. The gap penalty adopted for amino
acids insertion and deletion is the highest value of the mPAM, which was set to 7. In both frameworks,
the random promotion algorithm and the distribution of keys by generalized hyperplane were used.
Since the original M-Tree employed in XXL Framework only computes distances by using Lp metric
between points, adjustments had to be made in some methods in order to allow calculating the same
metric previously cited in both frameworks.

The results of the M-Tree experiments are depicted in Figure 8. Figure 8(a) shows the total time
and Figure 8(c) shows the average number of distance calculations required for the insert operation.
As it can be seen, the behavior of both frameworks is linear with respect to processing time, and both
present the equivalent behavior. However, ObInject now is always at least twice as faster than XXL.

It also can be seen that the total time required by the insert operation, shown in Figure 8(a), is
more affected by the number of distance calculations (shown in Figure 8(c)) than by the average of
number of block accesses, as shown in Figure 8(b). Figures 8(d), 8(e) and 8(f) shows that queries
present the same behavior of insertions, which indicates that the measurements regarding number
of disk accesses and object comparisons for query operations have equivalent impact on the time to
perform point queries. In all measurements, it can be seen that ObInject always performs faster and
requires a smaller number of computational resources — in fact at least half of those required by XXL.

As a final measurement, we fixed the amount of objects to be inserted and varied the block size.
To generate the measurements shown in Figure 9 we used blocks of 2 KB, 4 KB, 8 KB and 16 KB.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

ObInject: a NoODMG Persistence and Indexing Framework for Object Injection · 233

0

100

200

300

400

500

600

700

800

2048 4096 8192 16384

T
im

e
 (

x
 1

0
0
0
)

(m
ill

is
e
c
o
n
d
s
)

Block Size (bytes)

Proteins: Total Time on Insertion

OI

XXL

(a)

0

100

200

300

400

500

600

700

2048 4096 8192 16384

#
 A

c
c
e
s
s
 (

x
 1

0
0

0
)

Block Size (bytes)

Proteins: Block Access on Insertion

OI

XXL

(b)

0

50

100

150

200

250

300

2048 4096 8192 16384

#
 C

a
lc

u
la

ti
o
n
s
 (

x
 1

0
0
0

0
0
)

Block Size (bytes)

Proteins: Dist. Calcs. on Insertion

OI

XXL

(c)

0

20

40

60

80

100

120

140

2048 4096 8192 16384

T
im

e
 (

m
ill

is
e
c
o
n
d
s
)

Block Size (bytes)

Proteins: Avg. Time on Point Query

OI

XXL

(d)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2048 4096 8192 16384

#
 A

c
c
e
s
s

Block Size (bytes)

Proteins: Block Acc. on Point Query

OI

XXL

(e)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

2048 4096 8192 16384

#
 C

a
lc

u
la

ti
o
n
s

Block Size (bytes)

Proteins: Dist. Calcs. on Point Query

OI

XXL

(f)

Fig. 9. Results of experiments varying the block size

Notice that every abscissa is in logarithmic scale and every ordinate is linear. The number of objects
inserted in both frameworks corresponds to the entire Proteins dataset: 78.221. Here, due to space
limitations, we only present results from the M-Tree. Figures 9(a), 9(b) and 9(c) confirm the previous
results that insertion time is more influenced from the number of distance calculations than from the
number of block accesses. Figure 9(e) shows that as the block size increases and a larger number
of keys are stored in each block, the resulting tree has a smaller height and less block accesses are
performed. Figure 9(f) shows the same, but here, a smaller number of distance calculations are
required, once the tree does not have to handle splits. Both figures show that the block size causes
the same impact on the query time (Figure 9(d)). In addition, Figure 9(c) points out that although
the function employed to compare pairs of elements in the dataset is computationally costly, as is the
case of the Damerau Levenshtein one, it is better to set the block size smaller.

Table I shows the amount of RAM memory required for both frameworks to fully insert and query
each dataset, using block size of 4 KB. For the Words dataset, ObInject consumes 16.44% less memory
than XXL. The results from the Proteins dataset show that both frameworks require equivalent
memory, but XXL spends 04.84% less memory than ObInject for the Points dataset.

As a general overview, we can conclude that, for an ordered domain, ObInject executes more than
30% faster than XXL on the insertion and more than 20% faster on query answers. The results in a
metric domain show that ObInject on average gains more than 50% for insertion and more than 40%
for queries over XXL. Regarding punctual/rectangular key domains, ObInject is about 60% faster
than XXL for insertion and 75% for queries.

Table I. Memory usage (Megabytes) measured using JVirtualVM.
Framework \ Dataset Words Points Proteins

OI 370,240 508,861 548,397
XXL 443,103 485,351 549,270

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

234 · Luiz O. Carvalho et al.

5. CONCLUSIONS

The main goal of this article is to present a new object persistence mechanism, the ObInject framework.
As a NoODMG solution, ObInject provides object persistence and indexing to aid in the development
of user-application classes. It also provides resources for object identification, multiple indexing,
serialization and storage flexibility.

The ObInject model uses the concepts of CRTP and Design Patterns in order to abstract semantic
issues and allows extensions for its functionalities, allowing the support of new devices and data
structures. The framework does not rely on any specific language or technique and thus it can be
implemented in any object-oriented programming language.

To provide a weak dependence and coupling among classes, the framework follows a modular archi-
tecture. The Metaclass module provides a hierarchical class model that allows the system analyst to
provide persistence to any user-application class. Moreover, this module classifies the diverse relations
among the data domain, with respect to indexing, regardless of its data domain meeting either the
total ordering relation, or metric or multidimensional properties.

The index implementation is performed in the Storage module. Distinctly from NoODMG-based
solutions, the Block module introduces its own data organization scheme. Thus, the persistence
mechanism replaces the need of a RDBMS. The Device module constitutes a factory of blocks, binding
the Storage and Block modules. The Device module can also be extended to provide an easy-to-use
way of defining other storage media types.

As experiments highlight, ObInject is a flexible and complete solution to provide persistence to
object classes, also attaining good performance gains over competing alternatives. Furthermore, it is
stable to handle multidimensional data and presents a significant and expressive performance gain to
store data in metric space.

Now, the authors are planning to release the source code to the community following a free software
license and building an online repository. As a work in progress, a new module for queries is been
developed, that will supply several new query algorithms aimed at metric and spatial domains, as well
as a new data structure and the syntax specification for a corresponding query language.

Finally, we highlight that a decentralized pool of storage types could improve the scalability and
the connectivity of the data structures that provides the persistence. Examples of target types include
the client-server, grid and cloud architectures. Moreover, although not strictly required, the ACID
properties could be included and ensured in any of the storage types.

REFERENCES

Achtert, E., Kriegel, H. P., and Zimek, A. ELKI: a software system for evaluation of subspace clustering algorithms.
In Proceedings of the International Conference on Scientific and Statistical Databases Management. Hong Kong,

China, pp. 580–585, 2008.

Alia, M., Chassande-Barrioz, S., Déchamboux, P., Hamon, C., and Lefebvre, A. A Middleware Framework
for the Persistence and Querying of Java Objects. In Proceedings of the European Conference on Object-Oriented

Programming. Oslo, Norway, pp. 292–316, 2004.

Arboretum. www.gbdi.icmc.usp.br/arboretum, 2005.

Barry, D. and Stanienda, T. Solving the Java Object Storage Problem. IEEE Computer 31 (11): 33–40, 1998.

Batko, M., Novak, D., and Zezula, P. MESSIF: metric similarity search implementation framework. In Proceedings
of the International Conference on Digital Libraries: Research and Development. Pisa, Italy, pp. 1–10, 2007.

Bauer, C. and King, G. Hibernate in Action. Manning Publications, 2004.

Bercken, J. v. d., Dittrich, J. P., and Seeger, B. Javax.XXL: a prototype for a library of query processing

algorithms. SIGMOD Record 29 (2): 588–590, 2000.

Breunig, M., Butwilowski, E., Golovko, D., Kuper, P., Menninghaus, M., and Thomsen, A. Advancing DB4GeO.
In Progress and New Trends in 3D Geoinformation Sciences. Vol. 6. Springer, pp. 193–210, 2013.

Camargo, V. V., Ramos, R. A., Penteado, R. A. D., and Masiero, P. C. Projeto Baseado em Aspectos do Padrão
Camada de Persistência. In Simpósio Brasileiro de Engenharia de Software. Manaus, Brazil, pp. 114–129, 2003.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

ObInject: a NoODMG Persistence and Indexing Framework for Object Injection · 235

Carey, M. J. and DeWitt, D. J. Of Objects and Databases: a decade of turmoil. In Proceedings of the International

Conference on Very Large Data Bases. Mumbai, India, pp. 3–14, 1996.

Cattell, R. G. G. and Barry, D. K. The Object Data Standard: ODMG 3.0. Morgan Kaufmann, 2000.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows, M., Chandra, T., Fikes, A., and

Gruber, R. E. Bigtable: a distributed storage system for structured data. In Proceedings of Symposium on Operating

System Design and Implementation. Seatle, USA, pp. 205–218, 2006.

Ciaccia, P., Patella, M., and Zezula, P. M-Tree: an efficient access method for similarity search in metric spaces.
In Proceedings of the International Conference on Very Large Data Bases. Athens, Greece, pp. 426–435, 1997.

Codd, E. F. A Relational Model of Data for Large Shared Data Banks. Communications of the ACM 13 (6): 377–387,

1970.

Comer, D. The Ubiquitous B-Tree. ACM Computing Surveys 11 (2): 121–137, 1979.

Coplien, J. O. Curiously Recurring Template Patterns. C++ Report 7 (2): 24–27, 1995.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S.,
Vosshall, P., and Vogels, W. Dynamo: Amazon’s highly available key-value store. In Proceedings of ACM

Symposium on Operating Systems Principles. Stevenson, USA, pp. 205–220, 2007.

Fagin, R., Nievergelt, J., Pippenger, N., and Strong, H. R. Extendible Hashing: a fast access method for dynamic
files. ACM Transactions on Database Systems 4 (3): 315–344, 1979.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. Design Patterns. Addison-Wesley, 1995.

Graefe, G. Volcano: an extensible and parallel query evaluation system. IEEE Transactions on Knowledge and Data

Engineering 6 (1): 120–135, 1994.

Graves, S. and Knizhnik, K. Simple as A, B, Tree? Applications Find Mobile Fruit in the R-Tree. GeoWorld , July,
2009.

Guttman, A. R-Trees: a dynamic index structure for spatial searching. SIGMOD Record 14 (2): 47–57, 1984.

Hellerstein, J. M., Naughton, J. F., and Pfeffer, A. Generalized Search Trees for Database Systems. In Proceedings

of the International Conference on Very Large Data Bases. Zurich, Switzerland, pp. 562–573, 1995.

Kaur, H., Chauhan, R., Alam, M. A., Aljunid, S., and Salleh, M. SpaGRID: a spatial grid framework for high
dimensional medical databases. In Proceedings of the Hybrid Artificial Intelligence Systems. Spain, pp. 690–704,

2012.

Kienzle, J. and Gélineau, S. AO Challenge - implementing the ACID properties for transactional objects. In

Proceedings of the International Conference on Aspect-Oriented Software Development. Bonn, Germany, pp. 202–
213, 2006.

Kienzle, J. and Romanovsky, A. Framework Based on Design Patterns for Providing Persistence in Object-Oriented

Programming Languages. IEE Proceedings - Software 149 (3): 77–85, 2002.

Leach, P., Mealling, M., and Salz, R. A Universally Unique Identifier (UUID). IETF RFC 4122, 2005.

Leavitt, N. Will NoSQL Databases Live Up to Their Promise? IEEE Computer 43 (2): 12–14, 2010.

Leist, S. and Zellner, G. Evaluation of Current Architecture Frameworks. In Proceedings of the ACM Symposium

on Applied Computing. Dijon, France, pp. 1546–1553, 2006.

Levandoski, J., Lomet, D., and Sengupta, S. The Bw-Tree: a B-Tree for new hardware. In Proceedings of the

International Conference on Data Engineering. Brisbane, Australia, pp. 1–12, 2013.

Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A. N., and Theodoridis, Y. R-Trees. Springer, 2006.

Mattsson, M. and Bosch, J. Stability Assessment of Evolving Industrial Object-Oriented Frameworks. Journal of

Software Maintenance 12 (2): 79–102, 2000.

Ogasawara, E. S. and Mattoso, M. Uma Avaliação Experimental Sobre Técnicas de Indexação em Bancos de Dados

Orientados a Objetos. In Simpósio Brasileiro de Banco de Dados. Brazil, pp. 285–297, 1999.

Oliveira, A. L., Ferrari, F. C., Penteado, R. A. D., and Camargo, V. V. Investigating Framework Product Lines.
In Proceedings of the ACM Symposium on Applied Computing. Riva del Garda, Italy, pp. 1177–1182, 2012.

Roussopoulos, N., Kelley, S., and Vincent, F. Nearest Neighbor Queries. SIGMOD Record 24 (2): 71–79, 1995.

Thomson, A. and Abadi, D. J. The Case for Determinism in Database Systems. VLDB Journal 3 (1): 70–80, 2010.

Traina Júnior, C., Traina, A. J. M., Seeger, B., and Faloutsos, C. Slim-Trees: high performance metric trees

minimizing overlap between nodes. In Proceedings of International Conference on Extending Database Technology.
Konstanz, Germany, pp. 51–65, 2000.

Weske, M. and Kuropka, D. Flexible Persistence Framework for Object-Oriented Middleware. Tech. Rep. 5, Hasso
Plattner Institute for Software Systems Engineering, Potsdam, Germany, 2001.

Xu, W. and Miranker, D. P. A Metric Model of Amino Acid Substitution. Bioinformatics 20 (8): 1214–1221, 2004.

Zezula, P., Amato, G., Dohnal, V., and Batko, M. Similarity Search: the metric space approach. Springer, 2006.

Zhu, H., Kollios, G., and Athitsos, V. A Generic Framework for Efficient and Effective Subsequence Retrieval.

VLDB Endowment 5 (11): 1579–1590, 2012.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

