
SCM-BP: An Intelligent Buffer Management Mechanism for
Database in Storage Class Memory

Júlio A. Tavares, José de Aguiar Moraes Filho, Angelo Brayner, Eduardo Lustosa

University of Fortaleza - UNIFOR, Brazil
{julio,jaguiar,brayner,eduardolustosa}@unifor.br

Abstract. A set of new storage media, called Storage Class Memory (SCM), has emerged as a quite promising
solution to decrease the difference between HDD data access time and the time that processors can consume data. Four
main characteristics may be highlighted in SCM: (i) non-volatility; (ii) low access time; (iii) high rates of IOPS, and (iv)
read/write execution time asymmetry. The former three have a direct benefit for database systems. Notwithstanding,
the latter one poses challenges for database systems. In fact, read-write speed ratio in SCMs can reach an 1-to-300
factor. For databases stored in HDDs, disk access is a critical factor for database performance. The buffer manager
is in charge of reducing the amount of disk access, maintaining the most used database pages in main-memory buffer.
Most buffer-replacement policies have been proposed aiming at only avoiding disk access. Nonetheless, flushing too
many changed pages from buffer to disk may reduce IOPS rates of SCMs. In this article, we propose the SCM-BP,
an intelligent buffer replacement policy targeted to SCM devices. SCM-BP is able to autonomously adapt its behavior
and to choose the most efficient moment to do this. We provide an empirical study comparing SCM-BP to the widely
used LRU policy. The results show the positive impact of our proposal to database system performance w.r.t buffer
management when SCM media is used.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous; H.3 [Information Storage and
Retrieval]: Miscellaneous

Keywords: buffer management, flash memory, performance, storage class memory

1. INTRODUCTION

It is well know by now that SCM solutions outperform hard-disk drives (HDDs). While the speed
of processors has raised exponentially, the number of inputs/outputs per second (IOPS) afforded
by hard-disk drivers (HDDs) has only increased marginally. In other words, there is a significant
difference between HDD response time and the time that processors can consume data. Another
critical drawback presented by HDDs and overcome by SCMs are the high rates of energy consumption.

SCM, a term coined at the IBM research laboratories, encompasses a set of promising storage
technologies to improve data access speed in non-volatile storage drives and energy efficiency. For
example, NOR and NAND flash memories and phase-changed memories (PCM) are considered to
be SCM. As SCM products, we may cite pen drives, memory cards used in ultrabooks and digital
cameras, internal memory of sensor units and solid state drives (SSD).

It is a fact that SCM drives currently have a storage capacity inferior to their HDD counterparts.
While one has petabytes in HDDs, there are only hundreds of gigabytes in SCM. However, in the
current pace of SCM technology development, we can expect that in a couple of years SCM storage
capacity will be similar to that provided by HDDs. Additionally, there exists the alternative of
exploiting the use of storage array of SCM drives. Therefore, storing databases in SCMs is also a fact
in modern enterprises.

Work partially supported by FUNCAP grant PRN-0040-00037.01.00/10.
Copyright c©2013 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013, Pages 374–389.

SCM-BP: An Intelligent Buffer Management Mechanism for Database in Storage Class Memory · 375

SCM memories share features from which the most evident one is the absence of mechanical parts
in their assembly, only semi-conductors (chips) are used in. Due to such a feature, SCM presents the
following characteristics:

(1) Low rates of energy footprint. This is because, to perform read/write operations, there are only
logical gates (circuitry) involved;

(2) Low random access time. SCM provides random access time up to 1000 times faster than HDDs;
(3) High random IOPS rates. Since SCMs have no mechanical moving parts, there is no mechanical

seek time or latency to overcome. In fact, SCMs provide IOPS over 100 times faster than 15K
RPM HDDs;

(4) High reliability rates. Enterprise class SCMs may present 2 million hours MTBF (mean time
between failure) versus most 15K RPM HDDs, which present up to 1.6 million hours MTBF;

(5) Asymmetry of read and write operation execution time. As a consequence of the technology used
in SCMs, a read operation is up to 300 times faster than a write operation.

From a database technology perspective, characteristics 1 to 4 are directly beneficial to existing
database systems. On the other hand, read/write asymmetry may pose challenges to database tech-
nology. Several database components may be impacted, e.g., buffer manager, query processor and
recovery components. Harizopoulos et al. [2008] have shown that the buffer manager is responsible
for more than 1/3 of the number of instructions executed for a DBMS and for almost 30% of CPU
cycles used by a DBMS. Therefore, buffer management is critical for database performance and it is
very sensitive to the underlying storage media.

The key goal of the buffer manager is to reduce the amount of disk access. For that, the buffer
manager has to maintain the most used database pages in main-memory buffer. Thus, whenever the
database system requests access to a page P (for example, to process a query), the buffer manager
checks whether or not P is already in the buffer pool. If P is in the buffer pool, it is made available
without a disk access. In case P is not in the buffer, the buffer manager requests the disk access
and loads P into the buffer (swap-in operation). Clearly, the number of pages in the buffer pool is
much smaller than the number of pages in a database. Consequently, during a swap-in operation the
buffer pool is already full of pages. Whenever this occurs, the buffer manager has to select a given
page P ′ to be removed from the buffer. If P ′ has not been updated, then it may be erased from the
main memory. However, if P ′ has been changed, it has to be written back to its physical address in
disk (swap-out operation). The metric for measuring buffer manager efficiency is the hit ratio, which
represents the probability of finding a requested page in the buffer pool (see Figure 1 for a schematic
view of a buffer manager).

The most critical operation executed by the buffer manager is to select a page to leave the buffer
when a new page has to be loaded into the buffer pool and the maximal capacity of the buffer pool has
been achieved. For that reason, the buffer manager implements a buffer-replacement strategy (e.g.,
LRU, MRU and FIFO). Most buffer-replacement strategy have been proposed to avoid disk access.
Thus, such policies may throw out (from the buffer) pages, which have only been read or written
pages. However, removing written pages implies write operations on the non-volatile media. On the
other hand, access to the media usually is not a bottleneck for solid-state memory technology, but
write operations may jeopardize the benefits of using SCMs.

Therefore, we propose a new buffer management policy called SCM-BP, which explores SCM asym-
metry to yield a better database performance. SCM-BP tries to keep in database buffer (main memory)
write-intensive pages, postponing the moment to write them back to the SCM media. By doing so,
SCM-BP reduces the number of write operations into SCM media, which increases SCM performance
and lifetime. In order to achieve its goal, SCM-BP maintains two regions in the buffer: read and write
region. The area allocated to each region is autonomously and automatically adjusted by SCM-BP.
We have evaluated SCM-BP empirically against the well-known LRU policy using different workloads.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

376 · Júlio A. Tavares et al.

Page
1

Page
2

Page
3

Buffer
Manager

Page
n

HDD
or

SCM

Buffer Pool

 Page
Requests

Read in

Write down

Swap in

Swap out

M pages
M >> n

Fig. 1: Sketch of a Buffer Manager.

This article is structured as follow. Section 2 describes SCM memories technological characteristics.
In section 3 some related works are studied. Section 4 details the SCM-BP, its features and algorithms.
In Section 5, we show the empirical evaluation results. Section 6 concludes this article.

2. SCM CHARACTERISTICS

In this section, we describe and analyse the characteristics of the SCM media. There are two main
types of SCM: Flash memory and PCM (phase change memory) memory.

PCM memory exploits the unique behavior of the chalcogenide glass in which the heat produced
by the passage of an electric current switches this material between two states: crystalline (with low
resistance state, cool and representing bit 1) and amorphous (with high resistance state, hot and
representing bit 0). The chalcogenide is the same material used in CD-RW and DVD-RW. Although
PCM has not yet reached the commercialization stage for consumer electronic devices, it has a quite
good potential to overcome the drawbacks of Flash memory. As recent news, we may cite the two
most auspicious late announces for PCM development. In April 20101, Numonyx announced the
Omneo line of 128-Mbit NOR-compatible phase-change memories and Samsung announced shipment
of its 512 Mb phase-change RAM (PRAM) in a multi-chip package (MCP) for use in mobile handsets
by Fall 2010. In June 20112, IBM announced the development of a stable, reliable, multi-bit phase
change memory device with high performance. Flash memories, in turn, are already widely used as
computer components (e.g., pen drive, flash-based SSD drive, enterprise SSD). Therefore, we focus
our discussion on flash-based memories.

Flash memory is a computer chip which can be electrically reprogrammed and erased. Flash memory
stores data in an array of floating-gate transistors, called cells. Bits are represented by means of the
voltage level in a cell. A cell with high voltage level (typically greater than 5v) represents a bit 1
(default state), whereas a low voltage level represents a bit 0. Depending on how many bits can be
stored in a cell, we may have two different types of flash devices: single-level cell (SLC) or multilevel
cell (MLC). In SLC only one bit is stored in a cell. In turn, MLC flash devices are able to store
more than one bit per cell. For instance, there are MLC devices which store 2 bits/cell by using four
different voltage levels: low (00), medium low (01), medium high (10) and high (11).

A flash device is composed of several planes, each of which has a set of blocks. In turn, each block
is divided into pages. Figure 2a depicts an abstract model of a flash device.

1At http://eetimes.com/electronics-news/4088727/Samsung-to-ship-MCP-with-phase-change
2At http://www.engadget.com/2011/06/30/embargo-ibm-develops-instantaneous-memory-100x-faster-than-fl/

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

SCM-BP: An Intelligent Buffer Management Mechanism for Database in Storage Class Memory · 377

B
lo

c
k

X

A B

B
lo

ck
 X

A B C D

B' A'

B
lo

c
k

X

B
lo

ck
 X

'

C D

B' A'

a) Two pages A and B written
into a fresh block B.

b) Two new pages, C and D, and two
pages replacement, A' and B' written
into block X. Original pages, A and B,
are now stale (in hatches).

c) As pages A and B cannot be rewritten until the whole block X is erased, all
good pages, A', B', C and D are reread and written to a new block X'. The old
block X is then erased.

2K page

2K page

2K page

2K page2K page

Flash memory blocks

Block 00

Block FF

First write

Block

Page

a) An abstract model of the a) An abstract model of the
structure of a flash chipstructure of a flash chip b) Wear levelingb) Wear leveling

c) Garbage Collectionc) Garbage Collection

Fig. 2: SCM characteristics.

There are three operations which should be executed on a flash device: read, erase and program
[Kim and Koh 2004]. A read operation may randomly occur anywhere in a flash device. An erase
operation is applied to a given block of a flash device and sets all bits to 1. A program operation sets
a bit to 0. It is important to note that a program operation can only be executed on a “clean” (free)
block, which is a block with all bits set to 1.

Depending on the way of cells are interconnected, flash devices can be categorized in NAND flash
and NOR flash. A NOR flash device takes its name because the internal circuitry arrangement (parallel
interconnection of cells) resembles a logical NOR gate. The programming (write) unit of a NOR flash
memory is a byte, whereas the erasing unit is a block. In other words, in a NOR flash bit values can
be set to 0 (program operation) in byte-to-byte fashion (byte-addressable). Block sizes are typically,
64, 128 or 256 Kbytes. NOR flash devices are assembled on SLC cells. For that reason, its density
is low and it is less impacted by voltage noise, making it more robust to cell failures and having low
read latency.

On the other hand, NAND flash name derives from the internal arrangement of transistors resem-
bling a NAND logical gate (i. e., several transistors interconnected in series). A NAND flash chip is
page-addressable for executing read and program operations. Pages are typically of 512, 1024 or 2048
bytes. Erasing unit in NAND flash memory remains a block (set of pages). Since a program operation
can only be applied to clean blocks, to change the values of a set of bytes in a block B of a NAND
flash device, the entire block should be first erased (i.e., setting all bits to 1). Thereafter, it is possible
to execute the program operation on B for changing the values of the set of bytes. Thus, with a clean
block B, any location in B can be programmed, but once a bit in B is set to 0, to change this bit to

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

378 · Júlio A. Tavares et al.

1, erasing the entire block is mandatory. In other words, flash memory offers random-access read and
program operations, but does not offer arbitrary random-access rewrite or erase operations.

Although NAND flash devices share many characteristics with NOR flash, there exist significant
differences between them. First of all, write endurance, i.e., the number of write cycles beyond which
the memory deteriorates its integrity, varies a lot between NAND and NOR flash. SLC NOR flash
presents typically a write endurance greater than that of MLC NOR and NAND flash. MLC NAND
and NOR flash have similar write endurance. For example, a SLC NAND flash is normally rated at
about 100k cycles; a SLC NOR, 100k to 1M cycles; a MLC NAND flash, 1k to 10k cycles; and a
MLC NOR flash is typically rated at 100k cycles. Consequently, NAND and NOR flash memories
have a finite number of write cycles. In other words, flash memory devices (NAND and NOR) have
their lifetime determined by the number of write operations. Another important difference between
NOR and NAND memories is that NOR flash devices were developed targeting a more economical
rewritable ROM memory. NAND flash devices, in turn, were designed to reduce the cost per bit and
to increase the maximum chip capacity trying to compete with hard disk drives.

NAND flash devices present higher storage capacity than NOR flash. This is because NAND flash
memory uses multilevel cell (MLC), thus more than one bit can be stored in a cell. A side-effect of
using MLC is the increasing of bit error rate (BER) [Mielke et al. 2008]. In order to reduce BER level,
NAND flash devices need to implement error correction code (ECC) and bad block management.

In NAND flash memory, there is a controller chip, which is responsible for a logical-to-physical
mapping. This way, NAND flash memories can be accessed like HDDs, i.e., in a block-wise fashion.
For instance, when a high-level application (e.g., a file system) requires an access to a logical block,
the controller chip makes a map to the correspondent physical block in NAND memory. The chip
maintains two map tables (direct map and inverse map) to perform such mapping and to mark
(physical) bad blocks. These mapping tables (also called logical block addressing – LBA) can be
stored internally in the controller or in main memory.

Since flash memory devices have their lifetime determined by the number of write operations, a
technique called wear levelling is applied to prolong flash memory useful life. Wear levelling is also
performed by the controller chip in flash device. The key goal is to evenly spread write operations out
across the storage area of the medium. Thus, once a program write operation is executed on a page
P of a physical block B, the next write operation in P requires that the entire block B be erased. In
order to avoid the erase operation to be executed in-place, the wear leveling procedure searches for a
fresh block3 B′ and writes (moves) B′s data into B′ and marks B as clean (free) block. If there is no
new fresh block, a clean block is searched for and used to write B′s data, again B set as clean, Figure
2b illustrates the wear levelling technique.

The garbage collector process is triggered when a free block is necessary to be used for a replacement
operation in a page P of a block X and there are no fresh blocks any more in the storage medium.
We can only rewrite pages in a block if the whole block is erased. Thus, in a certain moment of time,
in a block, there may be fresh pages (all bytes set to 1), with no write operations yet; needed pages
(called good pages), from which data can be read, and stale (also called invalid) pages, pages written
before but no more possible to be rewritten. When there is a need to rewrite stale pages in a block,
all good pages are reread and written to a free block X ′ (i.e., a clean block previously erased), and
pages are moved to it. The old block X is erased (see Figure 2c).

A phenomenon, called write amplification occurs as a consequence of wear levelling and garbage
collection. Wear levelling and garbage collection, in fact, physically moves user data more than once
across the medium. This increases the number of writes/erasures over the medium lifetime, shortening
the time it can be considered reliable to operate.

3A block is fresh if no write operation has been executed on it.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

SCM-BP: An Intelligent Buffer Management Mechanism for Database in Storage Class Memory · 379

3. RELATED WORK

In this section, the most relevant buffer-replacement policies are described and analyzed. For the
sake of clarity, the policies are classified into disk-oriented and SCM-oriented policies. The former
group contains the policies whose may goal is to reduce the amount of disk access. In turn, the latter
group presents policies which are SCM-aware. Before describing the buffer-replacement policies, we
present some concepts. A dirty page represents a page in the buffer pool, which has been modified.
Its counterpart is a clean page. A highly referenced page is called a hot page.

3.1 Disk-Oriented Policies

LRU (Least Recently Used), CLOCK [Corbato 1969] and Second Chance [Tanenbaum 2007] algorithms
are considered the most widely used replacement policies. CLOCK and Second chance algorithm are
functionally identical and reach hit ratios close to LRU.

CLOCK and Second Chance are improvements of FIFO (First In First Out) replacement policy.
Both can be implemented by using circular lists. The difference between them is in the way they
manage the circular list. Second Chance always tries to pick the page in the front of list (like FIFO)
and verify its reference bit. If the bit is 1, the page is inserted back into the list resetting reference
bit to 0. Otherwise, the page is swapped out. CLOCK in turn maintains an iterator (called hand)
pointing to the last page examined in the list. In a page fault event, the reference bit in iterator’s
location is inspected. If the bit is 1, it is cleared and the process is repeated until a page is replaced
(bit set to 0).

LRU has been designed considering that (magnetic) disk access is at least one order of magnitude
slower than main memory access. Every time a page is referenced, its respective reference counter is
incremented. Therefore, LRU works by evicting a page (or pages) with the lowest reference counter.
In other words, if a page P is a hot page, it tends to be kept in the buffer pool. Thus, if a clean page
P has a reference counter greater than a dirty page P ′, LRU chooses the dirty page P ′ to be evicted.
In this case, P ′ must be written back to disk. Observe that if the clean page P had been chosen to
be removed from the buffer pool, no write operation would be necessary.

Moreover, in LRU, page reference does not take into account which operation (read or write) is
performed in a page nor the frequency in which each operation is executed on the page. Therefore,
the LRU behavior tends to generate more write operations into media, which means a negative side-
effect for SCM performance.

LRU presents also a well-known weakness when sequential (and long) access patterns are dominants
or at least mixed in workloads. In this case, LRU shows a performance degeneration because hot pages
are pushed away by sequentially accessed pages. In the majority of DBMS implementations, this issue
is mitigated by using a double ended queue (deq) that has a LRU end and a MRU (Most Recently
Used) end. Thus, sequentially accessed pages are inserted into MRU end, such that, in a evicting
situation, pages at MRU end are strong candidates to be replaced. Nevertheless, LRU assumes a
(magnetic) disk access with no read-write asymmetry.

3.2 SCM-Oriented Policies

There are some works on buffer replacement specifically designed for SCM media [Park et al. 2006;
Jung et al. 2008; Li et al. 2009; Jo et al. 2006; Kim and Ahn 2008; Ou et al. 2009]. All of them are
derivations of LRU or Second Chance policies.

FAB (Flash-Aware Buffer) [Jo et al. 2006] and BPLRU (Block-level LRU) [Kim and Ahn 2008] are
block-based (instead of page-based) LRU algorithms. In other words, they are specifically designed
to flash memories (block-addressable), lacking, thus, the generality for other SCM media types. FAB

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

380 · Júlio A. Tavares et al.

evicts a block that contains the largest number of pages. BPLRU, in turn, employs a page-padding
technique to write buffer inside SCM media. BPLRU tries to compensate LRU problem for sequential
writes by evicting blocks sequentially written prior to randomly written blocks. Rather, SCM-BP uses
a page-based replacement policy. In fact, the application of FAB and BPLRU to PCM media is quite
difficult, since PCM is byte-addressable.

LRU-WSR (LRU Write Sequence Reordering) [Jung et al. 2008] and its extension CCF-LRU (Cold-
Clean-First LRU) [Li et al. 2009] are based on LRU and Second Change algorithms. LRU-WSR evicts
clean and cold-dirty pages prior to hot-dirty pages. In this point, SCM-BP is similar to LRU-WSR.
CCF-LRU refines the LRU-WSR idea by distinguishing between cold-clean and hot-clean pages. The
problem with LRU-WSR and CCF-LRU is their cost-based evicting process that assumes directly
read-write asymmetry cost. Consequently, it is difficult to them decide if and when a cold-dirty page
should be evicted over a hot-clean page.

CFLRU (Clear-First LRU) [Park et al. 2006] and its extension CFDC (Clear-First Dirty-Clustered)
[Ou et al. 2009] are policies where clean pages are always selected to be evicted over dirty pages.
SCM-BP follows the same policy. Although, all of them use a two-region scheme, there are, however,
differences among them. CFLRU uses a clean region defined by a tuning parameter called windows
size (w) to be used in page eviction. The definition of w depends on read-write asymmetry of the
media and the intensity of the workload. Therefore, it is difficult to determine an optimal value for w.
CFDC address the clean region problem by creating two queues, one for clean pages and one for dirty
pages. This eliminates the cost for search a clean page in occasion of a buffer fault. Further, CFDC
clusters pages in dirty queue and maintain a priority queue of page clusters. This is an attempt to
deal with the locality and sequential access pattern and turns CFDC similar to FAB and BPLRU.
However, clusters have variable sizes. CFDC has a time complexity higher than LRU due to its
cluster’s prioritization formula. SCM-BP is simpler than CFDC, not too much time-dependent and
does not use directly read-write asymmetry as a component for its evicting decision.

To conclude this section, we summarize the discussion on SCM-oriented Policies with a qualitative
comparison, which is depicted in Table I. For that, we have applied the following criteria. Page-
based replacement indicates whether the policy uses a page as replacement unit and, therefore, it
may be applicable to other SCM media types than flash (e.g., PCM). Asymmetry level dependency
criterion means that a policy is dependent directly or indirectly on the specific-media asymmetry
factor. Policies that depend directly on a media-specific level of asymmetry are hard to tune when
they have to be applied to other SCM media type. Since most published policies are an extension of
LRU, the access pattern supported criterion indicates whether a policy handles both sequential and
random access patterns (see Section 3.1). The last criterion indicates that policies taking into account
operation types (read or write) and the execution frequency of such operations on the buffer pool are
more efficient to SCM media.

Table I: Summary of SCM replacement policies

Policies
Criteria FAB BPLRU LRUWSR CFLRU CFDC
Page-based replacement no no yes yes yes
Asymmetry level dependency indirectly indirectly directly directly indirectly
Access pattern supported sequential

and random
sequential
and random

random random sequential
and random

Operation types and their fre-
quencies taken into account

no no no no no

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

SCM-BP: An Intelligent Buffer Management Mechanism for Database in Storage Class Memory · 381

4. SCM-BP: A BUFFER MANAGEMENT TECHNIQUE FOR SCM IN DATABASE CONTEXT

The main characteristic of the SCM-BP is its ability to privilege write-intensive pages. Thus, SCM-BP
tries to keep in the buffer pages with the highest numbers of write operations. By doing so, SCM-BP
tends to issue a few number of write operations to SCM media and contributes, consequently, to a
better database performance w.r.t. SCM.

Figure 3 brings an abstract model of the buffer pool managed by SCM-BP. SCM-BP maintains two
regions in the buffer: read region and write region. The area allocated to each region is autonomously
and automatically adjusted by SCM-BP. Written pages are assigned to write region, whereas pages,
on which only read operations occurred, stay in read region. Whenever a page in read region has
to be modified, it is migrated to the write region. Such migration does not necessarily swap page
off the buffer, it is just a management issue. Nevertheless, a migration may trigger an increasing or
decreasing operation for a given region. If there is no free pages in a region, an increasing operation
may be executed for that region, whereas the other region size has to be decreased. In Section 4.1
such operations are described and analyzed.

Obviously, it is necessary to set up limits after which a region increasing should stop. Otherwise,
a given workload would monopolize all buffer resources. Read threshold (r-threshold) and write
threshold (w-threshold) are defined as database system parameters (see Figure 3). Therefore, r-
threshold and w-threshold determine a maximum value for region increasing. They can be modified
by the user, whenever the database system starts up. Read threshold and write threshold should be
set according to the behavior of the expected database workload (e.g., OLTP or OLAP). Internally,
SCM-BP always keeps the current size of each region.

Database Buffer

Read Region Write Region

Read
Threshold

Write
Threshold

Fig. 3: SCM-BP overview

Database Buffer

Read Region Write Region

Read
Threshold

Write
Threshold

(a) Increasing Write Region

Database Buffer

Read Region Write Region

Read
Threshold

Write
Threshold

(b) Increasing Read Region

Fig. 4: SCM-BP Technique

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

382 · Júlio A. Tavares et al.

4.1 SCM-BP’s Intelligent Behaviour

The proposed policy keeps a read-counter for read region and a write-counter for write region recording
the number of (read and write) operations happened in each region. The sum of read and write counters
provides the overall number of operations in the buffer. Additionally, the hit ratio for each region is
also maintained by SCM-BP.

For each page in the buffer pool, SCM-BP maintains two different data types. The first data
type, denoted the load-timestamp, has the semantic of capturing the moment in which a page has
been loaded to the buffer. The second data type, called operation-counter, registers the number of
operations executed on a given page in the buffer pool. Thus, whenever a page is loaded to the buffer,
its load-timestamp is recorded and the page goes to the read region. Every time a write or read
operation is executed on a given page, the page’s operation-counter is incremented and the read/
write-counter of the read/write region is also incremented.

Those counters and the load-timestamp provide the necessary support for identifying variations in
the DBMS workload over the time. More specifically, page counters along with region counters and
the (r-/w-)thresholds make possible to define the most appropriate time to increase or decrease a
region in order to react to workloads variations (read-intensive to write-intensive and vice-versa).

A parameter passed to SCM-BP (e.g., by the DBA) defines how much to increase write (or read)
region. Let us call it write-region increasing (wri) factor. Similarly, read-region increasing (rri) factor
indicates how much the read region size should be increased. Whenever a page has to be written, it
is migrated to the write region. Thus, SCM-BP tries to increase the write region and consequently to
decrease the read region (Figure 4a). SCM-BP has to deal with two different situations:

(1) If w-threshold is already reached. In this case, we cannot augment write region size then we
apply buffer replacement policy of the SCM-BP which evicts from write region a page whose write
counter is the lowest one;

(2) Case w-threshold has not been reached yet, SCM-BP will enlarge write region area. The wri
factor is applied and write region size is enlarged. Consequently, read region size is decremented.
This situation induces SCM-BP to remove pages from the read region. The victim page is chosen
in the read region by the LRU replacement algorithm. Clearly, we sacrifice a read page. However,
recall that a read operation in SCM media is normally two orders of magnitude faster than those
on magnetic disks and a write operation is even slower than those in magnetic disks [Ou et al.
2009]. Moreover, a write operation in SCM media is up to one order of magnitude slower than a
read operation.

Nonetheless, there is the case that SCM-BP may increment the read region and consequently shrink
write region (see Figure 4b). As already mentioned, a key issue implemented by SCM-BP is to privilege
written pages in order to keep them in main memory as long as possible. For that reason, the decision
to augment read region size should be based on the DBMS workload.

In this sense, SCM-BP implements a workload-sensitive function (for short, wsf) to decide to incre-
ment or not the read region. The intuition behind this function is the following: When the miss ratio
of read region raises up and at same time the number of write operations in the write region drops
down (or does not increase in a given time window), the function should be applied. It is important to
note that the higher the miss ratio in the read region, the lower the hit ratio and the higher swap-in
operation frequency. The return value provided by wsf is the quantitative indicator for augmenting
(or not) the read region.

Thus, wsf is defined by WSF (x, y) = x4/y9 where x is the swap-in frequency in the read region
observed in a period of time ∆t and y represents the write-operation frequency on pages located in the
write region (observed in the same ∆t). Figure 5 depicts the behavior of the implemented workload-

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

SCM-BP: An Intelligent Buffer Management Mechanism for Database in Storage Class Memory · 383

Fig. 5: Workload-sensitive function graph

sensitive function wsf. Observe that the curve slope of wsf guarantees that when read-region’s miss
ratio raises up in ∆t and the write frequency of write region drops down or not increase in ∆t, is an
indication of the need to enlarge read region. ∆t is the difference between current timestamp (decision
time) and the oldest load-timestamp of read region. In order to decide the moment to increment the
read region, SCM-BP implements the following criterion: whenever WSF (x, y) = 1 read region area
is incremented. The rri factor is thus applied and read region is enlarged. Such an operation may
trigger swap-out operations in write region. In this case, the SCM-BP’s replacement policy takes place
evicting pages with lowest write counters.

4.2 SCM-BP algorithms

In this section, the algorithms implemented by SCM-BP are detailed. There are three important
procedures in SCM-BP: (i) The read procedure (Algorithm 1) in which a page is read from the non-
volatile media and loaded into the buffer; (ii) The write procedure (Algorithm 2) in which a write
operation on a page located in the buffer pool is serviced, and; (iii) The adaptRegionSize procedure
regulates the region’s size (Algorithm 3).

Algorithm 1: read
Input: a request for a page p to be loaded into buffer
Output: the requested page p

1 begin
2 if buffer.lookup(pageID) then
3 updateBufferProfile();
4 return getPage(pageID);
5 else
6 if (WSF == 1) then
7 adaptRegionsSize(read region);

8 Fetch the requested page p from SCM media and store on buffer;
9 updateBufferProfile();

10 return getPage(pageID);

Read and write procedures may trigger the execution of adaptRegionSize. This may occur whenever
a decision on increasing the read or write region should be made (lines 6-7 of read procedure and line
3 of write procedure). For example, consider that a requested page p is not in buffer (read procedure -

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

384 · Júlio A. Tavares et al.

Algorithm 1). Thus, p has to be brought from SCM media to read region. This operation may trigger
a change of read-region’s size. For that, the workload-sensitive function WSF (x, y) is applied (lines
6-7 of Algorithm 1). Case WSF (x, y) = 1, the procedure adaptRegionSize is called.

The function updateBufferProfile (lines 3 and 9 of Algorithm 1 and line 5 of Algorithm 2) is re-
sponsible to maintain counters of the buffer manager. Therefore, for each read and write operation
on a page of the buffer pool, a call to updateBufferProfile is executed. For example, when an update
in-place happens in the buffer (line 4 of Algorithm 2), updateBufferProfile increments write counter
and the hit counter, case the requested page is already in buffer).

Algorithm 2: write
Input: a page p and data to be written on that page

1 begin
2 if buffer.lookup(pageID) == false then
3 adaptRegionsSize(write region);

4 Perform a buffer in− place update;
5 updateBufferProfile(pageID);

The adaptRegionSize procedure is applied to each region. First, we verify whether the actual region
size plus the region increment factor (rri or wri) exceeds the region’s threshold (r-/w-threshold)
(line 3 for write region and line 10 for read region). If this check evaluates to true then some page
replacement policy is applied. For example, if write region size has to be adjusted, we may apply
LRU or SCM-BP policy depending on verification evaluation. If read region is to be shrunk, LRU
is applied on it (line 4 of Algorithm 3). Otherwise, if we cannot enlarge write region SCM-BP takes
place (line 8 of Algorithm 3). Similar reasoning is used for read region (lines 9-15 of Algorithm 3). In
both cases, region’s size is adjusted accordingly (lines 5-6 and 12-13 of Algortihm 3).

Algorithm 3: adaptRegionsSize
Input: a request to adapt the buffer regions size in a region r

1 begin
2 if (r == write region) then
3 if (wr.actualSize + wri <= wr.w − threshold) then
4 apply LRU policy to read region;
5 wr.actualSize←− wr.actualSize + wri;
6 rr.actualSize←− rr.actualSize− wri;
7 else
8 apply SCM −BP policy to write region;

9 if (r == read region) then
10 if (rr.actualSize + rri <= rr.r − threshold) then
11 apply SCM −BP policy to write region;
12 rr.actualSize←− rr.actualSize + rri;
13 wr.actualSize←− wr.actualSize− rri;
14 else
15 apply LRU policy to read region;

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

SCM-BP: An Intelligent Buffer Management Mechanism for Database in Storage Class Memory · 385

5. EVALUATION

In order to make an assessment of our proposal, we have performed some empirical tests on SCM-
BP. As comparative evaluation, we have also implemented LRU policy and submit both to the same
workload measuring the performance in terms of hit ratio, number of write operations performed into
media, and the average write time. The number of write operations makes possible to evaluate the
SCM-awareness of the buffer management policy.

We have generated two sets of workloads to the buffer manager. A set containing sequences of
random operations (read and write) and another on encompassing mixed sequences of random and
sequential operations. For each random sequence, we varied the number of read and write operations:
20% writes (respectively 80% reads), 40% writes (resp. 60% reads), 50% writes (50% reads), 60%
writes (40% reads), and 80% writes (20% reads).

The database size used was also specified. We have experimented database sizes (db size) with
40,000, 80,000, and 120,000 pages. Each sequence of operations was applied to each db size tested.
The buffer size, in terms of number of pages, has been set to a constant value of 4,000 pages. The
decision to test with a very small buffer size is to stress the limits of both LRU and SCM-BP policies.

The experiments have been carried out with an Intel Pentium Quad Core 1.83 GHz server machine
using a 64-bit Linux operating system. This machine has a 4-Gbytes main (RAM) memory. Since we
aim at empirically evaluating buffer techniques and SCM drives from a database point of view, we
have run experiments with the operating system and the database files stored on an SSD drive. The
used SSD drive has been a Corsair Force 2.5’ SSD drive with 120 Gbytes attached to server machine
through SATA II interface. Each test has been run three times and we have plotted the average value
gathered. The experiments have been implemented as an external layer to a DBMS.

In Figure 6, we vary the database size and gather the hit ratio for each size for LRU and SCM-BP
policies. As depicted in Figure 6, SCM-BP presents a hit ratio close to LRU. This means that SCM-
BP is quite successful to detect and keep hot pages (whether read or written pages) into the buffer.
Figure 6 also shows an accentuate decreasing of hit ratios. This is an expected tendency because with
40,000 pages we have a buffer size of 10% of db size, and, hit ratios reach values close to 10%. When
db sizes increase, buffer size becomes too small w.r.t db size (e.g., for 120,000 db pages, buffer size is
approximately 3% of db size) and hit ratios drop down accordingly.

It is well know that write operations executed on SCM media may jeopardize system performance,
due to read/write asymmetry, and shorten SCM life time. Therefore, SCM-awareness has been studied
and its results are depicted in Figure 7. Again, we vary the database size and as we can see, SCM-BP
enables a number of write operations far fewer than that of LRU. Two extreme workloads (20% write
and 80% write) favour respectively LRU and SCM-BP due to own nature of policies. Nevertheless,
in a workload clearly favourable to LRU (20% write), for a db size of 120,000 pages, LRU reaches 42
write operations whereas SCM-BP has only 23 write operations (i.e., almost 55% fewer). However,
these workloads are not common in practice. Thus, other workloads have been also evaluated (see
Figure 7). For such workloads, the ratio between write operations executed on the SCM when using
LRU and write operations when using SCM-BP varies from 70% (in 40% write workload) to 80%
(in 60% write workload). Accordingly, a DBMS running on an SCM and implementing LRU-based
replacement policy may negatively impact the system performance and may shorten SCM life time.
SCM-BP, in turn, contributes to a better performance of the DBMS and may increase the life time of
an SCM drive. Thus, taking into account the number of write operations makes the proposed buffer
management strategy SCM-aware (see Table II).

The effect of sequential access patterns in the tested buffer replacement policies has been investigated
as well. In Figure 8, we have plotted the results for hit ratio (Figure 8a) and the number of write
operations (Figure 8b) for a workload with 40% of write operations. The other workloads have been
omitted because they presented similar results.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

386 · Júlio A. Tavares et al.

40000 80000 120000

Database Size (# pages)

0,10

H
it

 R
a
ti

o
 (

lo
g
 s

ca
le

)

LRU-20%WRITE SCM-BP-20%WRITE

(a) 20% Write Workload

40000 80000 120000

Database Size (# pages)

0,10

H
it

 R
a
ti

o
 (

lo
g
 s

ca
le

)

LRU-40%WRITE SCM-BP-40%WRITE

(b) 40% Write Workload

40000 80000 120000

Database Size (# pages)

0,10

H
it

 R
a
ti

o
 (

lo
g
 s

ca
le

)

LRU-50%WRITE SCM-BP-50%WRITE

(c) 50% Write Workload

40000 80000 120000

Database Size (# pages)

0,10
H

it
 R

a
ti

o
 (

lo
g
 s

ca
le

)
LRU-60%WRITE SCM-BP-60%WRITE

(d) 60% Write Workload

40000 80000 120000

Database Size (# pages)

0,10

H
it

 R
a
ti

o
 (

lo
g
 s

ca
le

)

LRU-80%WRITE SCM-BP-80%WRITE

(e) 80% Write Workload

Fig. 6: Comparative study of hit ratio – random access pattern

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

SCM-BP: An Intelligent Buffer Management Mechanism for Database in Storage Class Memory · 387

40000 80000 120000

Database Size (# pages) log scale

10

100

#
 W

ri
te

 O
p
e
ra

ti
o
n
s

(l
o
g
 s

ca
le

)

LRU-20%WRITE SCM-BP-20%WRITE

(a) 20% Write Workload

40000 80000 120000

Database Size (# pages) log scale

10

100

#
 W

ri
te

 O
p
e
ra

ti
o
n
s

(l
o
g
 s

ca
le

)

LRU-40%WRITE SCM-BP-40%WRITE

(b) 40% Write Workload

40000 80000 120000

Database Size (# pages) log scale

10

100

#
 W

ri
te

 O
p
e
ra

ti
o
n
s

(l
o
g
 s

ca
le

)

LRU-50%WRITE SCM-BP-50%WRITE

(c) 50% Write Workload

40000 80000 120000

Database Size (# pages) log scale

10

100

#
 W

ri
te

 O
p
e
ra

ti
o
n
s

(l
o
g
 s

ca
le

)
LRU-60%WRITE SCM-BP-60%WRITE

(d) 60% Write Workload

40000 80000 120000

Database Size (# pages) log scale

10

100

#
 W

ri
te

 O
p
e
ra

ti
o
n
s

(l
o
g
 s

ca
le

)

LRU-80%WRITE SCM-BP-80%WRITE

(e) 80% Write Workload

Fig. 7: Comparative study of write operations – random access pattern

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

388 · Júlio A. Tavares et al.

Table II: SCM-BP and other SCM replacement policies

Policies
Criteria FAB BPLRU LRUWSR CFLRU CFDC SCM-BP
Page-based replacement no no yes yes yes yes
Asymmetry level depen-
dency

indirectly indirectly directly directly indirectly indirectly

Access pattern supported sequential
and
random

sequential
and
random

random random sequential
and
random

sequential
and
random

Operation types and
their frequencies taken
into account

no no no no no yes

40000 80000 120000

Database Size (# pages)

0,1

H
it

R
at

io
 (

lo
g

sc
al

e)

LRU-40%WRITE SCM-BP-40%WRITE

Hit Ratios

(a) Hit ratios for SCM-BP and LRU

40000 80000 120000

Database Size (# pages)

100

#
 W

rit
e

O
pe

ra
tio

ns
 (

lo
g

sc
al

e)

LRU-40%WRITE SCM-BP-40%WRITE

Write Operations

(b) # of write operations for SCM-BP and LRU

Fig. 8: Comparative study of sequential access patterns – Hit Ratio and Write Operations

Looking more closely to Figures 8a and 8b, one can observe that SCM-BP has shown a slightly worse
hit ratio w.r.t. the LRU hit ratio, on average SCM-BP’s hit ratio is 10% lesser. However, the number
of write operations of SCM-BP varies from 178% (db size = 120,000) to 300% (db size = 40,000) less
than that of LRU. This means that while SCM-BP is more sensitive to workload presenting sequential
access patterns w.r.t. hit ratio, it handles better write operations in face of such patterns.

6. CONCLUSIONS AND FUTURE WORK

In this article, we have proposed a SCM-aware buffer replacement strategy called SCM-BP. We have
also executed comparative tests to investigate SCM-BP performance against that of well-known LRU
policy in SCM media.

SCM-BP presents a hit ration close to that of LRU indicating the efficiency of our approach.
Furthermore, SCM-BP outperforms LRU by keeping a greater number of written pages (hot dirty
pages) in memory buffer whether when random operations take place or in face of sequential access
patterns. By dealing with better write operations, SCM-BP enables a longer mean life for SCM media.

In near future, we plan improve SCM-BP to reach even better hit ratios in the presence of sequential
patterns. Another improvement is to define a way to autonomously and dynamically adapt database
parameters (e.g. read and write thresholds – r-threshold and w-threshold – and the increasing rate of
read and write regions – rri and wri) when a workload varies over the time. Extending comparative
evaluation w.r.t. SCM-oriented Policies is also planned. Nevertheless, we intend to implement SCM-
BP in PostgreSql.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

SCM-BP: An Intelligent Buffer Management Mechanism for Database in Storage Class Memory · 389

Some authors advocate that quite often OLTP databases can fit within main memory [Harizopoulos
et al. 2008]. Of course, such a feature reduces the impact of the buffer management component on
DBMS performance. Nonetheless, we claim that this is not the case of OLTPs running on very large
databases. Furthermore, for main memory databases, at least the log file has to reside in non-volatile
memory and the recovery process may take too much time, which is not reasonable for many OLTP
applications at all.

Finally, as a long-term extension to our work, we should investigate the influence of SCM-BP policy
in logging techniques and database recovery process [Fang et al. 2011].

REFERENCES

Corbato, F. J. A Paging Experiment with the Multics System. In Festschrift: In Honor of P. M. Morse. MIT Press,
USA, pp. 217–228, 1969.

Fang, R., Hsiao, H.-I., He, B., Mohan, C., and Wang, Y. High Performance Database Logging using Storage
Class Memory. In Proceeding of the IEEE International Conference on Data Engineering. Hannover, Germany, pp.
1221–1231, 2011.

Harizopoulos, S., Abadi, D. J., Madden, S., and Stonebraker, M. OLTP through the Looking Glass, and
What We Found There. In Proceedings of the ACM SIGMOD International Conference on Management of Data.
Vancouver, Canada, pp. 981–992, 2008.

Jo, H., Kang, J.-U., Park, S.-Y., Kim, J.-S., and Lee, J. FAB: flash-aware buffer management policy for portable
media players. IEEE Transactions on Consumer Electronics 52 (2): 485–493, 2006.

Jung, H., Shim, H., Park, S., Kang, S., and Cha, J. LRU-WSR: integration of lru and writes sequence reordering
for flash memory. IEEE Transactions on Consumer Electronics 54 (3): 1215–1223, 2008.

Kim, H. and Ahn, S. BPLRU: a buffer management scheme for improving random writes in flash storage. In
Proceedings of the USENIX Conference on File and Storage Technologies. San Jose, California, pp. 16:1–16:14, 2008.

Kim, K. and Koh, G.-H. Future Memory Technology Including Emerging New Memories. In Proceedings of the IEEE
International Conference on Microelectronics. Awaji, Japan, pp. 377–384, 2004.

Li, Z., Jin, P., Su, X., Cui, K., and Yue, L. CCF-LRU: a new buffer replacement algorithm for flash memory. IEEE
Transactions on Consumer Electronics 55 (3): 1351–1359, 2009.

Mielke, N., Marquart, T., Kessenich, J., Belgal, H., Schares, E., Trivedi, F., Goodness, E., and Nevill,
L. R. Bit Error Rate in NAND Flash Memories. In Proceedings of the IEEE International Reliability Physics
Symposium. Phoenix, AZ, USA, pp. 9–19, 2008.

Ou, Y., Härder, T., and Jin, P. CFDC: a flash-aware replacement policy for database buffer management. In
Proceedings of the International Workshop on Data Management on New Hardware. Providence, Rhode Island, pp.
15–20, 2009.

Park, S.-y., Jung, D., Kang, J.-u., Kim, J.-s., and Lee, J. CFLRU: a replacement algorithm for flash memory. In
Proceedings of the International Conference on Compilers, Architecture and Synthesis for Embedded Systems. Seoul,
Korea, pp. 234–241, 2006.

Tanenbaum, A. S. Modern Operating Systems. Prentice Hall Press, Upper Saddle River, NJ, USA, 2007.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

