
DBM-Tree: A Dynamic Metric Access Method Sensitive to

Local Density Data

Marcos R. Vieira, Caetano Traina Jr., Fabio J. T. Chino, Agma J. M. Traina

Department of Computer Science, University of São Paulo at São Carlos, São Carlos, SP - Brazil

{mrvieira,caetano,chino,agma}@icmc.usp.br

Abstract. Metric Access Methods (MAM) are widely employed to speed up the evaluation of similarity queries,

such as range and k-nearest neighbor queries. Most of the currently MAM available today achieve reasonable good
performance of query evaluation through minimizing the number of disk accesses required to evaluate a query. The
classical way of minimizing the number of disk accesses in hierarchical access methods is to keep the height of the
structures very short. This class of structures is called height-balanced structures and are widely employed in Database

Management Systems (DBMS). Slim-tree and M-tree are examples of MAM that are height-balanced structures which
achieve very good performance both in terms of disk accesses and running time mainly because the height of the trees
are kept very short. However, the performance of these two structures degrade very easy because the covering radius of

nodes and the overlapping between nodes increase in a way that a large number of subtrees have to be analyzed when
processing a query. This paper presents a new dynamic MAM called the DBM-tree (Density-Based Metric tree), which
can minimize the overlap between “high-density” nodes by, in a controlled way, “relaxing” the height-balancing of the
structure. Thus, the height of the tree is higher in denser regions in order to keep a tradeoff between breadth-searching

and depth-searching. We also present a new optimization algorithm called Shrink, which improves the performance of
already built DBM-trees by reorganizing the elements among their nodes. Experiments performed over several synthetic
and real-world datasets showed that the DBM-tree is on average 50% faster than traditional MAM. The DBM-tree also
reduces the number of distance calculations by up to 72% and disk accesses by up to 54% for answering queries. After

performing the Shrink algorithm, query performance of the DBM-tree improves up to 30% regarding the number of
disk accesses. In addition, the DBM-tree scales up well, exhibiting sub-linear performance when increasing the database
size.

Categories and Subject Descriptors: Information Systems [Miscellaneous]: Databases

Keywords: indexes, metric access methods, similarity queries

1. INTRODUCTION

In the last decades, the volume of data managed by Database Management Systems (DBMS) is
increasing in large proportions. Moreover, new complex data types, such as multimedia data (image,
audio, video and long text), geo-referenced information, time series, fingerprints, genomic data and
protein sequences, among others, have been incorporated to DBMS. In order to handle these new
complex data types and the continuously increasing volume of data managed by DBMS, new index
structures, as well as new query processing techniques, have been proposed.

The main technique employed to speed up query processing in commercial DBMS is building effi-
cient index structures, also know as Access Methods (AM). Commercial DBMS work pretty well on
traditional data domains, e.g. numbers and short strings of characters, because on such domains the
total ordering property holds among elements in the data domain. For example, we can establish

A previous version of this paper was published in the XIX Brazilian Symposium on Databases [Vieira et al. 2004].
This work was supported by the FAPESP (São Paulo State Research Foundation) under grants 01/11987-3, 01/12536-5
and 02/07318-1, and CNPq (Brazilian National Council for Supporting Research) under grants 52.1685/98-6, 52.1267/96-
0 and 860.068/00-7.

Copyright c©2010 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010, Pages 111–127.

112 · M. R. Vieira, C. Traina Jr., F. J. T. Chino and A. J. M. Traina

total ordering among natural numbers using the “<” relational operator, e.g. 2 < 5 < 7 < 13. Many
AM used by DBMS today, like the B-tree [Bayer and McCreight 1972] and the B+-tree [Comer 1979],
can answer interval and equality queries very efficiently because the total ordering property can be
explored. In other words, in each step of the search evaluation a large number of elements can be
“pruned” from the search space.

Unfortunately, the total ordering property does not hold for most of the complex data domains
[Faloutsos 1996], which makes the use of traditional AM to index and query complex data infeasible.
Nevertheless similarity queries are more intuitive in these data domains and comparison is performed
between pair of elements. For a given reference element, also called query element, a similarity query
returns all elements that meet a given similarity criteria w.r.t. the query element. Traditional AM
rely on the total order relationship only, and are not able to handle these complex data properly or
to answer similarity queries over such data. On the other hand Metric Access Methods (MAM) are
well-suited to answer similarity queries over complex data types.

MAM such as Slim-tree [Traina Jr. et al. 2000], [Traina Jr. et al. 2002] and M-tree [Ciaccia et al.
1997] were developed to answer similarity queries based on the similarity relationships among pairs
of elements. The similarity relationships are usually represented by distance functions computed over
pair of elements. The data domain and distance function defines a metric space. Formally, a metric
space is a pair < S, d >, where S is the data domain and d is a distance function that complies with
the following three properties:

—symmetry: d(s1, s2) = d(s2, s1), s1 ∈ S and s2 ∈ S;

—non-negativity: 0 < d(s1, s2) < ∞ if s1 6= s2, and d(s1, s1) = 0; and

—triangle inequality: d(s1, s2) ≤ d(s1, s3) + d(s3, s2), ∀s1, s2, s3 ∈ S.

Vector domains with any Lp distance function, such as Euclidean distance (L2) and Manhattan
distance (L1), are special cases of metric spaces [Chavez et al. 2001], [Hjaltason and Samet 2003]. The
two most common types of similarity queries are:

—Range query - RQ: given a query element sq ∈ S, a maximum query distance rq, and a search
domain S ⊆ S, RQ(sq, rq) returns a set of elements R ⊆ S, such that ∀si ∈ R, d(si, sq) ≤ rq. An
example is: “Select all proteins that are similar to the protein p by up to 5 purine bases”, and it is
represented as RQ(p, 5);

—k-Nearest Neighbor query - kNNQ: given a query element sq ∈ S and an integer value k ≥ 1,
kNNQ(sq, k) returns R ⊆ S containing k elements that have the smallest distance from the query
element sq, according to the distance function d, that is k = |R| and ∀si ∈ R, sj ∈ {S−R}, d(sq, si) ≤
d(sq, sj). An example is: “Select the 3 most similar proteins to protein p”, and it is represented as
kNNQ(p, 3).

This paper presents a new dynamic MAM called DBM-tree (Density-Based Metric tree), which can
minimize the overlapping among nodes with elements in high-density regions by relaxing the height of
the structure. Thus, the height is higher for subtrees that cover areas with high density of elements in
order to keep a“compromise”between the number of disk accesses required to perform a breadth-search
in several subtrees and to perform a depth-search in one subtree. We show in our experiments that the
query performance of the DBM-tree is better than the “rigidly” balanced trees (Slim-tree and M-tree).
In order to further optimize already built DBM-trees we propose an optimization algorithm called
Shrink, which reorganizes elements among subtrees in order to reduce even more the overlapping
among nodes.

Experiments performed over several synthetic and real-world datasets show that the DBM-tree
outperforms the traditional MAM Slim-tree and M-tree. The DBM-tree is on average 50% faster than
traditional balanced MAM. It also reduces up to 54% the number of disk accesses and up to 72% the

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

DBM-Tree: A Dynamic Metric Access Method Sensitive to Local Density Data · 113

number of distance calculations required to answer similarity queries. After optimizing DBM-trees
with the Shrink optimization algorithm, the total number of disk accesses to answer similarity queries
decreased up to 30% compared with non-optimized DBM-trees. We also show in our experiments that
the DBM-tree is scalable regarding the database size, exhibiting sub-linear behavior in the total
processing time, the number of disk accesses and the number of distance calculations.

The remainder of this paper is organized as follows: Section 2 presents the basic concepts used in
this paper; Section 3 summarizes the related work; The DBM-tree organization and algorithms are
explained in Section 4; Section 5 describes the experiments performed in order to compare the DBM-
tree with the Slim-tree and M-tree; and Section 6 concludes the paper and suggests new directions of
research.

2. BACKGROUND

Access Methods (AM) are one of the most used resources for improving search performance in
DBMS. AM employ important properties of the data domain to achieve good performance. One of
the most used properties in hierarchical access methods is the total ordering property. Using this very
useful property it is possible to discard large subsets of data even without comparing them with the
query element. For example, consider the case of numeric data where the total ordering property holds;
this property allows us to split a dataset in this domain into two subsets: a subset with all numeric
elements that are greater than a reference numeric element; and a subset with numeric elements that
are smaller or equal than a reference numeric element. Hence, one efficient way to perform several
searches in a numeric domain is to maintain the dataset in this domain sorted. Then, whenever there
is a need to perform a search using a query number on this domain, comparing the query number
with a “particular” number in the dataset enables the search algorithm to discard further comparisons
with the part of the data where the number cannot be in. A well-know example of a search algorithm
that employes this property is the one used in the B+-tree [Comer 1979].

One very important class of AM is the hierarchical structures (or tree structures), which enables
recursive processes to index and search the data. These structures can be classified as (height-)balanced
or unbalanced, where in the first case the heights of all subtrees in the same level of a tree are the
same, or at most they differ by a fixed amount. The elements are stored in blocks called nodes. When
a search is performed, the query element is compared with one or more elements in the root node to
decide which subtree(s) need to be traversed. This process is repeatedly applied to each subtree that
can possibly store elements that belong to the answer set.

Note that whenever the total ordering property applies, only a single subtree at each tree level can
hold the answer for equality queries. If the partial ordering property applies to a data domain, then
it is possible that more than one subtree need to be analyzed in each tree level. As numeric domains
possess the total ordering property, trees indexing numbers require access of only one node at each
level of the structure. On the other hand, trees storing spatial coordinates, which only have a partial
ordering property, require searches in more than one subtree in each level of the structure. This effect
is known as covering of nodes, or overlapping between subtrees, and happens in structures like R-trees
[Guttman 1984], [Sellis et al. 1987], [Beckmann et al. 1990].

In general, DBMS store nodes of hierarchical structures in disk using fixed-size pages. Storing
nodes in disk is essential to warrant persistent data and to allow handling a very large number of
elements. However, as disk accesses are slow it is very important to keep small the number of disk
accesses required to process a query. Traditional DBMS build indexes only on data holding the total
ordering property. Thus, if a tree grows deeper, more disk accesses are required to traverse the tree.
Therefore it is crucial to keep every tree as shallow as possible in order to minimize the number of
accesses to disk. It is possible that whenever a tree is allowed to grow unbalanced, the structure can
degenerate completely, making it useless. Therefore, only balanced trees have been widely employed

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

114 · M. R. Vieira, C. Traina Jr., F. J. T. Chino and A. J. M. Traina

in commercial DBMS.

Metric Access Methods (MAM), or just metric trees, divide a particular dataset in one or more
regions, and choose representative elements for each region to represent them. Each node in a MAM
stores a single representative srep (there are structures that store more than one representative, e.g.
MVP-tree [Bozkaya and Özsoyoglu 1997]), the minimum distance radius srep.radius from the repre-
sentative element that covers the entire covering region of the node, a set of elements {s1, s2, ..., sc}
inside its covering region srep.radius, and the distance from each element covered in its radius to the
representative of the node {d(srep, s1), d(srep, s2), ..., d(srep, sc)}. This node representation is com-
monly used for leaf nodes, and for index nodes the representative element si has also a pointer to the
subtree si.subtree that is covered by the radius si.radius. Using this general representation, a hierar-
chical structure is build to construct a metric tree. Whenever a query is evaluated, the query element
is first compared with the representatives of the root node. The triangle inequality is then used to
prune subtrees, avoiding distance calculations between the query element and elements or subtrees in
the region pruned. Distance calculations between complex elements can have a high computational
cost to calculate. Therefore, to a MAM to achieve a good query performance, not only the number of
disk accesses has to be minimal, but also the number of distance calculations.

There are two very useful ways to employ the triangle inequality property to avoid calculating
distance between elements and the query element. The first one is for pruning the whole subtree
si.subtree using the distance between its representative si and the query element sq. If the distance
between sq and si is greater than the query radius rq plus the radius of the subtree si.radius, then we
can safely prune all elements in the subtree si.subtree. In other words, if d(sq, si) > rq + si.radius,
then there is no element in the whole subtree si.subtree that qualify to be in the answer set. The
second one is avoiding computing the distance calculation d(si, sq), and thus the subtree si.subtree as
well, between the query element sq and the representative of a subtree si. If the difference between
the distance d(srep, sq) and d(srep, si) is greater than the query radius rq plus the radius of the subtree
si.radius, then we do not need to compute d(si, sq) to safe prune the whole subtree si.subtree. In
other words, if |d(srep, sq)− d(srep, si)| > rq + si.radius, then we do not need to compute d(sq, si) to
prune si.subtree.

The effect of node overlapping is observed in all dynamic MAM that are well suitable to work
on disk. When a similarity query is performed, the total number of disk accesses depends both on
the height of the tree (depth-search) and on the amount of overlapping among the nodes (breadth-
search). In this case, it is not worthwhile reducing the number of levels at the expense of increasing
the overlapping among nodes. Indeed, reducing the number of subtrees that cannot be pruned at
each node may be more important than keep the tree balanced. As more node accesses also requires
more distance calculations, increasing the pruning ability of a MAM becomes even more important.
To the best of the authors’ knowledge, no one considered this observation so far for dynamic MAM.
The DBM-tree is the first dynamic MAM that “breaks” the widely studied and employed paradigm
of building height-balancing structures for persistent data on disk. The proposed DBM-tree considers
“relaxing” the height-balancing policy in a “controlled” way in order to build unbalanced subtrees in
denser regions of the dataset for a reduced overlapping among subtrees. In our experimental evaluation
we show that this “break of paradigm”works very well in every measurement observed (disk accesses,
distance calculations and running time) for similarity queries using the DBM-tree.

3. RELATED WORK

Several Spatial Access Methods (SAM) have been proposed for multidimensional data so far. Example
of such structures are the k-d-tree [Bentley and Friedman 1979], and R-tree structures [Guttman 1984],
[Sellis et al. 1987], [Beckmann et al. 1990]. A comprehensive survey showing the evolution of SAM
and their main concepts can be found in [Gaede and Günther 1998]. However, the majority of them
cannot handle data in metric domains, and suffer from the “curse of dimensionality” [Beyer et al.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

DBM-Tree: A Dynamic Metric Access Method Sensitive to Local Density Data · 115

1999], being efficient only to index low-dimensional datasets (see [Böhm et al. 2001]).

Metric Access Methods (MAM) seem to be more attractive for a broad class of applications. Two
good surveys on MAM can be found in [Chavez et al. 2001] and [Hjaltason and Samet 2003]. The
techniques of recursive partitioning the data in metric domains proposed in [Burkhard and Keller 1973]
were the starting point for the development of MAM. The first technique divides the dataset choosing
one representative (routing element) for each subset, grouping the remaining elements according to
their distances to the representatives. The second technique divides the original set in a fixed number of
subsets, selecting one representative for each subset. Each representative and the biggest distance from
the representative to all elements in the subset are stored in the structure to improve nearest-neighbor
queries. The GH-tree proposed by Uhlmann [Uhlmann 1991] and the VP-tree (Vantage-Point tree)
[Yianilos 1993] are examples based on the first technique described in [Burkhard and Keller 1973].
Aiming to reduce the number of distance calculations to answer similarity queries in the VP-tree,
Baeza-Yates et al. proposed the FQ-tree [Baeza-Yates et al. 1994] where the same representative
is used for every node in the same level. The MVP-tree (Multi-Vantage-Point tree) [Bozkaya and
Özsoyoglu 1997], [Bozkaya and Özsoyoglu 1999] is an extension of the VP-tree, allowing selecting M

representatives for each node in the tree. Using many representatives the MVP-tree requires lesser
distance calculations to answer similarity queries than the VP-tree. The GH-tree (Generalized Hyper-
plane tree) [Uhlmann 1991] is another method that recursively partitions the dataset into two groups,
selecting two representatives and associating the remaining elements to the nearest representative.
The GNAT (Geometric Near-Neighbor Access tree) [Brin 1995] can be viewed as a refinement of the
second technique presented in [Burkhard and Keller 1973], where it stores the distances between pairs
of representatives and the biggest distance between each stored element to each representative. The
GNAT uses these information and the triangle inequality to prune distance calculations.

Unfortunately all of the MAM discussed so far are static in the sense that the tree is built at once
using the whole dataset, and new insertions are not allowed afterward. Furthermore, they mostly
attempt to reduce the number of distance calculations, paying no attention on disk accesses. The
M-tree [Ciaccia et al. 1997] was the first MAM to overcome these deficiencies. It is a height-balanced
tree based on the second technique of [Burkhard and Keller 1973], with data elements stored in leaf
nodes. The Slim-Tree [Traina Jr. et al. 2000], [Traina Jr. et al. 2002] is an “evolution” of M-Tree,
embodying the first published method to reduce the amount of node overlapping, called the Slim-

Down. The Slim-Down process leads to a smaller number of disk accesses to answer similarity queries
by reorganizing elements in the leaf level of the tree. Although dynamic, neither the Slim-tree nor
the M-tree have element deletion operations described. In [Santos et al. 2001], it is proposed to use
multiple representatives, called “omni-foci”, to generate a coordinate system for the dataset. The
coordinates can be indexed using any SAM, ISAM (Indexed Sequential Access Method), or even
sequential scanning, generating a family of MAM called the “Omni-family”.

The dynamic MAM described so far build height-balanced trees. The main reason of building height-
balanced trees is to minimize the tree height at the expense of little flexibility in reducing overlap
among nodes. Overlapping nodes degenerates query performance mainly because all nodes that has
some overlap in the query region cannot be pruned. If the query region lies, even partially, in an
overlap region of more than one node, then all these nodes must be further examined recursively, thus
increasing the query cost in terms of disk accesses, distance calculations and total running time. In
order to maintain the height of the tree minimum in all of the dynamic structures previous described,
both the index and leaf nodes have to have a minimum element capacity. Two important observations
can be seen when using this approach to keep the height of the tree minimum: (1) the covering radius
in low dense regions of elements has to be very large in order to cover all elements in those regions; (2)
in high dense regions of elements, the node overlapping increases substantially since several nodes, all
with the same height, have to be created in order to keep the tree balanced. Because the performance
of similarity queries is highly correlated to the degree of node overlapping and covering radius, we
can easily see that the performance of trees that use such approach degrades very fast. To solve all

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

116 · M. R. Vieira, C. Traina Jr., F. J. T. Chino and A. J. M. Traina

Fig. 1. A schematic view of the DBM-tree: (a) covering radius for subtrees and nodes; and (b) tree node organization.
The height of the subtree represented by element s6 is shallower than the subtrees s18 and s7. elements s19, s18 (second

level), s16 and s3 are not in the last level of the tree.

of the problems mention before, we take a new direction in our research and break the paradigm that
“good performance is directed correlated to height-balanced trees”.

4. THE DBM-TREE

The DBM-tree is a hierarchical, dynamic structure that grows bottom-up and allows, at any time,
new elements to be inserted. Self organizations and node splits can occur in order to accommodate
new elements. Basically, when inserting a new element, the tree root is evaluated in order to choose
subtrees that can accommodate the new element. There are cases where the new element is inserted
in the current node, and not in its subtrees. This process on choosing a node that can accommodate
a new element is repeated recursively until a suitable node is found w.r.t. some policy. The DBM-tree
has several policies, described in this section, on choosing a suitable node to accommodate a new
element, as well as node splitting policies.

The most remarkable difference in the structure, when compared to other structures like the Slim-
tree, is that there is no distinction among index and leaf nodes. In this way, elements or subtrees can
be stored in any node in any level of the tree. Similar to other MAM, the DBM-tree uses nodes of
fixed size in order to optimize data transfer from/to disk. Its main intent is to organize elements in
a hierarchical structure using representatives as centers of minimum bounding regions (or balls) that
covers all elements in their subtrees. An element can be assigned to a node if the covering radius
of the representative covers it. An example of a DBM-tree indexing elements in a 2-dimensional
space is shown in Figure 1. In Figure 1(a), 16 elements are represented with small circles, while the
representative for a node with a star. The covering radius of each node or subtree is represented
with a large circle covering all elements that belong to the node or subtree. The same tree is shown
in Figure 1(b), but this time in a tree representation. Note that element s19 in the root node is
an element, not a representative, like s6, s7 and s18. Storing element s19 in the root node prevents
that the subtree represented by s18 increases its covering radius to cover s19, and thus increasing the
overlapping between subtree s18 and its siblings s6 and s7.

Every node in the DBM-tree has the following structure:

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

DBM-Tree: A Dynamic Metric Access Method Sensitive to Local Density Data · 117

Node: [ce, array [1..ce] of {<si, d(srep, si), si.ptr, si.radius> or <si, d(srep, si)>}]

where a node can hold up to c entries. Attribute ce, ce ≤ c, stores the total number of entries
(elements or subtrees) stored in a node. Entries can be of two types: subtrees, represented by
<si, d(srep, si), si.ptr, si.radius>, and elements, represented by <si, d(srep, si)>. For subtree entries,
si is the representative for the subtree si.ptr, si.radius is the minimum radius that covers all entries
in subtree si.ptr, i.e. ∀s′i ∈ si.ptr, si.radius = max(d(si, s

′

i)+s′i.radius), and d(srep, si) is the distance
between the subtree representative si to the node representative srep. For element entries, only two
fields are required: the element itself si with identifies si.oid, and the distance d(srep, si) between si

to the representative of the node srep that it belongs to. This distance is stored and used, using the
triangle inequality previous described, in order to avoid computing the distance of the element to the
query element. All element entries, stored in a particular node, are not covered by any subtree that
it belongs to, that is, there is no subtree that can accommodate the element without changing the
radius of the subtree. An example of such example is element s19 in Figure 1; there is no subtree in
the root node that accommodate element s19 without changing its radius (subtrees s18, s6 and s7).

If an element is chosen to be a representative of its node, then a copy of it is promoted to an
immediate level up the tree (unless the node is the root of the tree). This is similar to the promotion
process of the B+-tree. For a set of elements in a node, the best local choice for a representative is
the one that has the minimum covering radius. This simple heuristic is used for both Slim-tree and
M-tree. The intuition behind it is that, minimizing the radius for a particular node also leads to less
covering area among its siblings. Moreover, this heuristic is very easy to implement since updates
only occur in the path of insertion.

The DBM-tree self adjust itself when a new element is inserted in the structure. The process of
insertion starts from the root of the tree to one node in the tree (top-bottom fashion). This process is
recursive in nature and try to find a node that better accommodate the new element. There are two
policies on choosing a node, or a subtree, to insert the new element. They are:

—minDist: among all the subtrees that cover the new element, choose the one that has the smallest
distance between the representative and the new element. If there is no such subtree, then the
element is inserted in the current node;

—minGDist: among all the subtrees that cover the new element, choose the one that has the smallest
distance between the representative and the new element. In case there is no such subtree that satisfy
this condition, then it is chosen a subtree that has its representative closer to the new element. Thus,
in the second condition, the covering radius needs to increase in order to accommodate the new
element.

The main difference between these two policies are that, for the first one the flexibility in creating
unbalanced trees is more than the second one. That is, if there is no subtree that can accommodate
the new element without changing its covering radius, then it is inserted in the current node, no matter
the level of the current node. On the other hand, in the second policy whenever the case mention
before fails, then a subtree is chosen if its representative is the closest to the new element.

The algorithm to insert new elements is described in Algorithm 1. The ChooseSubtree function
returns the most suitable place to insert the new element, based on the policy described above (minDist
or minGDist). It starts searching in the root node and proceeds searching recursively for a node that
qualifies (that is, the one most appropriated) to store the new element snew. The insertion of snew

can occur at any level of the structure, depending on the policy of ChooseSubtree. In each node, the
Insert algorithm calls the ChooseSubtree function, which returns the subtree that better qualifies to
store the new element. If there is no subtree that qualifies, the new element is inserted in the current
node ptr.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

118 · M. R. Vieira, C. Traina Jr., F. J. T. Chino and A. J. M. Traina

Algorithm 1 Insert

Require: snew: new element to be inserted, ptr: pointer to the subtree where snew will be inserted
1: si ← ChooseSubtree(snew, ptr) {find a suitable subtree that can accommodate snew}
2: if si is a valid subtree then

3: promotion← Insert(snew, si.ptr) {recursively insert snew in si subtree}
4: if promotion =true then

5: Update(ptr) {update the current node}

6: insert the element set not covered for node split in the current node
7: for each sj now covered by the update do

8: Demote(sj) {demote entries for optimization purposes}
9: end for

10: end if

11: else if ptr.ce < c then

12: ptr.Add(snew) {insert snew in node ptr}
13: else

14: SplitNode(snew, ptr) {node ptr does not have enough space}
15: return promotion {creates a new node, and promotes two representatives for new and old nodes}
16: end if

The policy chosen by the ChooseSubtree function has a big impact in the resultant tree. The
minDist option tends to build trees with small covering radii, but the trees can grow higher than the
trees built with the minGDist option. The minGDist option tends to produce shallower trees than
those produced with the minDist option, but with higher overlapping between the subtrees.

If the chosen node does not have enough space to accommodate snew, then all the existing entries
together with the new element must be redistribute between one or two nodes, depending on the
redistribution policy of the SplitNode function. The SplitNode function deletes the node ptr and
remove its representative from its parent node. Its former entries and snew are then redistributed
between one or more new nodes, and the representatives of the new nodes, together with the set
of entries of the former node ptr not covered by the new nodes, are promoted and inserted in the
parent node. Notice that the set of entries of the former node that are not covered by any new node
can be empty. The DBM-tree has two options to choose the representatives of the new nodes in the
SplitNode algorithm:

—minMax: this option distributes entries into two nodes, allowing a possibly empty set of entries not
covered by these two nodes. Each pair of entries is considered as candidate to be the representatives
of each new node. For each pair, this algorithm tries to insert each remaining entry into the node
having the representative closest to it. The final representatives will be the ones that generated
a pair of radii where the largest radius of the pair is the smallest among all possible pairs. The
computational complexity of this algorithm is O(c3), where c is the number of entries to be distribute
between the nodes;

—minSum: this option is similar to minMax, but the two representatives selected is the pair with the
smallest sum of the two covering radii.

The minimum node occupation can be between one and half of the node capacity c. If the minimum
occupation is set to be half of the node capacity, all the c entries must be distributed between the two
new nodes created by the SplitNode algorithm. After defining the representative of each new node,
the remaining entries are inserted in the node with the closest representative. After distributing every
entry, if one of the two nodes stores only its representative, then this node is destroyed and its sole
entry is inserted in its parent node. Based on the experiments and in the literature [Ciaccia et al.
1997], splits leading to an uneven number of entries in the nodes can be better than splits with equal
number of entries in each node, because it tends to minimize the overlapping regions between the two
nodes.

If the minimum occupation is set to a value lower than half of the node capacity, each node is first

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

DBM-Tree: A Dynamic Metric Access Method Sensitive to Local Density Data · 119

Fig. 2. In order to accommodate two new elements (represented as bold circles), the node in (a) needs to be split into

two. Because three elements (represented in bold in (b)) are in an area with low element density, including them in any
of the two new nodes it generates to much overlapping between these two nodes, and also triggers more overlapping in
other parts of the tree (not shown here).

filled with this minimum number of entries. After this, the remaining entries will be inserted into the
node only if its covering radius does not increase the overlapping regions between the two. The rest
of entries, that were not inserted into these two nodes, are inserted in the parent node.

Splittings promote the representative to the parent node, which in turn can cause other splittings.
After the split propagation or the update of the representative radii, it can occur that former uncovered
single element entries are now covered by the updated subtree. In this case each of these entries is
removed from the current node and reinserted into the subtree that covers it (Demote). Figure 2
illustrates a node configuration (a) before and (b) after a split. It is possible to see that if any of the
three elements promoted (bold circles) were included in any of the two new nodes (represented with
a large circle for its covering radius and star for its representative), then the overlap would be very
large among these two nodes. Moreover, this expansion could trigger much more overlapping in their
siblings and parents. Instead, we let these three elements that are in a low density area to be included
in a node belonging in a higher level in the tree.

4.1 Similarity Queries on DBM-tree

Here we describe the two main similarity queries implemented in the DBM-tree: Range query (RQ)
and k-Nearest Neighbor query (kNNQ). Both queries work in a similar way as the ones in the
Slim-tree and M-tree. We describe both algorithms here for informative purposes. The only major
difference among the algorithms is in the kNNQ algorithm for the DBM-tree. This difference is detailed
next.

The RQ algorithm is described in Algorithm 2. It receives as input parameters a tree node ptr,
the query element sq and radius rq. This RQ algorithm recursively analyze subtrees that cannot
be pruned first using the triangle inequality, and then the actual distance between representatives
and the query element. The use of the triangle inequality property allows pruning whole subtrees
or elements that do not intersect the region defined by the query. Entries that cannot be pruned
using the triangle inequality property are further analyzed using the real distance between the entry
(element or representative of subtree) and the query element. Entries that are subtrees are recursively
analyzed, and elements are inserted or not in the answer set R. In the end, the RQ algorithm returns
all elements that are inside the region defined by the query element sq and its radius rq.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

120 · M. R. Vieira, C. Traina Jr., F. J. T. Chino and A. J. M. Traina

Algorithm 2 RQ

Require: ptr tree to be perform the search, query element sq and query radius rq

1: for each si ∈ ptr do

2: {use the triangle inequality first}

3: if |d(srep, sq)− d(srep, si)| ≤ rq + si.radius then

4: dist← d(si, sq) {compute distance}
5: if dist ≤ rq + si.radius then

6: if si is a subtree then

7: RQ(si.ptr, sq , rq) {recursively analyze subtree si.ptr}
8: else

9: R.Add(si) {add element si to the result set R}

10: end if

11: end if

12: end if

13: end for

The kNNQ algorithm requires a dynamic radius rk to perform the pruning. In the beginning of the
process rk is set to a value that covers all the indexed elements. rk is adjusted with a smaller new
radius after k elements are inserted in R. After this, whenever a swap occurs, rk is adjusted again
with a new smaller radius, e.g. the biggest distance of all elements in R to the query element. A swap
happens if an element closer to the query element is found and this distance is smaller than any entry
in R. This principle is also applied in both Slim-tree and M-tree. The only main difference between
the DBM-tree and these two structures is related to the evaluation order of entries in node ptr. In
order to fast shrink rk, entries that are elements in node ptr are analyzed first, then its subtrees are
further analyzed in a second step. The kNNQ algorithm uses this two distinct phases mainly because
the rate that rk adjusts to the optimal value1 interferes in the performance of the kNNQ algorithm.
We do not show the experiments of this operation in this article, but on average the running time is
up to 18% faster using the two phases analyzes.

4.2 The Shrink Optimization Algorithm

We also propose a post-optimization algorithm for already built DBM-trees called Shrink. This
algorithm aims at “shrinking” the nodes by exchanging entries between nodes in order to reduce the
amount of overlapping between subtrees. Reducing overlapping regions improves the structure query
performance, which results in decreasing of the number of distance calculations, total processing time
and, mainly, the number of disk accesses required to answer both RQ and kNNQ queries. The Shrink
algorithm can be executed at any time during the evolution of a DBM-tree, for example, after the
insertion of many new elements.

The Shrink algorithm is described in Algorithm 3. The optimization process is applied in every
node of a DBM-tree. The stop condition for this algorithm occurs in two cases: when there is no
entry exchanges in a previous iteration; or when the number of exchanges already performed is larger
than 3 times the total number of entries in the node. This latter condition assures that no cyclic
exchanges can lead to a dead loop. After performing some experiments we observed that increasing
this number to a bigger value does not improve too much the structure. For each entry si in node
ptr, the algorithm searches for another entry sj that covers the farthest entry si.farthest from si. If
such node exists, then entry si.farthest is remove from si and inserted in sj . If after some exchanges
node si become empty, then si is removed from the structure. After these exchanges, the information
associated to si and sj needs to be updated in ptr node. During the exchanging of entries between
nodes, some nodes can retain just one entry, so they are promoted and the empty node is deleted from
the structure, further improving the performance of the search operations over the tree.

1the optimal rk is the maximum distance in the final result R

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

DBM-Tree: A Dynamic Metric Access Method Sensitive to Local Density Data · 121

Algorithm 3 Shrink

Require: ptr: root of the tree to be optimized
1: exchanges← 0 {variable used to count the total number of exchanges}
2: changed← true {variable used to check if an exchange was performed}

3: {default value of MAXEX is set to 3}
4: while exchanges ≤ MAXEX ∗ptr.ce and changed=true do

5: changed← false

6: for each subtree si ∈ ptr do

7: let si.farthest be the farthest entry in si from its representative
8: for each entry sj ∈ ptr and si 6= sj do

9: if d(sj , si.farthest ≤ sj .radius and sj .ce < c then

10: {node sj covers si.farthest and has space to store it}
11: si.Remove(si.farthest) {remove entry si.farthest from si}
12: sj .Add(si.farthest) {insert entry si.farthest in sj}
13: si.UpdateRadius() {update radius of subtree si}

14: sj .UpdateRadius() {update radius of subtree sj}
15: changed← true

16: exchanges← exchanges + 1

17: end if

18: end for

19: if node si.ce = 0 then

20: Delete(si.ptr) {delete node si.ptr from the tree}

21: ptr.Remove(si) {remove entry si from ptr}
22: end if

23: end for

24: end while

25: {part to remove single entries in ptr.si}
26: for each subtree si ∈ ptr do

27: if node si.ce = 1 then

28: Delete(si.ptr) {delete node si.ptr from the tree}
29: ptr.Update(si) {update entry si from subtree to element in ptr}
30: end if

31: end for

Table I. Description of the synthetic and real-world datasets used in the experiments.
Name # Objs. D Page d Description

(KBytes)

ColorHisto 68,040 32 8 L2 Color image histograms from the UCI-KDD repository

(kdd.ics.uci.edu). The metric L2 returns the distance between
two elements in a 32-d Euclidean space

MedHisto 4,247 – 4 LM Metric histograms of medical gray-level images. This dataset

does not have a fixed number of dimension [Traina et al. 2002]

Synt16D 10,000 16 8 L2 Synthetic vector data with Gaussian distribution with
10 clusters in a 16-d unit hypercube. The process

to generate this dataset is described in [Ciaccia et al. 1997]

Synt256D 20,000 256 32 L2 Similar to Synt16D, but this is a 256-d unit hypercube

Cities 5,507 2 1 L2 Geographical coordinates of all cities in Brazil (www.ibge.gov.br)

5. EXPERIMENTAL EVALUATION

The performance evaluation of the DBM-tree was done with a large assortment of real and synthetic
datasets with varying properties that affects the behavior of a MAM. Among these properties are the
intrinsic dimensionality of the dataset, the dataset size and the distribution of the data in the metric
space. Table I presents some illustrative datasets used to evaluate the performance of the DBM-tree.
The dataset name is indicated together with its total number of elements (# Objs.), the embedding
dimensionality of the dataset (D), the page size in KBytes (Page), the metric used (d), and a brief
description of each dataset.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

122 · M. R. Vieira, C. Traina Jr., F. J. T. Chino and A. J. M. Traina

Table II. Maximum height of the tree for each dataset tested.
Name Slim-tree M-tree DBM-MM DBM-MS DBM-GMM

ColorHisto 4 4 10 10 4

MedHisto 4 4 9 11 5

Synt16D 3 3 7 7 3

Synt256D 4 4 17 17 5

Cities 4 4 7 7 4

The computer used for the tests is an Intel Pentium 4 1.6GHz processor with 512 MB of RAM
and 40 GB of disk space, running Microsoft Windows 2000. All three structures (DBM-tree, Slim-
tree and M-tree) were implemented using the C++ language into the Arboretum MAM library
(www.gbdi.icmc.usp.br/arboretum), all with the same code optimization, to obtain a fairly com-
parison. The DBM-tree was compared with the well-known, most efficient and used dynamics MAM
so far: Slim-tree and M-tree.

The Slim-tree and the M-tree were set up using their best recommended setups. They are: minDist
for the ChooseSubtree algorithm, minMax for the split algorithm and the minimal occupation set to
25% of node capacity. The results for the Slim-tree were measured after the execution of the Slim-

Down optimization algorithm. We evaluated three configurations for the DBM-tree, all with minimal
occupation set to 30% of node capacity, which are the following:

—DBM-MM : minDist policy for ChooseSubtree and minMax for SplitNode method;

—DBM-MS : minDist policy for ChooseSubtree and minSum for SplitNode method;

—DBM-GMM : minGDist policy for ChooseSubtree and minMax for SplitNode method.

We extracted 500 elements for each dataset to generate query centers. They were randomly chosen
from each dataset, where half of them (250) were removed from the dataset before creating the trees,
and the other half were duplicated in the query set (this last half set is in the tree and the query set).
Hence, half of the queries in the query set are indexed in a DBM-tree and the other half are not. This
allows us to evaluate queries that are indexed and not. Each dataset were used to build one tree of
each type, and every tree was built inserting one element at a time, calculating the average number of
distance calculations, average number of disk accesses and total processing time (in seconds). In the
plots of measurements, each point corresponds to performing 500 queries with the same parameters
but varying query centers. The value for k varies from 2 to 20 for each measurement, and the radius for
kNNQ varies from 0.1% to 10% of the largest distance between pairs of elements in the dataset. We
chosen these range of values for both queries because they are the most meaningful values used when
performing similarity queries. The RQ graphics are in log scale for the radius abscissa to emphasize
the relevant part of the graph. All measurements were performed after the execution of the Shrink

algorithm.

The building time, maximum height and the distribution of elements in the structure were measured
for every tree. The building time of all 5 trees were similar for each dataset. It is interesting to compare
the maximum height of all DBM-trees with the balanced trees, so they are summarized in Table II.

The maximum height for the DBM-MM and the DBM-MS trees were bigger than the balanced
trees in every dataset. The biggest difference was in the Synt256D, with height of 17 as compared to
4 for the Slim-tree and the M-tree. However, as the other experiments show, this does not increase
the number of disk accesses. In fact, those DBM-trees performed on average less disk accesses than
the Slim-tree and M-tree, as is shown in the next subsection. For the DBM-GMM trees, although
it does not force the balance, the maximum heights in the majority of trees were similar to those of
the Slim-trees and M-trees. This is an interesting result and indicates that the balancing is not so
important for MAM as it is for the conventional structures.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

DBM-Tree: A Dynamic Metric Access Method Sensitive to Local Density Data · 123

Fig. 3. Visualization of the DBM-MM structure for the Cities dataset. (a) with the covering radius of the nodes; and
(b) only the elements. It is possible to verify that the structure is deeper (darker elements) in high-density regions, and
shallower (lighter elements) in low-density regions.

The data distribution across the levels of a DBM-tree is shown in Figure 3 using the Cities dataset.
This is only possible because this dataset is in a 2-dimensional Euclidean space. Figure 3 shows the
elements indexed in a DBM-MM with different color representing elements at different levels of the
tree. Figure 3(a) shows all elements and the covering radius of each node in the tree, and Figure 3(b)
shows only the elements in the tree. The elements with darker colors (red and black) are in a deeper
level than those with lighter colors (green). The depth of the tree is larger in higher density regions
and that elements are stored in every level of the structure, as expected. It visually shows that the
depth of the tree is smaller in low density regions, and that the number of elements at the deepest
levels is small, even in the high-density regions.

5.1 Performance Comparison

We have used many synthetic and real datasets to evaluate the performance of the DBM-tree. We
now present the results obtained when comparing the DBM-tree with the best setup of the Slim-
tree and M-tree. Due to space limitations we only present the results from four meaningful datasets
(ColorHisto, MedHisto, Synt16D and Synt256D), which are high-dimensional and non-dimensional
(metric) datasets, and gives a fair sample of the behavior of each structure. The main motivation
in these experiments is to evaluate the performance of the DBM-tree with its best competitors with
respect to the 2 main similarity queries: RQ and kNNQ.

Figure 4 shows the measurements to answer RQ and kNNQ on 4 datasets. The graphs on the
first row (Figures 4(a-d)) show the average number of distance calculations. It is possible to note in
these graphs that every DBM-tree executed on average less distance calculations than the Slim-tree
and M-tree. Among all, the DBM-MS presented the best result for almost every dataset, losing only
at the Synt256D dataset to DBM-GMM. None of the DBM-trees executed, for every dataset, more
distance calculations than the Slim-tree or the M-tree. The graphs also show that the DBM-tree
reduces the average number of distance calculations up to 67% for RQ (graph (c)) and up to 35%
for kNNQ (graph (d)), when compared to the Slim-tree, which is the best balanced tree in every
dataset wrt distance calculations. When compared to M-tree, the DBM-tree reduced up to 72% for
RQ (graph (c)) and up to 41% for kNNQ (graph (d)).

The graphs of the second row (Figures 4(e-h)) show the average number of disk accesses for both
RQ and kNNQ queries. In every measurement the DBM-trees clearly outperformed the Slim-tree

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

124 · M. R. Vieira, C. Traina Jr., F. J. T. Chino and A. J. M. Traina

250

300

350

400

450

500

550

600

650

0.0001 0.001 0.01 0.1 1

radius

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

0.0001 0.001 0.01 0.1 1

radius

350

400

450

500

550

600

650

700

750

800

850

2 4 6 8 10 12 14 16 18 20

k

80

90

100

110

120

130

140

150

160

2 4 6 8 10 12 14 16 18 20

k

7

8

9

10

11

12

13

14

15

16

17

2 4 6 8 10 12 14 16 18 20

k

4

6

8

10

12

14

16

18

0.0001 0.001 0.01 0.1 1

radius

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0001 0.001 0.01 0.1 1

radius

0

100

200

300

400

500

600

700

800

0.0001 0.001 0.01 0.1 1

radius

10

15

20

25

30

35

40

0.0001 0.001 0.01 0.1 1

radius

80

100

120

140

160

180

200

220

2 4 6 8 10 12 14 16 18 20

k

5

6

7

8

9

10

11

12

13

2 4 6 8 10 12 14 16 18 20

k

350

400

450

500

550

600

650

700

750

800

2 4 6 8 10 12 14 16 18 20

k

(e) Rq: ColorHisto

(a) Rq: ColorHisto (b) kNNq: MedHisto

(f) kNNq: MedHisto

(j) kNNq: MedHisto(i) Rq: ColorHisto (k) Rq: Synt16D

(c) Rq: Synt16D

(g) Rq: Synt16D (h) kNNq: Synt256D

(l) kNNq: Synt256D

(d) kNNq: Synt256D

M-Tree
Slim-Tree
DBM-MM
DBM-MS

DBM-GMM

A
v
g
 N

u
m

b
e
r

o
f

D
is

ta
n
c
e
 C

a
lc

u
la

ti
o
n

A
v
g

o
f

D
is

k
A

c
c
e
s
s

N
u

m
b

e
r

T
o

ta
l
T

im
e
 (

s
)

T
o

ta
l
T

im
e
 (

s
)

T
o

ta
l
T

im
e
 (

s
)

T
o

ta
l
T

im
e

(s
)

A
v
g
 N

u
m

b
e
r

o
f

D
is

k
A

c
c
e
s
s

A
v
g
 N

u
m

b
e
r

o
f

D
is

k
A

c
c
e
s
s

A
v
g
 N

u
m

b
e
r

o
f

D
is

k
A

c
c
e
s
s

A
v
g
 N

u
m

b
e
r

o
f

D
is

ta
n
c
e
 C

a
lc

u
la

ti
o
n

A
v
g
 N

u
m

b
e
r

o
f

D
is

ta
n
c
e
 C

a
lc

u
la

ti
o
n

A
v
g
 N

u
m

b
e
r

o
f

D
is

ta
n
c
e
 C

a
lc

u
la

ti
o
n

M-Tree
Slim-Tree
DBM-MM
DBM-MS

DBM-GMM

M-Tree
Slim-Tree
DBM-MM
DBM-MS

DBM-GMM

M-Tree
Slim-Tree
DBM-MM
DBM-MS

DBM-GMM

M-Tree
Slim-Tree
DBM-MM
DBM-MS

DBM-GMM

M-Tree
Slim-Tree
DBM-MM
DBM-MS

DBM-GMM

M-Tree
Slim-Tree
DBM-MM
DBM-MS

DBM-GMM

M-Tree
Slim-Tree
DBM-MM
DBM-MS

DBM-GMM

M-Tree
Slim-Tree
DBM-MM
DBM-MS

DBM-GMM

M-Tree
Slim-Tree
DBM-MM

DBM-MS
DBM-GMM

M-Tree
Slim-Tree
DBM-MM

DBM-MS
DBM-GMM

M-Tree
Slim-Tree
DBM-MM

DBM-MS
DBM-GMM

Fig. 4. Comparison of the average number of distance calculations (first row), average number of disk accesses (second
row) and total processing time (in s) (third row) of DBM-tree, Slim-tree and M-tree, for RQ and kNNQ queries for the

ColorHisto ((a), (e) and (i) - RQ), MedHisto ((b), (f) and (j) - kNNQ), Synt16D ((c), (g) and (k) - RQ) and Synt256D

((d), (h) and (l) - kNNQ) datasets.

and the M-tree. The graphs show that the DBM-tree reduces the average number of disk accesses up
to 43% for RQ (graph (g)) and up to 35% for kNNQ (graph (h)), when compared to the Slim-tree. It
is important to note that the Slim-tree is the MAM that in general requires the lowest number of disk
accesses between every previous published MAM. These measurements were taken after the execution
of the Slim-Down algorithm in the Slim-tree. When compared to the M-tree, the gain is even greater,
increasing to up to 54% for RQ (graph (g)) and up to 42% for kNNQ (graph (h)).

An important observation is that the immediate result of decreasing overlap among nodes of a tree
is the reduced number of distance calculations. However, the number of disk accesses in a MAM
is also related to the overlapping between subtrees. An immediate consequence of this fact is that
decreasing the overlap reduces both the number of distance calculations and of disk accesses, to answer
both types of similarity queries. These two benefits contribute to reduce the total processing time of
queries.

The graphs of the third row (Figures 4(i-l)) show the total processing time in seconds. As the three
DBM-trees performed lesser distance calculations and disk accesses than both Slim-tree and M-tree,
they are naturally faster to answer both RQ and kNNQ. The importance of comparing query time
is that it reflects the total complexity of the algorithms besides the number of distance calculations
and the number of disk accesses. The graphs shows that the DBM-tree is up to 44% faster to answer
RQ and kNNQ (graphs (k) and (l)) than Slim-tree. When compared to the M-tree, the reduction in
total query time is greater, going to be up to 50% for RQ and kNNQ queries (graphs (k) and (l)).

5.2 Experiments regarding the Shrink Algorithm

Here we test the benefits of running the Shrink optimization algorithm for DBM-trees. We only show
the results for two datasets, ColorHisto and Synt16D since the behavior reported here is the same for

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

DBM-Tree: A Dynamic Metric Access Method Sensitive to Local Density Data · 125

550

600

650

700

750

800

850

900

950

1000

1050

1100

2 4 6 8 10 12 14 16 18 20

k

(b) kNNq: ColorHisto

A
v
g

 N
u

m
b

e
r

o
f

D
is

k
A

c
c
e

s
s

250

300

350

400

450

500

550

600

0.0001 0.001 0.01 0.1 1

DBM-MM
DBM-MS

DBM-GMM
DBM-MM - Shrink
DBM-MS - Shrink

DBM-GMM - Shrink

DBM-MM
DBM-MS

DBM-GMM
DBM-MM - Shrink
DBM-MS - Shrink

DBM-GMM - Shrink

DBM-MM
DBM-MS

DBM-GMM
DBM-MM - Shrink
DBM-MS - Shrink

DBM-GMM - Shrink

DBM-MM
DBM-MS

DBM-GMM

DBM-MM - Shrink
DBM-MS - Shrink

DBM-GMM - Shrink

radius

(a) Rq: ColorHisto

A
v
g

 N
u

m
b

e
r

o
f

D
is

k
A

c
c
e

s
s

radius

(c) Rq: Synt16D

A
v
g

 N
u

m
b

e
r

o
f

D
is

k
A

c
c
e

s
s

10

15

20

25

30

35

40

0.0001 0.001 0.01 0.1 1

k

(d) kNNq: Synt16D

A
v
g

 N
u

m
b

e
r

o
f

D
is

k
A

c
c
e

s
s

32

34

36

38

40

42

44

46

48

50

52

2 4 6 8 10 12 14 16 18 20

Fig. 5. Average number of disk accesses to perform RQ and kNNQ queries in the DBM-tree before and after the
execution of the Shrink algorithm: (a) RQ on ColorHisto, (b) kNNQ on ColorHisto, (c) RQ on Synt16D, (d) kNNQ

on Synt16D.

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10

of d (x10K)ataset elements # of dataset elements (x10K) # of dataset elements (x10K) # of dataset elements (x10K)

(a) kNNq: Synt16D - k=10

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

(c) kNNq: Synt16D - k=10

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

(b) kNNq: Synt16D - k=10

T
o
ta

l
T

im
e

 (
s
)

T
o
ta

l
T

im
e

 (
s
)

A
v
g

 N
u

m
b

e
r

o
f

D
is

k
A

c
c
e

s
s

A
v
g
 N

u
m

b
e
r

o
f

D
is

ta
n

c
e

 C
a

lc
u

la
ti
o

n

DBM-MM

DBM-MS

DBM-GMM

DBM-MM

DBM-MS

DBM-GMM

DBM-MM

DBM-MS

DBM-GMM

DBM-MM

DBM-MS

DBM-GMM

(d) Rq: Synt16D - radius=0.1%

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

1 2 3 4 5 6 7 8 9 10

Fig. 6. Scalability of all three DBM-trees regarding the dataset size indexed during kNNQ ((a) and (b)) and RQ ((c)
and (d)), The dataset indexed was the Synt16D with 100,000 elements.

other datasets tested. Because the greater benefit of the Shrink algorithm is reducing the number
of disk accesses for queries, we only report this measurements here. Figures 5(a) for RQ and (b) for
kNNQ represents the results for the ColorHisto dataset, and Figures 5(c) for RQ and (d) for kNNQ

for the Synt16D dataset.

Figure 5 compares the query performance before and after the execution of the Shrink algorithm for
DBM-MM, DBM-MS and DBM-GMM for both RQ and kNNQ. The performance of the Slim-tree
(after ran the Slim-Down) and M-tree are also shown in the figures. Every graph shows that the
Shrink algorithm improves the final trees. The most expressive result is the DBM-GMM indexing
the Synt16D, which achieved up to 30% lesser disk accesses for kNNQ and RQ as compared with the
same structure not optimized.

5.3 Scalability of the DBM-tree

In the last set of experiments we evaluated the behavior of the DBM-tree regarding scalability when
increasing the number of elements indexed. To do so, we generated 10 datasets similar to the Synt16D,
each one with 10,000 elements. We inserted all 10 datasets in the same tree, totaling 100,000 distinct
elements. After inserting each dataset we run sets of queries, executing 500 similarity queries for each
point in the graph. The behavior was equivalent for different values of k and radius, thus we present
only the results for k=10 and radius=0.1%.

Figure 6 presents the behavior of the three DBM-tree considering: the average number of distance
calculations (first row), disk accesses (second row), and total running time (third row) for kNNQ

(first column) and RQ (second column). As it can be seen, the three DBM-trees exhibits sub-linear
behavior when the number of elements indexed grows, what makes the method adequate to index very
large datasets, in any of its configurations.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

126 · M. R. Vieira, C. Traina Jr., F. J. T. Chino and A. J. M. Traina

6. CONCLUSIONS

This paper presents a new dynamic MAM called DBM-tree (Density-Based Metric tree), which in
a controlled way relaxes the height-balancing requirement of access methods, trading a controlled
amount of unbalancing at denser regions of the dataset for a reduced overlapping among subtrees.
This is the first dynamic MAM that makes possible to reduce the overlap between nodes relaxing the
rigid balancing of the structure. The height of the tree is higher in denser regions, in order to keep
a tradeoff between breadth-searching and depth-searching. The options to define how to construct a
tree and the optimizations possibilities in DBM-tree are larger than in rigid balanced trees, because it
is possible to adjust the tree according to the data distributions at different regions of the data space.
Therefore, this paper also presented a new optimization algorithm, called Shrink, which improves the
performance in trees reorganizing the elements among their nodes.

The experiments performed over synthetic and real datasets showed that the DBM-tree outperforms
the main balanced structures existing so far: the Slim-tree and the M-tree. In average, it is up to
50% faster than the traditional MAM and reduces the number of required distance calculations to up
to 72% when answering similarity queries. The DBM-tree spends fewer disk accesses than the Slim-
tree, that until now was the most efficient MAM with respect to the number of disk accesses. The
DBM-tree requires up to 54% fewer disk accesses than the balanced trees. After performed the Shrink

algorithm, its performance achieves improvements up to 30% for range and k-nearest neighbor queries
considering disk accesses. It was also shown that the DBM-tree scales up very well with respect to
the number of elements indexed, presenting sub-linear behavior, which makes it well-suited to very
large datasets.

Among the future works, we intend to develop a bulk-loading algorithm for the DBM-tree. As
the construction possibilities of the DBM-tree is larger than those of the balanced structures, a bulk-
loading algorithm can employ strategies that can achieve better performance than is possible in other
trees. Other future work is to develop an element-deletion algorithm that can really remove elements
from the tree. All existing rigidly balanced MAM such as the Slim-tree and the M-tree, cannot
effectively delete elements being used as representatives, so they are just marked as removed, without
releasing the space occupied, so it remains being used in the comparisons required in the search
operations. The organizational structure of the DBM-tree enables the effective deletion of elements,
making it a completely dynamic MAM.

REFERENCES

Baeza-Yates, R. A., Cunto, W., Manber, U., and Wu, S. Proximity matching using fixed-queries trees. In Proceedings

of the Annual Symposium on Combinatorial Pattern Matching. Cancun, Mexico, pp. 198–212, 1994.

Bayer, R. and McCreight, E. M. Organization and maintenance of large ordered indexes. Acta Informatica 1 (3):

173–189, 1972.

Beckmann, N., Kriegel, H.-P., Schneider, R., and Seeger, B. The R*-tree: An efficient and robust access method
for points and rectangles. In Proceedings of the ACM SIGMOD Int’l Conference on Management of Data Conference.
ACM Press, Atlantic City, USA, pp. 322–331, 1990.

Bentley, J. L. and Friedman, J. H. Data structures for range searching. ACM Computing Surveys 11 (4): 397–409,

1979.

Beyer, K. S., Goldstein, J., Ramakrishnan, R., and Shaft, U. When is “nearest neighbor” meaningful? In Pro-

ceedings of the Int’l Conference on Database Theory. Lecture Notes in Computer Science, vol. 1540. Springer-Verlag,
pp. 217–235, 1999.

Böhm, C., Berchtold, S., and Keim, D. A. Searching in high-dimensional spaces: Index structures for improving the
performance of multimedia databases. ACM Computing Surveys 33 (3): 322–373, 2001.

Bozkaya, T. and Özsoyoglu, M. Distance-based indexing for high-dimensional metric spaces. In Proceedings of the

ACM SIGMOD Int’l Conference on Management of Data Conference. Tucson, USA, pp. 357–368, 1997.

Bozkaya, T. and Özsoyoglu, M. Indexing large metric spaces for similarity search queries. ACM Trans. on Database

Systems 24 (3): 361–404, 1999.

Brin, S. Near neighbor search in large metric spaces. In Proceedings of the Int’l Conference on Very Large Data Bases.
Zurich, Switzerland, pp. 574–584, 1995.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

DBM-Tree: A Dynamic Metric Access Method Sensitive to Local Density Data · 127

Burkhard, W. A. and Keller, R. M. Some approaches to best-match file searching. Communications of the

ACM 16 (4): 230–236, 1973.

Chavez, E., Navarro, G., Baeza-Yates, R., and Marroqúın, J. L. Searching in metric spaces. ACM Computing

Surveys 33 (3): 273–321, 2001.

Ciaccia, P., Patella, M., and Zezula, P. M-tree: An efficient access method for similarity search in metric spaces.
In Proceedings of the Int’l Conference on Very Large Data Bases. Athens, Greece, pp. 426–435, 1997.

Comer, D. The ubiquitous B-tree. ACM Computing Surveys 11 (2): 121–137, 1979.

Faloutsos, C. Searching Multimedia Databases by Content. Kluwer Academic Publishers, Boston, USA, 1996.

Gaede, V. and Günther, O. Multidimensional access methods. ACM Computing Surveys 30 (2): 170–231, 1998.

Guttman, A. R-tree : A dynamic index structure for spatial searching. In Proceedings of the ACM SIGMOD Int’l

Conference on Management of Data Conference. Boston, USA, pp. 47–57, 1984.

Hjaltason, G. R. and Samet, H. Index-driven similarity search in metric spaces. ACM Trans. on Database Sys-

tems 28 (4): 517–580, 2003.

Santos, R. F., F., Traina, A. J. M., Traina Jr., C., and Faloutsos, C. Similarity search without tears: The omni
family of all-purpose access methods. In Proceedings of the IEEE Int’l Conference on Data Engineering. Heidelberg,
Germany, pp. 623–630, 2001.

Sellis, T. K., Roussopoulos, N., and Faloutsos, C. The R+-tree: A dynamic index for multi-dimensional objects.
In Proceedings of the Int’l Conference on Very Large Data Bases. Morgan Kaufmann Publishers, Brighton, England,
pp. 507–518, 1987.

Traina, A. J. M., Traina Jr., C., Bueno, J. M., and de A. Marques, P. M. The metric histogram: A new and
efficient approach for content-based image retrieval. In IFIP Visual Database Systems. Brisbane, Australia, pp.

297–311, 2002.

Traina Jr., C., Traina, A. J. M., Faloutsos, C., and Seeger, B. Fast indexing and visualization of metric datasets

using Slim-trees. IEEE Trans. on Knowledge and Data Engineering 14 (2): 244–260, 2002.

Traina Jr., C., Traina, A. J. M., Seeger, B., and Faloutsos, C. Slim-trees: High performance metric trees mini-

mizing overlap between nodes. In Proceedings of the Int’l Conference on Extending Database Technology. Konstanz,
Germany, pp. 51–65, 2000.

Uhlmann, J. K. Satisfying general proximity/similarity queries with metric trees. Information Processing Letters 40 (4):
175–179, 1991.

Vieira, M. R., Traina Jr., C., Chino, F. J. T., and Traina, A. J. M. DBM-tree: A dynamic metric access method
sensitive to local density data. In Proceedings of the Brazilian Symposium on Databases. Braśılia, Brazil, pp. 163–177,
2004.

Yianilos, P. N. Data structures and algorithms for nearest neighbor search in general metric spaces. In Proceedings

of the Annual ACM-SIAM Symposium on Discrete Algorithms. Austin, USA, pp. 311–321, 1993.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

