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Abstract. In the last few decades, advances in data acquisition technology have contributed to generation of huge
volumes of data in diverse application areas, creating new research challenges in knowledge discovery. The analysis of
these data has become an important task in several domains such as sensor networks, web-logs, financial transactions
and climate change monitoring. In this article, we propose the Spatio-Temporal Behavior Meter (STB-meter) method to
identify spatio-temporal patterns in multidimensional evolving data streams. Our approach combines a multi-resolution
hierarchical structure to deal with spatial information with fractal-based analysis to monitor non spatial information of
the multidimensional data stream. Experimental evaluation on real climate data shows that our method allows finding
relevant spatio-temporal patterns in evolving data at different spatial and temporal resolutions and therefore it can be
a useful tool to assist domain specialists in climate change researches.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous

Keywords: fractals, multi-resolution spatial structure, spatio-temporal data

1. INTRODUCTION

In this century scientists from different fields of knowledge have the challenge of dealing with big
data. One reason is the increasing number of data generation environments spatially distributed and
interrelated. Examples of these environments include different kinds of sensor networks connecting
remote sensors, mobiles, RFID, GPS and so on.

Another motivating factor is the improving quality of technological equipments that allow more and
more data to be generated or captured in real time. This continuous flow of a very large data volume
can quickly deplete storage capacity or overload systems. In general, much of these data might be
analyzed / monitored continuously without storage. In this scenario, computational techniques that
have not been designed to deal with continuous data efficiently may quickly become obsolete.

Therefore, the new generation of algorithms for knowledge discovery should consider new issues,
such as space, time and data structure to deal with huge volumes of data. Additionally, the formulation
and submission of responses must be faster, as well. The number of mobile devices grows very quickly
and information is accessed anytime and anywhere. Also, sensor networks have been deployed to assist
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in monitoring different aspects of modern life, such as climate, vehicles traffic, and so on.

A sensor network can involve a large number of different devices, depending on the complexity and
extent of territory that it is intended to monitor. Therefore, the computational challenge becomes
even greater since it becomes necessary to combine the spatial information to the increasing flow of
data.

The spatio-temporal analysis of data streams can handle a continuous data stream, considering the
data reading, timestamp and also the geographic position where the sensor (data source) is located.
The algorithms for mining spatio-temporal data streams must run efficiently in order to properly detect
recent patterns considering the georeferenced data, representing a new challenge in the knowledge
discovery area [Gama 2010]. As an example, studies on climate change have imposed several challenges
to scientific and governmental communities. Food security and sustainable development are certainly
the most important. Additionally, terabytes of data are generated during each execution of climate
models, depending on the number of parameters employed, which commonly goes up to a few tens
of parameters such as temperature, humidity, wind direction and intensity, among others. According
to the last IPCC (Intergovernmental Panel on Climate Change) report, climate change could cause a
migration of crops adapted to a specific area to other regions to compensate for alterations on climate
conditions. As climate scenarios show different changes in the future, consequences for agricultural
production may have greater or smaller impact in different regions.

In this context, we propose the Spatio-Temporal Behavior meter (STB-meter), a method based on
a hierarchical data structure to represent multidimensional data streams in order to allow a spatio-
temporal assessment. The STB-meter’s approach integrates representation of spatial information
in a hierarchical data structure and the measure of the correlation fractal dimension D2 to detect
spatio-temporal patterns and changes in the stream’s behavior.

We have conducted experiments on real climate data, such that multiple georeferenced climate time
series are represented as a multidimensional data stream - each time series defines an attribute of the
stream. Therefore, it is possible to integrate multiple climate variables in a unified analysis process,
aiming to detect spatio-temporal patterns, behavior changes and extremes. Results have shown that
the proposed method is effective to detect spatio-temporal variations in data behavior. In particular,
experiments performed on data from meteorological sensors located in the state of São Paulo show
that STB-meter allows a spatio-temporal analysis of real data and therefore it is also useful in applied
sciences.

This article is organized as follows: Section 2 presents background concepts and related work.
Section 3 describes the Spatio-Temporal Behavior meter method, the approach we propose to conduct
a spatio-temporal analysis of multidimensional data streams. Section 4 details experimental results
on real climate data and Section 5 presents final remarks.

2. BACKGROUND AND RELATED WORK

The method we propose in this work integrates fractal-based analysis with a multi-resolution, hier-
archical data structure in order to support spatio-temporal analysis of evolving data streams. Thus,
this section provides an overview of concepts from the Fractal Theory applied to data analysis, spatio-
temporal issues and related work.

A fractal is a self-similar object, i.e., it presents roughly the same characteristics over a large range
of scales [Schroeder 1991]. A well-known example of fractal is the Sierpinski Triangle, illustrated in
Figure 1a. Fractal behavior is also observed in nature and real datasets, as illustrated in Figures 1b
and c. A real dataset exhibiting fractal behavior is exactly or statistically self-similar, such that parts
of any size of the data present the same general characteristics of the whole dataset. In fact, Faloutsos
and Kamel [1994] show that most of the real datasets exhibit fractal behavior.
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Fig. 1. Examples of Fractals: a) geometric fractal; b) fractal in nature; c) real fractal dataset.

The fractal dimension, in particular the Correlation Fractal Dimension D2, is a useful tool for
data analysis, as it provides an estimate of the intrinsic dimension D of real datasets. The intrinsic
dimension gives the dimensionality of the object represented by the data regardless of the dimension E
of the space in which it is embedded [Faloutsos and Kamel 1994; Traina Jr. et al. 2005]. For instance,
a set of points defining a line embedded in a three-dimensional space (E = 3) has all its attributes
correlated, resulting in D = 1.

A well-known approach to measure the fractal dimension of datasets embedded in E-dimensional
spaces is the Box-Counting method [Schroeder 1991], which defines D2 as presented in Equation 1:

D2 ≡
∂log(

∑
i C

2
r,i)

∂log(r)
r ∈ [r1, r2] (1)

where r is the side of the cells in a (hyper) cubic grid that divides the address space of the dataset
and Cr,i is the count of points in the ith cell.

Based on the Box-Counting method, Traina et al. [2000] proposed a O(N) algorithm (N is the
number of elements in the dataset) to compute D2. The main strategy of the algorithm is the
construction of a hierarchical data structure (counting tree) to map a multi-resolution hyper-grid
dividing the address space of the dataset. Each level of this hyper-grid has a radius r which is a
fraction of the previous level, i.e., in the first level the grid has a radius r, in the second level the
grid has radius of r/2 and so on. The counting of incident points is accomplished in each cell of the
hyper-grid as we can see in Figure 2. The counting tree supports fast counting of points for different
values of r (see the work of Traina et al. [2000] for details). Thus, D2 can be a useful tool to estimate
the intrinsic dimension D of real datasets with feasible computational cost.

Concepts from the Fractal Theory have been applied to several tasks in data mining and data
analysis, such as selectivity estimation [Böhm 2000; Faloutsos et al. 2000; Baioco et al. 2007], clustering
[Barbará and Chen 2010; Cordeiro et al. 2013], time series forecasting [Chakrabarti and Faloutsos
2002], correlation detection [de Sousa et al. 2007], data distribution analysis [Traina Jr. et al. 2005],
among others.

The information of intrinsic behavior provided by the fractal dimension can also be applied to
detect temporal patterns and changes in evolving data streams. Essentially, the idea is to continuously
measure the fractal dimension of the data stream over time in order to monitor its evolving behavior.
Thus, significant variations in successive measures of the fractal dimension can indicate changes in
the intrinsic characteristics of the data and temporal patterns.

Sousa et al. [2007] propose a technique and the algorithm SID-meter to continuously measure the
fractal dimension D2 over time and track behavior changes of evolving data streams. The SID-meter ’s
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Fig. 2. Five points of a bi-dimensional dataset represented in a bi-dimensional grid and the corresponding counting tree.

Fig. 3. A sliding window over a three-dimensional data stream used to measure fractal dimension at time t and time
t+ 1, respectively: a) D2(t) ; and b) D2(t+1)

approach deals with a data stream as a potentially unbounded, implicitly ordered sequence of events
< e1, e2, ... >, such that each event is represented by an array of E measures (attributes). A sliding
window bounds recent, successive events to be considered into the calculation of D2. As new events
come, oldest events are forgotten. Therefore, the value of D2 is continuously computed for the events
inside the window and updated whenever new events are available. The window is divided into nc

periods where each period is defined by a predetermined number of events or units of time (ni).
Hence, nc×ni gives the size of the window and ni determines its update interval. Both nc and ni are
user-defined parameters. Figure 3 illustrates a sliding window over a three-dimensional data stream
- attributes a1,a2 and a3 - and the fractal dimension D2 measured at times t and t + 1. Notice that
the window has five periods (nc = 5), each one corresponding to a unit of time ni = 1.

SID-meter is also based on a counting tree tuned to support important requirements of a data
stream environment, mainly: single pass on data, events processed (counted) only once and updated
responses.

The fractal-based approach, as discussed herein, can be applied to temporal analysis of data streams.
However, in several data stream environments, data includes spatial information related to its gener-
ators. The spatial characteristics and relationships may be meaningful for data analysis and mining
tasks. Moreover, by dealing with spatial properties in addition to temporal information it is possible
to conduct data stream analysis from the spatio-temporal perspective. In this context, some work has
been done, for instance, on stream modeling and trend mining [Meng and Dunham 2006], clustering on
sensor networks [Yoon and Shahabi 2007] and spatio-temporal continuous query processing [Mokbel
and Aref 2008].
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Table I. Example of a sequence of events that compose a data stream.
Events Attributes

e1 {1,1,4,8}
e2 {4,4,5,8}
e3 {7,7,8,2}
e4 {8,6,6,3}
e5 {7,5,4,5}

In this article, we propose a technique for spatio-temporal analysis of data streams which combines
the temporal information provided by the fractal-based approach with spatial indexing provided by a
hierarchical data structure [Samet 1984].

Hierarchical data structures are of major importance as a tool in several computational techniques,
from image processing to geographic information systems. These structures are based on recursive
decomposition of the data space and therefore allow focus on subsets of the original dataset. Several
research papers have proposed indexing structures to represent points in space, regions, curves, surfaces
and volumes (see the work of Gaede and Günther [1998] and Böhm et al. [2001] for surveys). In this
work we have used a quadtree like structure as our hierarchical data structure, but it is worthy
to highlight that the proposed method can be implemented with any hierarchical data structure to
represent spatial attributes.

3. THE SPATIO-TEMPORAL BEHAVIOR METER

The main idea of the STB-meter is to continuously measure the fractal dimension D2 of multidimen-
sional data streams considering the spatial aspects of the data. For this purpose, we developed a data
structure called STB-tree that allows the calculation of fractal dimension for different subsets of data
based on their spatial information.

The STB-tree is built by associating a counting tree to a hierarchical data structure. In this work,
we have used a quadtree like structure extended to any dimensionality.

The building process of the STB-tree requires prior knowledge about which attributes are the
spatial attributes, as they are used to construct the hierarchical data structure. The non-spatial
attributes are used to construct a counting tree, following an approach similar to the method SID-
meter aforementioned.

The STB-tree integrates the hierarchical data structure with a counting tree modified to attend an
indexing that depends on the subregion of the hierarchical data structure to which it is associated as
well as the addressing defined by the non-spatial attributes. In other words, each level contains a set
of subregions of the hierarchical data structure and each of these subregions contains a set of cells of
the counting tree.

The cell indexing of the counting tree depends on the subregion of the hierarchical data structure
to which they are related as well as their non-spatial attributes. In the same manner, indexing each
subregion of the hierarchical data structure depends on the counting tree cell to which it is associated
as well as its spatial attributes.

For illustration purposes, Table I presents a dataset containing 5 events where the first two attributes
represent spatial information while the other two contain non-spatial information.

The STB-Tree is built according to the following steps:

(1) First define which attributes are spatial and non-spatial
(2) To each new event of data stream, split spatial attributes from non-spatial attributes
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(3) Use spatial attributes to identify the subregion of the space represented by hierarchical structure
(4) In this subregion of the hierarchical structure use the non-spatial information to identify the

counting tree cell corresponding to the subregion of the hierarchical structure
(5) Increment the cell’s counter
(6) Use the spatial information to identify the hierarchical data structure subregion corresponding to

the counting tree cell
(7) Repeat this process from step 4 recursively until the desired depth is reached in the STB-Tree

Figure 4 shows a STB-tree with depth 3 for the events shown in Table I. We can see the represen-
tation of spatial attributes on a quadtree as well as the representation of non-spatial attributes. For
each level in the quadtree, one cell list is created in order to identify the position of the event in the
counting tree of non-spatial attributes.

Thus, as it can be seen in Figure 4, the event e1 showed in Table I has its spatial information
defined in the values {1,1} and its non-spatial information defined in the values {4,8}. With the
spatial information, initially the subregion 01 of the hierarchical structure is found. The algorithm
then searches for the corresponding cell in the counting tree associated to that subregion. In Figure
4 we can verify that the counting tree cell is addressed in the index 00.

Analogously, the spatial information of event e5 ({7,5}) is addressed in the subregion 10 of the
hierarchical structure, and its non-spatial information ({4,5}) is also addressed in a cell 00 of the
counting tree. However, as the spatial location of event e5 differs from the location of event e1, its
contribution in the counting tree occurs in the cell 00 that is related to subregion 10 of the hierarchical
structure.

This process is performed for all events in the dataset to be analyzed. Whenever a new event is
inserted into the STB-Tree, the appropriate counter C is incremented, in order to store a count of
events considering the spatial and non-spatial aspects of the dataset. To perform the calculation of
fractal dimension of a particular region of the hierarchical structure, Equation 1 is used with the
counting of the nodes of the STB-tree. Through STB-Tree it is possible to perform the counting of
hierarchical subregions by accomplishing only one reading of each event.

Once data streams are potentially infinite and due to their evolving nature, we have used an approach
based on sliding windows. The STB-tree has thus been extended to support a continuous analysis of
multidimensional data streams, following the SID-meter strategy of setting parameters nc and ni to
respectively define the number of counting periods and the number of events (or units of time) per
each counting period.

The parameters nc and ni determine the temporal granularity used in the analysis, and therefore
are strongly dependent on the type of analysis to be performed. For instance, if the analysis focuses
on the events that occur monthly, an oversized window can smooth changes in the monthly behavior.
On the other hand, if the size of the window is underestimated then behavior changes may not be
detected. Previous work [Nunes et al. 2011] shows that windows of different sizes detect different
events, such as El Niño and La Niña.

In order to enable a more complex analysis of the data, the sliding window based approach was
extended such that parameters nc and ni receive a range of values. Based on these ranges, the
minimum and maximum number of counting periods are computed so it is possible calculate the
fractal dimension for any combination of nc and ni in the ranges defined by the user.

For this purpose, the STB-tree has also been extended so that each counter C uses an array to store
the counts for each counting period. When the number ni of events arrive, the counters corresponding
to ni oldest events are discarded and start to consider only the ni new events.

Figure 5 illustrates the extended node of the STB-tree, with nc ranging from 1 to 3 and ni ranging
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Fig. 4. STB-tree corresponding to the events shown in Table I.

from 30 to 120. In this example, it is possible to compute the fractal dimension for any combination
of nc ⊂ {1, 2, 3} and ni ⊂ {30, 60, 90, 120}. For instance, given nc = 2, ni = 60 and the current nc

counter positioned at 7, the count on the node will consider C[4], C[5], C[6] and C[7] to calculate the
fractal dimension.

By using the STB-tree structure, the STB-meter method was developed to allow the continuous
calculation of fractal dimension on different subsets of data. This method allows an analysis in
multiple spatial resolutions as well as different temporal granularities, performing only one reading of
each event in the data stream.

The output of the method are values of the fractal dimension D2 calculated over time for each
subregion represented in the hierarchical data structure, from the smallest subregions until it encom-
passes all the points represented. Analysis of these results allows to identify behavior changes in each
subregion of the space and to find patterns, differences and similarities among the subregions over
time.

The combined analysis of multidimensional data streams considering spatial and temporal aspects
of the data set can be useful in detecting patterns and extreme events occurring in different regions

Fig. 5. STB-Tree Node extended to support sliding windows.
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Fig. 6. Correlation of synthetic data regions.

and in different situations.

4. EXPERIMENTAL RESULTS

To evaluate the STB-meter method, experiments were performed using synthetic data streams con-
structed so that each region of the data set presents a specific known behavior. This set of synthetic
data was projected to assess whether the STB-Meter can calculate correctly the fractal dimension
of different subregions in space. Thus, each subregion of space in this dataset contains non-spatial
attributes correlated in order to detect different values of correlation in each region.

Another goal of this synthetic set is performed tests in multiple levels in order to verify it is possible
find behavior different from general behavior of dataset. For instance, a region presents a specific
fractal dimension, and subregions which compose it presents a fractal dimension that differs it from
that.

Figure 6 illustrates the arrangement of built synthetic dataset containing two spatial attributes and
four non-spatial attributes.

This dataset contains 36000 events such that in region 00 all non-spatial attributes are correlated,
then the fractal dimension expected to this region is D2 = 1.

In the region 01 spatial attributes are divided into two subregions as illustrated in Figure 7, where
subregion 00 contains pairs of correlated attributes, generating a fractal dimension D2 = 2 and
subregion 11 contains attributes without any correlation, with a fractal dimension D2 = 4.

In region 10 only two non-spatial attributes are correlated, therefore, fractal dimension of this
region is D2 = 3 and in region 11 no non-spatial attribute is correlated, being D2 = 4.

Over this dataset the STB-meter method was parameterized using windows divided into 10 counting
periods where each period contains 2,400 events, i.e. nc = 10 and ni = 2, 400, and uses a tree with
deep equal to 21, i.e., R = 21. Results are illustrated in Figure 8 where it is possible to identify the
different behavior of each region and how each region differently adds information regarding the entire
dataset. The fractal dimension correlation calculated by the STB-meter method corresponds to the
expected correlation for each region of the synthetic data set as presented in table II.

Table II. Arrangement of synthetic dataset in each region.
Spatial Index D2

00 1
01 2
10 3
11 4
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Fig. 7. Correlation of subregions of the region 01.

Fig. 8. Fractal dimension of synthetic data regions.

Similarly, region 01 can be divided into four subregions, as shown in Figure 7. In this subset with
fractal dimension D2 = 2, the same analysis was performed using the STB-meter and the results are
shown in Figure 9. We can verify that the behavior of the subregions of the region 01 is according to
the expected fractal dimension as shown in Figure 7.

In order to evaluate the STB-meter method with real data, we conducted an experimental study
using data streams composed of climatological time series obtained from a network of weather stations
with 24 meteorological stations located in the state of São Paulo, Brazil 1. Data streams are composed
of daily measurements of average temperature and precipitation from 1961 to 1990, and the latitude
and longitude of each station.

The method was parameterized to use a three-month sliding window, i.e., nc = 3 and the parameter
refresh rate was defined as monthly (ni = 30). In order to compute the fractal dimension of the subsets
indexed in the STB-tree, we defined queries reaching until the third level.

The STB-tree indexes data for the recent 3 months of the stream; the fractal dimension is then
computed at each month using the counting trees of the leaf nodes and aggregating them until the

1Provided by Agritempo - www.agritempo.br
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Fig. 9. Fractal dimension of region 00.

fractal dimension of the highest levels is calculated.

Figure 10 presents a hierarchical data structure (quadtree like) built on the spatial information from
24 meteorological stations in the state of São Paulo.

Thus, results obtained are series of D2 varying from local behavior of each data subset until the
global behavior of the data set. These results may be visualized in Figure 11 where all the graphs of
the variation of the fractal dimension for all 3 levels of query on the quadtree are presented.

Figures 12, 13 and 14 show respectively the fractal dimension of the data sets of quadtree for
Northwest, Southeast and Southwest regions. The Northeast region was not considered because it
contains only one point, having no representation in the general behavior of the data set.

Fig. 10. Quadtree built on the latitudes and longitudes of the 24 meteorological stations of the state of São Paulo.
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Fig. 11. Fractal dimension for all subsets.

Fig. 12. Both fractal dimension from the Northwest and the state of São Paulo.

The resulting series of fractal dimension suggest that the Southeast is less influenced by extreme
events than other regions of the state of São Paulo. The highlighted regions in the figures are periods
of low correlation between the variables that compose the data set, i.e., low correlation between
precipitation and temperature. According to specialists, those periods are related to extreme climate
events resulting from El Niño [Nunes et al. 2011]. It is possible to see that this extreme occurs
differently in each subregion.

In these analyses we observed that although precipitation shows more variation than temperature,
the algorithm also detected important difference in temperature average, showing that this method-
ology can detect from small to extreme events of climatic variation. Nowadays, this is relevant,
especially in climate change analyses and detection. In addition, this result is also very useful in
agrometeorology science. Agricultural production is highly vulnerable to climate variations, and can
be considered as the most weather-dependent of all human activities. Small variations in temperature
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Fig. 13. Both fractal dimension from the Southeast and the state of São Paulo.

Fig. 14. Both fractal dimension from the Southwest and the state of São Paulo.

(witch normally is difficult to observe in most of analyses) can cause significant losses in yield. In
this context, detection of climate variation and extreme climate events is vital to predict and monitor
yield.

Analyzing the variation of fractal dimension for different subregions of the data set, it is possible
to evaluate the behavior of climate variables over time, for different regions of the state of São Paulo.
That analysis allows the specialist to understand how each subregion of the dataset behaves, helping to
identify patterns of behavior spatial and temporal climate, as well as understand how each subregion
reacts to a specific event.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.



Finding Spatio-temporal Patterns in Multidimensional Data Streams · 339

5. CONCLUSIONS

In this article we present the STB-meter, a new method for spatio-temporal analysis of multidimen-
sional data streams. Our approach combines fractal-based analysis to monitor temporal behavior
with a multi-resolution, hierarchical structure to deal with spatial properties. Moreover, STB-meter
handles multidimensional data streams with a single pass on data and feasible computational cost.

Experimental results on synthetic data and real climate data show that our solution is able to spot
spatio-temporal behavior patterns, especially anomalies such as extreme climate events. Furthermore,
it supports a multi-resolution analysis of temporal and spatial properties as well.

Results show that STB-meter can identify important patterns and extreme events in climate data.
This framework is very useful in applied sciences, as agrometeorology and climatology, especially
climate change applied to agriculture. Temperature and precipitation are important variables in
agricultural analyses, but the huge volume of available data makes the work of specialists very difficult.
Once the climate patterns can be identified quickly and easily, specialists have an important tool to
monitor and predict yield, in present and future climate conditions.

As future work, we intend to apply the method to other application domains, performing experi-
ments with other data sets. Another relevant point to be explored is to use other hierarchical (spatial)
data structures according to the characteristics of the data to be analyzed.
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