
Under Pressure Benchmark for DDBMS Availability

Alessandro Gustavo Fior1, Jorge Augusto Meira1,2, Eduardo Cunha de Almeida1

Ricardo Gonçalves Coelho3, Marcos Didonet Del Fabro1, Yves Le Traon2

1 Universidade Federal do Paraná, Brazil
{alessandrog, eduardo, marcos.ddf}@inf.ufpr.br

2 University of Luxembourg, Luxembourg
{jorge.meira, yves.letraon}@uni.lu

3 Universidade Estadual do Norte do Paraná, Brazil
rgcoelho@uenp.edu.br

Abstract. The availability of Distributed Database Management Systems (DDBMS) is related to the probability
of being up and running at a given point in time and to the management of failures. One well-known and widely
used mechanism to ensure availability is replication, which includes performance impact on maintaining data replicas
across the DDBMS’s machine nodes. Benchmarking can be used to measure such impact. In this article, we present a
benchmark that evaluates the performance of DDBMS, considering availability through replication, called Under Pres-
sure Benchmark (UPB). The UPB measures performance with different degrees of replication upon a high-throughput
distributed workload, combined with failures. The UPB methodology increases the evaluation complexity from a sta-
ble system scenario to a complex one with different load sizes and replicas. We validate our benchmark with three
high-throughput in-memory DDBMS: VoltDB, NuoDB and Dbms-X.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous

Keywords: availability, benchmark, distributed databases, failure, replication

1. INTRODUCTION

The availability of a distributed system is related to the probability of its being up and running at
a given point in time. In the context of Distributed Database Management Systems (DDBMS), the
definition of availability may be extended to the capacity to manage failures [Özsu and Valduriez 2011]
with low impact. There are different capabilities related to failures management, such as keeping the
system operational during failures, recovering with efficiency and ensuring that no data is lost.

The large majority of applications have availability requirements (i.e, fully operational) around
99,99% [Gray and Siewiorek 1991]. In some critical systems, such as telecommunication systems, the
availability rate grows up to 99,999%. To provide this rate, it is necessary to use robust mechanisms
and to consider their performance impact. Two important mechanisms used by DDBMSs to ensure
availability are replication and recovery. However, the use of these mechanisms has a direct impact
on the performance, which may be more or less important depending on the rate of availability.

The performance of DDBMS is analyzed through the execution of a benchmark, in which different
workloads are submitted and the execution time is measured. To provide basis to compare different
systems, the benchmark must follow well-defined evaluation methods [Jain 1991]. Several benchmarks
have been proposed focusing on comparing different DBMSs. However, none of them are suitable

Supported by the Fonds National de la Recherche, Luxembourg 902399, CNPQ grant 481715/2011-8, Fundacao Arau-
caria grant 20874 and SERPRO.
Copyright c©2013 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013, Pages 266–278.

Under Pressure Benchmark for DDBMS Availability · 267

for DDBMS, since they do not include availability requirements. In one hand, the benchmarks that
evaluate availability [Vieira and Madeira 2003; Li and Levine 2012] focus on centralized DBMS.
In other the hand, the Yahoo Cloud Serving Benchmark (YCSB) [Cooper et al. 2010] evaluates
performance and scalability issues of cloud-based systems. However, it does not take into account
availability in the current specification.

In this article, we present the Under Pressure Benchmark (UPB) that evaluates the performance of
DDBMSs considering availability through synchronous replication1. The goal of UPB is to measure
how the performance of DDBMSs is affected by applying different degrees of replication and failures.
The UPB methodology increases the evaluation complexity from a stable system scenario up to a
faulty system scenario upon different load sizes and replicas. The scenarios are designed to evaluate the
following different settings: (1) no fault tolerance, no failures; (2) fault tolerance, no failures; (3) fault
tolerance with failures. For each scenario, the benchmark generates a set of partial metrics measuring
the DDBMS performance. These partial metrics are summarized to provide a unique availability
index. We conducted experiments applying our benchmark on three different high-throughput in-
memory DDBMS: VoltDB, NuoDb and Dbms-X.

This article is structured as follows. Sections 2 and 3 present our benchmark and methodology,
respectively. Section 4 describes our validation through experimentation. Section 5 discusses related
work. Section 6 concludes the article.

2. THE ENVIRONMENT OUTLINE

We present in this article a benchmark called Under Pressure Benchmark (UPB). It evaluates one
important mechanism related to DDBMS availability [Özsu and Valduriez 2011]: replication. While
data replication is up and running, the impact on performance may vary depending both on the
evaluation environment and the proper implementation that differ from DDBMS (e.g., asynchronous
or synchronous). The UPB seeks to assess the efficiency and performance impact of replication with
different configurations and workloads. The workload varies up to extreme situations in terms of faults
and bulk load.

A set of partial metrics computes performance along the execution of the UPB, for instance, the
number of transactions per second with or without node failures. At the end, a final metric sums up
the partial metrics to present the overall performance of the DDBMS under pressure. We present the
main characteristics of UPB as follows:

—Portability: UPB can be applied to any DDBMS with minor adaptations.
—Adaptability: The UPB methodology allows using different workloads.
—Flexibility: Since UPB provides a set of partial metrics, one may use subsets for specific proposes,
such as, analyzing different configurations or applications.

—Extensibility: The methodology supports to be extended to consider different DDBMS features, by
incorporating new metrics.

2.1 Architecture

The UPB architecture is designed to fit a classical DDBMS architecture. It is composed by client
machines and a cluster of distributed machine nodes to run the DDBMS(see Figure 1).

2.1.1 Clients. The connection between the DDBMS and the clients depends on the DDBMS. The
clients connect and submit transactions to any cluster node or all the cluster nodes at the same time
with the DDBMS connector (i.e. driver) taking care of load balance.

1Since the evaluated DDBMSs ensure the ACID properties, we assume a synchronous replication.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

268 · Alessandro G. Fior et al.

Client

n

Client

1

CPU

Disk Mem

mmm

CPU

CPU

Client

2

Client

3

Mem

mmm

Mem

mmm

Disk

Disk

DDBMS cluster

WORKLOAD

Fig. 1. UPB architecture

UPB has a stepwise methodology to drive its execution, in which the number of clients submitting
transactions grows at each step. Two configuration knobs are required to limit the number of clients
and their throughput (in transactions per seconds). The number of clients may vary from DDBMS,
even if they are running in the same environment, and a tuning procedure must be taken to draw the
best fit number and avoid bungles to spoil the final result. The tuning procedure includes leveraging
the results of the partial metrics to figure out the proper configuration.

For an Online Transaction Processing (OLTP) application running in a real environment, there is
no throughput limitation for clients, since they are distributed all over the Wide Area Network (WAN)
and do not run in the same machine. Otherwise, mimicking a large number of clients may saturate the
client machine increasing latency of the transaction requests. As consequence, the DDBMS may never
reach its performance boundary and the final performance result may be spoiled as well. To scale
out the benchmark and avoid any client contention, we implemented our benchmark to run across
distributed machines [Meira et al. 2012].

2.1.2 Fault Tolerance. Data replication is the main mechanism for fault tolerance in DDBMS with
two main strategies implemented by the DDBMS: asynchronous updating of replicas (i.e., optimistic
strategy) and synchronous updating (i.e., pessimistic strategy). For those strategies, a replication
factor defines the number of nodes that could be out of operation without data loss or service outage.

The replication factor is configured following the availability requirements given by the application.
According to the rules-of-thumb 2, to size the hardware based on data replication, the number of
cluster nodes must be a multiple of the number of copies.

The UPB goal is to evaluate the performance impact on the DDBMS while a number of its nodes is
unavailable. It does not evaluate the impact of different failures. In this context, our understanding
follows the definition of fail-fast presented by Gray and Siewiorek [1991] in which any system module
should operate perfectly or stop immediately. It means that any failure in a node, whether hardware
or the DDBMS itself, is enough to immediately disrupt the node.

2.1.3 Workload. In this work we leverage the YCSB [Cooper et al. 2010] workload generator, but
the UPB accepts any workload based on the transaction concept. Transactions could be composed
by simple database operations (e.g., reads, writes, deletes) or complex business operations, such as,
the transactions of the TPC-C and the TPC-E 3. The only constraint is that at least 90% of the
transactions must complete in less than 1 second. This requisite is normally used by well-known

2http://www.voltdb.com/
3http://www.tpc.org/

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

Under Pressure Benchmark for DDBMS Availability · 269

Table I. Scenarios
Combination K F Relevance Comment

1 0 0 Yes Basis to scenarios comparison
2 0 Y Unfeasible F > K

3 X 0 Yes Performance impact of fault tolerance mechanism
4 X Y Yes Performance impact of failures

benchmarks to cope with real applications 4. From now, we denote this constraint as φ.

3. METHODOLOGY

In this section we present the UPB methodology. It is divided in three tasks: (1) defining the
availability scenarios, (2) specifying a steady state and (3) executing the scenarios. These tasks are
explained in the following.

3.1 Defining the Availability Scenarios

We define scenarios that represent the set of possible states wrt. availability. The scenarios are chosen
based on the combination of values of two variables, as described below:

(1) Fault tolerance index (K): quantity of "failed nodes" supported by the cluster without service
outage. The possible K values are:
—K = 0 (no fault tolerance): the service stops in presence of any node failure.
—K = 1, 2, ..., N2 : N represents the nodes that compose the DDBMS cluster. In this case, the
DDBMS supports failures in K nodes. The values vary between 1 to N

2 .
(2) Number of failed nodes (F).

—F = 0: cluster without failures.
—F = 1, 2, ...,K: cluster with K "failed nodes". The failed values are between 1 to K.

However, it is not necessary to have one scenario for all combinations of variable values, since some
scenarios cannot occur in practice. Table I shows possible values of the variables, a short explanation
and the relevance of each combination. Since some values depend on the scenario, X represents the
values assumed by K (1 ≤ X ≤ N

2) and Y represents the values assumed by F (1 ≤ X ≤ K) in
different scenarios.

Following the combination analysis, there are three interesting scenarios that will be applied by
UPB:

—Scenario (1) - combination 1: No fault tolerance (K = 0), no failures (F = 0)
—Scenario (2) - combination 3: Fault tolerance (K > 0), no failures (F = 0)
—Scenario (3) - combination 4: Fault tolerance (K > 0), failures (0 < F ≤ K)

Since the values of K and F vary, each scenario has one or several steps to evaluate all the possi-
bilities.

3.2 Specifying the Steady State

In this section we explain how to define a steady state, which represents a sustainable execution state
of the DDBMS. The overall performance of the DDBMS varies about 2 percent during the steady

4http://www.tpc.org/tpce/

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

270 · Alessandro G. Fior et al.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 200 400 600 800 1000

T
ra

n
s
a
c
ti
o
n
s
 p

e
r

s
e
c
o
n
d
 (

#
)

Uptime (Seconds)

Hypothetical Database Warmup

Warmup State Steady State

Workload
Warmup boundary

Fig. 2. Warming period and steady state

state 5. Before reaching such state, it is necessary to pass through a warming period, preventing any
unstable behavior (see Figure 2).

Similarly to the TPC-C benchmark, the warming period is set up by the responsible for applying
the benchmark. The UPB performance measures must be the transactions per second (tps) average
during a period of 2 minutes in a steady state. This period is defined empirically, with the objective
to measure the system behavior and to normalize possible punctual performance instabilities. The
performance is measured by monitoring the number of tps, collected during the steady state.

To guarantee an accurate measurement, each client has a Q configuration to limit their workload
throughput (i.e., transactions per second). It prevents from having a stressed environment on the client
side (i.e., client contention) that could generate an unstable performance. The maximum workload a
client is able to submit with no contention on the client side (i.e., the maximum value allowed for Q)
is represented by Lc. To define Lc we apply an iterative method:

(1) Define the low load (Q) respecting the latency φ;
(2) Measure the performance (tps):

IF Q ∗ 0.95 ≤ tps THEN Q = Q ∗ 1.10, repeat step 2 ELSE Lc = Q ∗ 0.90;

To exemplify this method, let’s assume that an hypothetic client is set to submit initially 10 tps
(Q = 10). The cluster is evaluated with this load and it processes all the transactions. The load of the
client is increased by 10% until the difference between the cluster performance and the Q configuration
of the client is less than 5%. Consider that the load is increased until Q = 174 tps, but the cluster
processes just 150 tps. In this case, the difference between the performance expected and achieved is
higher than 5%. The Lc is this limit achieved decreased by 10% – in this illustration, 156 tps.

3.3 Executing the Scenarios

UPB is executed iteratively, in three steps, one per scenario. Each step may be executed more than
one time depending on the max value of the fault tolerance index(K). The partial metrics are denoted
by TK,F (F represents the "failed nodes").

5http://www.tpc.org/tpcc/

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

Under Pressure Benchmark for DDBMS Availability · 271

Step 1:
In this step the fault tolerance and failures are not taken into account. In real environments this
configuration is not recommended, but in our methodology it is important to set a basis for comparison.
This configuration is used to define the max performance reached by the cluster, since there is no
additional costs related to replication and/or failures (i.e., K=0, F=0). The max performance is
represented by TK,F (see Algorithm 1).

input : Q, a set of client workloads; Lc, maximum workload per client
output: TK,F

foreach q ∈ Q do
q = Lc ∗ 0.10;
while (Qtotal + q) ∗ 0.95 ≤ tps and q ≤ Lc do

lastQ = q;
q = q ∗ 1.10;

end
if (Qtotal + q) ∗ 0.95 ≤ tps then

Qtotal = Qtotal + q;
else

TK,F = Qtotal + lastQ;
return TK,F

end
end

Algorithm 1: Baseline

Step 2:
The fault tolerance mechanisms have an impact on the system performance even without node failures.
This impact varies depending on the implementation and strategies used by each DDBMS. The step
2 aims to verify and to measure these impacts.

The fault tolerance index is configured with different values(K > 0). The node failure index(F)
is not used. The goal is to measure the data replication impact on performance. For each K value,
the max performance is calculated, using the Algorithm 1, and represented by:

DK,0 = (1− TK,0

T0,0
) ∗ 100

Step 3:
This step measures the performance during a failure state, with a fault tolerance mechanism activated.
The DDBMS must be operational during node failures. In this case, the performance may be impacted
by read workloads (the replicated data is used to maximize the throughput) and write workloads (the
replicated data must be synchronized, implicating in additional costs depending on the K value).

The number of failures vary up to the number of replicated nodes: 1 ≤ F ≤ K

For each F value, the performance is calculated, using the Algorithm 1, and related to TK,0 obtained
in the step 2. Thus, performance degradation is defined by:

DK,F = (1− (
TK,F

TK,0
)) ∗ 100

The final degradation metric(DFK) is given by summarization of the metric DK,F

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

272 · Alessandro G. Fior et al.

Table II. Overall Metrics
Metric Step Description

DT =

K∑
i=1

Di,0

K
2 Performance degradation with fault tolerance

DF =

K∑
i=1

DFi

K
3 Performance degradation during failures

DFK =

K∑
F=1

(1
F ∗DK,F)

K∑
F=1

(1
F)

We used a weighted average to calculate the global degradation considering that simultaneous
failures are less common than unique failures. Thus, the weight of simultaneous failures on the metric
are lower.

3.4 Overall Metrics

We define two overall metrics that summarize the partial metrics calculated. Each metric is the
average value obtained for one kind of metric, over the K index, as shown in Table II. We do not
use step 1 to calculate an overall metric, since it is used only as basis for comparison.

These two metrics are the final results of the performance analysis of UPB.

4. EXPERIMENTS

In this section we present experiments performed by applying the UPB in three different DDBMSs.
Our goal is to validate the proposed benchmark and its methodology as a robust approach to compare
DDBMSs’s availability. The experiments are conducted by following the three steps of UPB.

4.1 Experimental Setup

The experimental evaluation was performed in three high-throughput DDBMSs: VoltDB, NuoDB
and Dbms-X. In order to provide a fair comparison, all the experiments were performed in the same
environment, the Grid’5000 testbed 6. The experimental setup is described bellow:

—Intel Xeon E5440 QC (2.83 GHz / 4 MB), 2 sockets, 4 cores per socket
—Memory 8 GB
—Network Myri-10G (10G-PCIE-8A-C)
—Debian GNU/Linux Lenny x64
—JavaTMSE Development Kit 7, Update 17
—YCSB-0.1.4
—DDBMS: VoltDB v2.8.4.1 Community Edition, NuoDB Starlings Release 1.1, Dbms-X

6http://www.grid5000.fr

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

Under Pressure Benchmark for DDBMS Availability · 273

CREATE TABLE usertable (

 YCSB_KEY VARCHAR(1000) NOT NULL,

FIELD1 VARCHAR(1000), FIELD2 VARCHAR(1000),

FIELD3 VARCHAR(1000), FIELD4 VARCHAR(1000),

FIELD5 VARCHAR(1000), FIELD6 VARCHAR(1000),

FIELD7 VARCHAR(1000), FIELD8 VARCHAR(1000),

FIELD9 VARCHAR(1000), FIELD10 VARCHAR(1000),

 PRIMARY KEY (YCSB_KEY)

);

Fig. 3. Database schema

SELECT FIELD1, FIELD2, FIELD3, FIELD4, FIELD5,

 FIELD6, FIELD7, FIELD8, FIELD9, FIELD10

FROM USERTABLE

WHERE YCSB_KEY = :1

Fig. 4. Read operation

We used 6 server-class machines running the DDBMS and three to run the clients. In order to avoid
any interference, the clients and servers were run in separate machines.

To load the database and generate the workload, we used the YCSB framework [Cooper et al. 2010].
The database schema is composed by a single table with 11 columns (see Figure 3).

Each column stores 1,000 alphanumeric characters, totalizing 1,100 bytes per record. In our experi-
ments, the database was loaded with 1 million tuples. The workload was based on read operations that
perform a select using the primary key and columns projection (see Figure 4). The YCSB workload
engine has been configured to use a Zipfian query distribution [Gray et al. 1994].

NuoDb and Dbms-x send SQL synchronous requests through JDBC calls. VoltDb, however, needs
to have an asynchronous connection to achieve better performance 7. For this reason, we developed
a specific asynchronous driver on top of YCSB.

Each client machine runs 32 threads to generate and to submit the workload. For the DDBMS
cluster, both VoltDB and Dbms-X use similar configuration. The cluster has 6 nodes running 6 sites,
totaling 36 partitions. However, the NuoDB implementation doesn’t support data partitioning. Every
NuoDB node can play three different roles: Broker (i.e., manages access and control of transaction
engines and storage managers), Transaction Engine (TE)(i.e., provides access to a single database.
It handles requests from clients, caches data, and coordinates transactions) and Storage Manager
(SM)(i.e., each storage manager is associated with exactly one database). Thus, each layer can scale
independently.

7http://www.voltdb.com/

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

274 · Alessandro G. Fior et al.

Table III. NuoDB configuration
Configuration Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

K=1 Broker TE TE TE TE TE & SM
K=2 Broker TE TE TE TE & SM TE & SM
K=3 Broker TE TE TE & SM TE & SM TE & SM
K=4 Broker TE TE & SM TE & SM TE & SM TE & SM

Table IV. Defining the workload limit per client (Lc)
Client Configuration (Q) VoltDB Performance (tps) Variation

70.000 69.999 0,0%
80.000 80.005 0,0%
90.000 90.039 0,0%
100.000 94.543 5,5%
110.000 94.266 14,3%

The NuoDB architecture supports one or more TEs, on a single node or across the cluster. The
NuoDB Documentation 8 recommends to add TEs to improve performance. Thus, during the exper-
iments, we maximize the number of TEs to improve the requests management. For each database,
one SM is required (i.e., depending the number of replicas the number of SMs is increased). The node
Broker is fixed in one node. Therefore, the NuoDB cluster assumes different configurations based on
the fault tolerance index(K), as shown in Table III.

4.2 Step 1

UPB has two parameters that determine how the experiments should be executed: Warm-up time
and maximum workload per client (Lc). These parameters are related to the environment and must
be defined in the first run. The way to obtain these parameters is quite similar for any DDBMS. For
this reason, we only present the results from VoltDB. After that it is possible to obtain the maximum
performance of the cluster without fails (F = 0) and configured with K = 0.

4.2.1 Parameters Definition. To get the workload limit per client (Lc), we evaluate the cluster
performance by setting a client with different Q values. The Table IV presents the sustained perfor-
mance of the VoltDB cluster and indicates the variation between the measured performance and Q
configuration of the clients (maximum throughput a client could submit).

When Q parameter is less than 90.000 tps, the client is capable to submit the workload determined
by Q. In these situations, the difference between Q and the real performance is pretty close (less than
0,04%). However when Q is higher than 90.000, the clients can’t submit more than 95.000 tps. In
that situation the difference between the performance and Q is higher than the 5% (threshold defined
in methodology). Because that, the maximum Q configuration acceptable by a VoltDB client (Lc) is
90.000 tps.

4.2.2 Cluster Performance with K=0 and F=0. To get T0,0 it is necessary to run the workload
several times, increasing the Q until the difference between Q total and the cluster performance is
higher than 5%. The results of the VoltDB runs are presented on Table V. The column Qtotal indicates
the sum of Q of all clients on the environment, considering that the Q configuration of each client
must be equal or less than Lc parameter determined previously.

The VoltDB results indicate that the cluster performance increase continuously until 238.740 tps.
After that, the difference between Qtotal and Cluster Performance is higher than 5%. This behavior

8http://www.nuodb.com/

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

Under Pressure Benchmark for DDBMS Availability · 275

Table V. VoltDB runs to determine T0,0 (No fault tolerance
(K = 0), no failures (F = 0))

Qtotal VoltDB Performance (tps) Variation
180.000 180.052 0,0%
220.000 218.839 0,5%
240.000 237.564 1,0%
250.000 238.740 4,5%
255.000 237.378 6,9%
260.000 239.018 8,1%

Table VI. Parameters defined for each DBMS
DBMS T0,0

VoltDB 238.740 tps
NuoDB 112.692 tps
Dbms-X 49.116 tps

Table VII. The performance degradation using fault tolerance mechanism.
VoltDB NuoDB Dbms-X

Environment TK,0 DK,0 TK,0 DK,0 TK,0 DK,0

K=0 238.740 - 112.692 - 49.116 -
K=1 156.659 34.38% 103.340 8.30% 70.663 -43.86%*
K=2 112.388 52.92% 103.669 8.00% 74.875 -52.44%*
K=3 101.899 57.32% 101.166 10.22% 80.506 -63.90%*

* The negative value means a performance increasing, no degradation.

of performance stabilization around 238.000 tps is due a backpressure situation. In all of the VoltDB
runs the φ requirement has been met.

The T0,0 of the others DDBMS is obtained in a similar way than VoltDB. The results are presented
on Table VI.

4.3 Step 2

On Step 2 we evaluated the DDBMS with different K configurations. The results of TK,0 and the
performance degradation of the fault tolerance systems (DK,0) are presented on Table VII.

The VoltDB results indicate that the backpressure state was achieved in the experiments. This
means that the maximum performance has been reached.

The performance degradation on VoltDB happens because when we increase the replication level,
we are dividing the available partitions among the duplicate copies. For example, on our environment
when K = 1 there are 18 partitions to process transactions and the other 18 partitions store copies of
the data. In the VoltDB architecture, the performance will be proportionally decreased as replication
is increased.

While NuoDB and VoltDB present the same behavior with performance decreasing as long as K
increases, Dbms-X behaves differently with its performance increasing. This happens because Dbms-X
is a key-value store with eventual consistency to maintain the replicas (similar to a Distributed Hash
Table). In this context, the read requests are routed to any node without looking up the most-up-to-
date value.

4.4 Step 3

The performance of the DBMS evaluated with faults (F > 0) and the performance degradation when
compared to a non-fault cluster are indicated on Table VIII.

The results on a faulty environment indicate that VoltDB performance degradation is less than
3% when K is configured as 1 or 2. But when K = 3, performance degradation increases consider-
ably, varying between 8.9% and 25.4%. Similarly to VoltDB, Dbms-X also presented a performance

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

276 · Alessandro G. Fior et al.

Table VIII. DDBMS performance in a faulty environment - The degradation is based on non-fault cluster.
VoltDB NuoDB Dbms-X

Environment TK,F DK,F TK,F DK,F TK,F DK,F

K=1 and F=1 152.072 2.928% 111.660 −8.05%* 40.472 42.72%

K=2 and F=1 110.491 1.687% 106.244 −2.48%* 57.227 23.56%

K=2 and F=2 109.781 2.319% 109.729 −5.84%* 26.760 64.26%

K=3 and F=1 92.8194 8.910% 103.469 −2.27%* 70.273 12.76%

K=3 and F=2 86.837 14.781% 103.922 −2.72%* 55.525 31.02%

K=3 and F=3 76.003 25.413% 104.304 −3.10%* 35.017 56.50%

* The negative value means a performance increasing, no degradation.

Table IX. This summarizes the performance degradation results in a faulty environment.
Metric VoltDB NuoDB Dbms-X
DF1 2.928 -8.05* 42.72
DF2 1.897 -3.6* 37.13
DF3 13.511 -2.475* 27.05

* The negative value means a performance increasing, no degradation.

Table X. Overall metrics - This summarizes the partial metrics. DT is the average of performance degradation metric
(with fault tolerance), over the K index. DF is the average of performance degradation metric (during failures), over
the K index.

Metric VoltDB NuoDB Dbms-X
DT 48.21 8.84 -53.4*
DF 6.11 -4.70* 35.63

* The negative value means an increase on performance, no degradation.

degradation during step 3. However, it is much more evident when reaching 64% in the worst case.

Due to its particular implementation, NuoDB behaves differently, increasing performance during
the fault injection. This is due to the peer-to-peer messaging infrastructure used to route tasks to
nodes. Therefore, the fewer node replicas are running the fewer tasks and messages are routed. In
addition, we observe that NuoDB has the stablest performance degradation upon faults, which may
be also inherited from the resilience of the P2P backend.

Table IX summarizes the performance degradation results in a faulty environment. They corrob-
orate our observations that VoltDB and Dbms-X suffer with faults, while NuoDB actually improves
performance due to its P2P nature almost reaching the baseline results (K = 0, F = 0).

4.5 Final Comparison and Discussion

Based on the partial metrics presented above, it is possible to calculate the final metrics for each
DDBMS and to compare the availability of them based on two different aspects. The final metrics are
presented on Table X.

On one hand, Dbms-X did not get the best overall throughput. In the other hand, it had the best
DT result, but only in situations where fewer faults are expected, despite being a DHT-like system
that processes transactions (but no ACID compliant). While VoltDB had the best overall performance
throughput in a faultless scenario, the same was not observed while faults are injected (reflected by
the DF metric). In contrast, NuoDB had some performance impact to maintain the replicas, but
presented a surprisingly DF that is a direct result from its P2P core. Therefore, NuoDB presented
the best results in environments with faults.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

Under Pressure Benchmark for DDBMS Availability · 277

One may argue that one DDBMS is better than the other based on the presented results. While this
may be true considering the execution scenarios to test replication and resilience, the DDBMS makes
a different set of tradeoffs to improve availability, which may lead to situations where one of them will
be more appropriate than the other. In this context, we claim that the UPB can be an important tool
to help choosing the more appropriate DDBMS while heating the debate on availability solutions.

5. RELATED WORK

Over the last years, the DDBMS popularization raised the interests of the database community
to design new benchmarks that satisfy new evaluation needs, including high-availability and high-
throughput. In 2010, the YSCB was presented by Yahoo [Cooper et al. 2010] to benchmark four
main features of distributed database stores: (1) Performance; (2) Scalability; (3) Availability; and
(4) Replication. The YSCB includes a load generator to allow benchmarking different database stores,
including relational and key-value ones. However, the load generator does not include fault-injection
and assessing availability and replication are put off to future work.

The R-cubed benchmark was designed to assess availability of computational systems in general
that was further extended to a benchmark suite called the System Recovery Benchmark (SRB) [Mauro
et al. 2004]. The suite bundles five different benchmarks: (1) Cluster - SRB-X; (2) Application - SRB-
D; (3) Databases - SRB-C; (4) Hard disk (RAID) - SRB-B; (5) Operating system - SRB-A. However,
just two of them were implemented (i.e., SRB-X and SRB-A).

The DBench-OLTP [Vieira and Madeira 2003] benchmark was also designed to assess availability of
transactional systems. It broadly uses the TPC-C specification with two main extensions in order to
mimic real system problems: fault-injection and measures related to system dependability (e.g., mean
time to detect errors). The UPB measures availability from another angle compared to the related
work measuring the performance impact to maintain replicas upon faults.

An important recent work is the extension of TPC-E [Li and Levine 2012]. The authors focus on
validation mechanisms to ensure the high-availability for DBMSs. The high-availability is supported
by using two servers to run the database: 1- Main server; 2 - Standby server (i.e., backup server). The
methodology is an extension of TPC-E 9 with metrics to evaluate the impact of failures. To validate
the availability, the authors proposed two metrics: 1 - Impact of using a standby server; 2 - Recovery
impacts. This benchmark aims to measure the impact of mirroring of centralized DBMS.

UPB versus Related Work
The main aspect that make the existing benchmarks not suitable for DDBMS is related to availability
requirements. The related work presents two approaches. The distributed one misses any type of
fault-injection mechanism preventing any attempt to benchmark availability. In fact, they point out
benchmarking availability only as future work (e.g., YCSB). The second approach provides fault-
injection, but for centralized environments. In contrast, we present a benchmark that aims to exercise
the mechanisms developed to support high availability claimed by DDBMS.

Thus, our experiments are focused on the comparison of DDBMS performance. The comparison
of our results with related benchmarks is an open issue, and particularly hard to do since they don’t
deal with availability aspects supported by our benchmark.

6. CONCLUSION

We presented the Under Pressure Benchmark (UPB) for evaluating DDBMS that support availability
through replication. The UPB methodology increases the evaluation complexity from a stable system
scenario up to a faulty system scenario, including (1) no fault tolerance, no failures; (2) fault tolerance,

9http://www.tpc.org/tpce/

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

278 · Alessandro G. Fior et al.

no failures; (3) fault tolerance with failures. To the best of our knowledge, we are the first benchmark
with such nature.

The UPB provides a focused benchmark to deal with a central issue related to DDBMS availability.
We believe that the UPB fits the requirements for evaluating DDBMS upon critical situations, such
as heavy loads and failures. Moreover, the UPB provides a good basis for database administrators to
take decision about replication indexes, based on performance impact.

We validated our benchmark through experimentation of high-throughput in-memory DDBMS:
VoltDB, NuoDB, and Dbms-X. We have verified that data replication has a large impact on perfor-
mance, as a side-effect of availability. The impact could be considered negative or positive, depending
on the DDBMS. This is more evident while the DDBMS is under high-throughput load, which is
expected in Cloud-based applications.

There are different paths for future work. It is necessary to define metrics for other availability
mechanisms, including data partitioning, database mirroring and recovery. However, in the latter, the
database could be considered in a non-steady state because machine nodes need to be dropped along
execution. In the context of high-throughput in-memory DDBMS, next steps include measuring the
overhead of keeping snapshots and checkpoints in disk while the system is upon different workload
scenarios, like those explored in this article. We also intend to improve the fault-injection evaluation
by measuring the impact of different failures by simulating specific faults (e.g., disk/memory failure,
network outage).

REFERENCES

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R. Benchmarking Cloud Serving Systems
with YCSB. In Proceedings of ACM symposium on Cloud computing. New York, NY, USA, pp. 143–154, 2010.

Gray, J. and Siewiorek, D. P. High-Availability Computer Systems. IEEE Computer 24 (9): 39–48, 1991.
Gray, J., Sundaresan, P., Englert, S., Baclawski, K., and Weinberger, P. J. Quickly Generating Billion-

Record Synthetic Databases. In Proceedings of the ACM SIGMOD International Conference on Management of
Data Conference. Minneapolis, Minnesota, pp. 243–252, 1994.

Jain, R. The Art of Computer Systems Performance Analysis: techniques for experimental design, measurement,
simulation, and modeling. Wiley, 1991.

Li, Y. and Levine, C. Extending TPC-E to Measure Availability in Database Systems. In Proceedings of TPC
Technology conference on Topics in Performance Evaluation, Measurement and Characterization. Seattle, WA, USA,
pp. 111–122, 2012.

Mauro, J., Zhu, J., and Pramanick, I. The System Recovery Benchmark. In Proceedings of the IEEE Pacific Rim
International Symposium on Dependable Computing. Washington, DC, USA, pp. 271–280, 2004.

Meira, J. A., de Almeida, E. C., Traon, Y. L., and Sunyé, G. Peer-to-Peer Load Testing. In The International
Workshop on Load Testing of Large Software Systems. Montreal, Canada, pp. 642–647, 2012.

Özsu, M. T. and Valduriez, P. Principles of Distributed Database Systems, Third Edition. Springer, 2011.
Vieira, M. and Madeira, H. A Dependability Benchmark for OLTP Application Environments. In Proceedings of
the International Conference on Very Large Data Bases. Berlin, Germany, pp. 742–753, 2003.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

