
Metamodeling the Enhanced Entity-Relationship Model

Robson N. Fidalgo1, Edson Alves1, Sergio España2, Jaelson Castro1, Oscar Pastor2

1 Center for Informatics, Federal University of Pernambuco, Recife(PE), Brazil
{rdnf, eas4, jbc}@cin.ufpe.br

2 Centro de Investigación ProS, Universitat Politècnica de València, València, España
{sergio.espana,opastor}@pros.upv.es

Abstract. A metamodel provides an abstract syntax to distinguish between valid and invalid models. That is,
a metamodel is as useful for a modeling language as a grammar is for a programming language. In this context,
although the Enhanced Entity-Relationship (EER) Model is the ”de facto” standard modeling language for database
conceptual design, to the best of our knowledge, there are only two proposals of EER metamodels, which do not provide
a full support to Chen’s notation. Furthermore, neither a discussion about the engineering used for specifying these
metamodels is presented nor a comparative analysis among them is made. With the aim at overcoming these drawbacks,
we show a detailed and practical view of how to formalize the EER Model by means of a metamodel that (i) covers
all elements of the Chen’s notation, (ii) defines well-formedness rules needed for creating syntactically correct EER
schemas, and (iii) can be used as a starting point to create Computer Aided Software Engineering (CASE) tools for
EER modeling, interchange metadata among these tools, perform automatic SQL/DDL code generation, and/or extend
(or reuse part of) the EER Model. In order to show the feasibility, expressiveness, and usefulness of our metamodel
(named EERMM), we have developed a CASE tool (named EERCASE), which has been tested with a practical example
that covers all EER constructors, confirming that our metamodel is feasible, useful, more expressive than related ones
and correctly defined. Moreover, we analyze our work against the related ones and present our final remarks.

Categories and Subject Descriptors: H.2.3 [Database Management]: Data description languages

Keywords: enhanced entity-relationship model, metamodel

1. INTRODUCTION

Modeling languages are used to create models that aim to raise the level of abstraction and hide
implementation details. In order to prevent invalid models, the syntax of a modeling language must
define well-formedness rules that specify what a valid model is. In this context, it is important to
highlight that the abstract syntax of a modeling language is formalized by means of a metamodel,
which also serves as a basis to interchange models with other tools. For this reason, the word ”meta”
is used because the modeling language specification is one level higher than the usual models. In its
simplest form, we can say that a metamodel is a conceptual model of a modeling language. That is,
it describes the concepts of a modeling language, their properties and the legal connections between
language elements. Therefore, metamodels are mandatory and important artifacts in the specification
of modeling languages. In other words, metamodels are basic entities for model designers and tool
developers, because they precisely define how tools and models should work together [Kelly and
Tolvanen 2008].

The Enhanced Entity-Relationship (EER) Model [Chen 1976] is one of the most used modeling
languages for the conceptual design of database, that is: (i) many research proposals use the EER
notation [Bollati et al. 2012; Amalfi et al. 2011; Badia and Lemire 2011; Motta and Pignatelli 2011;
Calì et al. 2010; Franceschet et al. 2009; Karanikolas and Vassilakopoulos 2009; Xu et al. 2010; Zhang

Copyright c©2013 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013, Pages 406–420.

Metamodeling the Enhanced Entity-Relationship Model · 407

et al. 2008; Combi et al. 2008]; (ii) there are a numerous Computer Aided Software Engineering
(CASE) tools that aim to support EER modeling (e.g., EER/Studio XE2, PowerDesigner, ERWin
and SmartDraw); (iii) most computer science university curricula includes it [ACM/IEEE 2008], and
(iv) most database textbooks [Elmasri and Navathe 2010; Silberschatz et al. 2010; Connolly and Begg
2009; Garcia-Molina et al. 2008] dedicate one or more chapters to present it. However, to the best
of our knowledge, there are no metamodels that provide full support to Chen’s notation (including
its extensions – cf. Fig.1). In this context, since (i) a metamodel is like a grammar for a modeling
language, (ii) the EER Model is the “de facto” standard for database conceptual modeling, and (iii)
there is no EER metamodel that effectively covers all constructors of the Chen’s notation (the most
used EER notation), we argue that the specification of an EER metamodel is as useful for the Database
community as the specification of the UML metamodel is for the Software Engineering community.

Aiming to overcome the previous shortcoming, in this article, we present a detailed and practical
view of how to formalize the EER Model by means of a metamodel that (i) supports all constructors of
Chen’s notation, (ii) defines well-formedness rules that prevent the designing of invalid EER schemas,
and (iii) can be used as a starting point to (a) create EER CASE tools, (b) interchange metadata
among these tools, (c) allow automatic SQL/DDL code generation, and/or (d) extend (or reuse part
of) the EER Model to address new features (e.g. spatial and/or temporal modeling).

The remainder of this article is organized as follows. In Section 2 we briefly describe the main
modeling languages for the conceptual design of databases. Following, in Section 3 we discuss related
work. After that, in Section 4, we present how our metamodel was defined, its well-formedness rules
and a comparative analysis between our work and the most important ones. In turn, in Section 5 we
show a general idea of how our metamodel has been used to build an EER CASE tool and, using this
tool, we model a practical example covering all EER constructors. Finally, in Section 6 we provide
some conclusions and indications of future works.

2. MODELING LANGUAGES FOR CONCEPTUAL DESIGN OF DATABASES

There are many notations that can be used for the conceptual design of database [Song et al. 1995].
Some of them allow binary relationships at most and for this reason are known as binary notations,
while others allow n-ary relationships and are known as n-ary notations. In general, most CASE tools
use binary notations. However, these notations (i) do not allow attributes in relationships – which
does not seem natural, because relationships can have descriptive properties and (ii) do not allow
relationships among three or more entities – which is also inconvenient, because some relationships
are intrinsically n-ary and, although there are transformations from an n-ary relationship to n-binary
relationships, the result often has different semantics unless accompanied by integrity constraints
[Hartmann 2003; Jones and Song 1996; Song et al. 1995]. For these reasons, n-ary notations are
semantic and conceptually more expressive than binary notations [Song et al. 1995], and are more
often used in academia. Regardless of the notation used, there are two different conventions to refer
the place where roles, cardinalities, and participations are specified on a relationship, namely “look-
across” (i.e., opposite-side of entity) and “look-here” (i.e., same-side of entity) [Hartmann 2003] [Song
et al. 1995].

Among the notations for the conceptual design of a database, the EERModel and the Class Diagram
(CD) of the Unified Modeling Language (UML) [Rumbaugh et al. 2004] are the most used. Recently,
three research studies [Lucia et al. 2008] [Lucia et al. 2010] [Bavota et al. 2011] perform comparisons
between the EER Model and the CD and report interesting results. Lucia et al. [2008] and Lucia
et al. [2010] suggest that the CD notation is generally more comprehensible than the EER notation.
However, Bavota et al. [2011] conclude that the understanding of EER Model is significantly higher
than CD if “composite attribute”, “multi-value attribute”, and “weak entity” are required in a given
modeling. We point out that the authors have still not taken into account constructions such as
“associative entities”, “attributes in relationships”, and the “inaccuracy of look-across notations (such

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

408 · Robson N. Fidalgo et al

as CD)” that does not effectively represent the semantics of participation constraint on relationships
with degree higher than two [Hartmann 2003; Dullea et al. 2003; Song et al. 1995]. Therefore some
important EER constructors still need to be evaluated. We expect that, if an assessment is performed
taking in account the full set of constructors, more advantages to the EER Model are revealed. To
summarize this discussion, we think that any comparison between the EER Model and the CD can
provide results to debate and arguing and the choice for a particular notation rather than other is a
matter of preference or project contingency.

As our work is based on the EER Model, in Fig. 1, we show its constructors according to the
Elmasri-Navathe’s notation [Elmasri and Navathe 2010]. We choose this notation because it is very
close to the original Chen, is widely used in database courses and is well accepted by the database
community [Song and Chen 2009]. Fig. 1 presents all components of EER Model according to the
Elmasri-Navathe’s notation. Since Category is a useful concept, but it is not supported by any other
notation, in order to be self-contained, we present an overview of this constructor and explain the
difference between Category and Multiple Inheritance. Thus, a Category represents a collection of
instances that is a subset of (partial Category) or the union of (total Category) distinct entities. Note
that a category should have, at least, two super-entities. That is, unlike a Multiple Inheritance, an
instance of a Category belongs to one, not all, of the super-entities. We point out that Elmasri-
Navathe’s notation is n-ary, uses look-here for specifying roles and participations and look-across for
specifying cardinalities [Elmasri and Navathe 2010].

3. RELATED WORK

Despite the weaknesses of CD (cf. Section 2), many UML vendors have expressed a desire to use CD
for data modeling and ended up defining their own tool-specific profiles for each. As a result, there is
neither an accepted standard nor interoperability of models developed using such profiles/tools [OMG
2003]. Aiming at overcoming such limitation, the Object Management Group (OMG) is revising its
specification named Common Warehouse Metamodel (CWM) [OMG 2001] in order to provide more
normative metamodels (including a metamodel for the EER Model) called Information Management
Metamodel (IMM) [OMG 2009]. We show in Fig. 2 (based on OMG [2001]) and Fig. 3 (based on
OMG [2009]) the EER metamodels of CWM and IMM, respectively.

Fig. 1. Constructors of the EER Model according to the Elmasri-Navathe’s notation

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

Metamodeling the Enhanced Entity-Relationship Model · 409

In Fig. 2, the CWM metamodel extends the UML metamodel and specifies the metaclasses for the
main concepts of the EER Model (i.e., Entity, Relationship and Attribute). Considering the EER
constructors shown in Fig. 1, it can be noted that the CWM metamodel neither includes metaclasses
nor meta-attributes for Weak Entity/Relationship, Composite Attribute, Discriminator Attribute, and
Category. Furthermore, it is worth emphasizing that the constructors Associative Entity, Multi-valued
Attribute, Derived Attribute, and Relationship with Attribute, although not directly represented in
Fig.2, can be mapped using the UML notation. That is: (i) an Associative Entity can be represented
as an Association Class; (ii) a Multi-valued Attribute can be represented using brackets “[]”; (iii) a
Derived Attribute can be represented using a leading slash “/”, and (iv) an Attribute on Relationship
can also be represented using an Association Class.

The other constructors/constructions of the EER Model, namely Unary Relationship, Relationship
Cardinality, Relationship Participation, N-ary Relationship, Role, Single Inheritance, Multiple Inher-
itance, Total/Partial Inheritance, and Disjoint/Overlap Inheritance, even though not represented in
Fig. 2, they can also be captured by CWM, since these constructors/constructions are defined in the
UML metamodel. It is important to highlight that the CD is a general purpose language. Therefore
an extension of the UML metamodel for database design requires the definition of some restrictions in
Object Constraint Language (OCL) to suppress UML elements that are out of database context (i.e.,
unnecessary elements that can introduce errors) and assure well-formedness rules. However, no OCL
constraint is specified in the EER metamodel of CWM, which is an important limitation. Further-
more, the CWM metamodel defines the ForeignKey metaclass, which is a constructor for relational
database modeling. That is, this is another negative point, because this metaclass is not a constructor
of the EER Model.

The EER metamodel of IMM (see Fig. 3), unlike the CWM metamodel, neither extends UML
metaclasses for specifying its metamodel nor mixes EER constructors with relational database ones.
However, also taking into account the EER constructors presented in Fig. 1, the IMM does not
specify metaclasses, meta-attributes, or constructions for Associative Entity, Category, Discriminator
Attribute, Composite Attribute, Multi-valued Attribute, Attribute on Relationship, Specialization

Fig. 2. The EER metamodel of CWM

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

410 · Robson N. Fidalgo et al

Fig. 3. The EER metamodel of IMM

Relationship, and Multiple Inheritance. Therefore, there is still no metamodel that provides a full
support to Chen’s notation.

4. METAMODELING THE EER MODEL

The EER Model is a node-link diagram [Irani et al. 2001; Ware and Bobrow 2004], where nodes rep-
resent Entities, Associative Entities, Attributes, Relationships, Inheritances, and Categories, whereas
links denote Attribute Link, Relationship Link, Generalization Link, and Specialization Link (see the
bottom of Fig. 4). Then, with the node-link abstraction and the EER notation in mind, a conceptual
view of our metamodel, named Enhanced Entity-Relationship MetaModel (EERMM), is presented in
Fig 4 (see the top).

According to Fig.4, our metamodel has three main meta-entities: Schema, Node, and Link. Schema
is the root meta-entity that corresponds to the drawing area of an EER schema. For this reason,
Schema can have many instances of Node and many instances of Link, which cannot exist (total
participation) without a Schema. Besides the main meta-entities, our metamodel has three specialized
meta-entities for Node: Element, Inheritance, and Category, which cover the main constructors of the
EER Model.

The Element meta-entity has a meta-attribute called name (i.e., a label) and it is specialized in
three meta-entities: Entity, Relationship, and Attribute, which are used to capture concepts of the real
world, how these concepts are related to each other, and the properties of these concepts/relations,
respectively. Note that (i) the Entity meta-entity has a meta-attribute called is_Weak that is a
Boolean value (i.e., is_Weak = “True” defines a weak entity and is_Weak = “False” defines a regular
entity); (ii) the Relationship meta-entity has a meta-attribute called is_Identifier that is also a Boolean
value (i.e., is_Identifier = “True” defines an identifying relationship and is_Identifier = “False” defines
a regular relationship); (iii) the Attribute meta-entity has a meta-attribute called type that specifies
whether an instance of Attribute is “common”, “identifier”, “discriminator”, “derived” or “multivalued”,
exclusively; and (iv) the Associative_Entity meta-entity is both an Entity and a Relationship (i.e., it
is a specialization of these meta-entities).

In the sequence, the Inheritance meta-entity captures the “inheritance” concept and has the dis-
jointness meta-attribute, which defines whether an inheritance is mutually exclusive (“disjoint”) or
not (“overlap”). Finally, the Category meta-entity captures the “category” concept (also called “union
type”). Note that, by definition [Elmasri and Navathe 2010], a category is disjoint. Then, in our
metamodel we do not model the disjointness meta-attribute for a category.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

Metamodeling the Enhanced Entity-Relationship Model · 411

Fig. 4. Conceptual view of our metamodel

Besides the Node meta-entities, our metamodel has five specialized meta-entities for Link, namely
Attribute_Link, Relationship_Link, Specialization_Link, Generalization_Link, and Direct_Inheritance_Link,
which address the links for an attribute, a relationship, a specialization, a generalization, and a direct
inheritance, respectively. These meta-entities are presented as follow:

The Attribute_Link meta-entity has a source relationship with the Element meta-entity such that an
instance of Attribute_Link has only one instance of Element as source, but an instance of Element can
be source for many instances of Attribute_Link. Furthermore, the Attribute_Link meta-entity has a
target relationship with the Attribute meta-entity such that an instance of Attribute_Link has only
one instance of Attribute as target and an instance of Attribute can be target for only one instance of

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

412 · Robson N. Fidalgo et al

Attribute_Link. That is, an instance of Element can be source for many instances of Attribute_Link
(i.e., many attributes on entities, many attributes on relationships and many composite attributes),
but an instance of Attribute can be target for only one instance of Attribute_Link (i.e., an Attribute
cannot be linked with more than one Element). In order to clarify this discussion, in Fig.5 we focus on
the Attribute_Link (depicted in thick line) and, in this figure, we present the part of our metamodel
that addresses this type of link and a fragment of an EER schema with its occurrence diagram
illustrating the cardinalities of source and target relationships.

The Relationship_Link meta-entity also has a source relationship with the Entity meta-entity.
In this relationship an instance of Relationship_Link has only one instance of Entity as source,
but an instance of Entity can be source for many instances of Relationship_Link. Moreover, the
Relationship_Link meta-entity has a target relationship with the Relationship meta-entity so that an
instance of Relationship_Link has only one instance of Relationship as target. However, an instance
of Relationship can be target for many instances of Relationship_Link. That is, an instance of
Relationship_Link connects one instance of Entity with one instance of Relationship, but an instance
of Entity or an instance of Relationship can be connected to many instances of Relationship_Link
(i.e., an entity can be linked to many relationships and a relationship can be n-ary). Furthermore, the
Relationship_Link meta-entity has three meta-attributes: (i) participation – it determines whether
all (i.e., “total”) or only some (i.e., “partial”) instances of an entity will participate in the relationship;
(ii) cardinality – it specifies whether the maximum number of instances of an entity in a relationship
is “one” or “many”; and (iii) role – it is a text that can be used to describe the function of an entity
in a relationship. In Fig. 6 we focus on Relationship_Link (depicted in thick line). In this figure we
show the part of our metamodel that cover the Relationship_Link meta-entity, as well as a piece of
an EER schema and its occurrence diagram that exemplify the cardinalities of the source and target
relationships.

Other meta-entity of our metamodel is Specialization_Link. This meta-entity has the role meta-
attribute that corresponds to a text for describing the function of a sub-entity in a specialization.
Specialization_Link is specialized in two meta-entities: Inheritance_SL (Inheritance Specialization
Link) and Category_SL (Category Specialization Link), which are used to define a specialization
link between a sub-entity and an inheritance or between a sub-entity and a category, respectively.
Note that: (i) an instance of Inheritance_SL or Category_SL has only one instance of Entity as
source. However, while an instance of Entity can be source for many instances of Inheritance_SL
(i.e., a sub-entity can be a specialization of many inheritances – a multiple inheritance), an instance

Fig. 5. An example of Attribute_Linkl

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

Metamodeling the Enhanced Entity-Relationship Model · 413

of Entity can be source for only one instance of Category_SL (i.e., a sub-entity can be a specialization
of only one category) and (ii) an instance of Inheritance_SL or Category_SL has only one instance of
Inheritance or Category as target, respectively. Nevertheless, although an instance of Inheritance can
be target for many instances of Inheritance_SL (i.e., a simple inheritance with many sub-entities), an
instance of Category, by definition [Elmasri and Navathe 2010], can be target for only one instance of
Category_SL (i.e., a category can only have one sub-entity).

Similarly to the Specialization_Link, the Generalization_Link meta-entity has also the role meta-
attribute corresponding to a text that can be used to describe the function of a super-entity in a
generalization. Furthermore, Generalization_Link has the completeness meta-attribute, which speci-
fies whether the generalization is completely defined (“total”) or not (“partial”). Generalization_Link is
specialized in two meta-entities: Inheritance_GL (Inheritance Generalization Link) and Category_GL
(Category Generalization Link), which are used to define a generalization link between a super-entity
and an inheritance, or between a super-entity and a category, respectively. Note that: (i) an instance
of Inheritance_GL or Category_GL has only one instance of Entity as source, but an instance of En-
tity can be source for many instances of Inheritance_GL (i.e., a super-entity can be a generalization
of many inheritances) or Category_GL (i.e., a super-entity can take part of many categories) and (ii)
an instance of Inheritance_GL or Category_GL has only one instance of Inheritance or Category as
target, respectively. However, while an instance of Inheritance can be target for only one instance of
Inheritance_GL (i.e., an inheritance can have only one super-entity), an instance of Category can be
target for many instance of Category_GL (i.e., a category can have many super-entities. Actually, it
must have at least two super-entities). Similar to the last two figures, in Fig. 7 we exhibit a fraction
of our metamodel and a piece of an EER schema with its four occurrence diagrams that illustrate
the cardinalities of the source and target relationships. In Fig. 7 we are focusing on Inheritance_SL,
Category_SL, Inheritance_GL and Category_GL (depicted in thick lines and using different colors).

Differently to the Inheritance_SL and the Inheritance_GL, the Direct_Inheritance_Link meta-
entity connects two entities without using an inheritance node. A Direct_Inheritance_Link is impor-
tant, because sometimes it is necessary to model a multiple inheritance such that a sub-entity directly
inherits from two or more super-entities or model an inheritance with only one sub-entity. Note that,
in both cases it is a mistake to define the disjointness and completeness properties of an inheritance
with only one sub-entity. For this reason, a Direct_Inheritance_Link does not have these properties.
Concerning the source and target relationships, the Direct_Inheritance_Link meta-entity has a source
relationship with the Entity meta-entity such that an instance of Direct_Inheritance_Link has only
one instance of Entity as source and an instance of Entity can be source for only one instance of Di-

Fig. 6. A example of Relationship_Link

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

414 · Robson N. Fidalgo et al

Fig. 7. A example of Inheritance_SL, Category_SL, Inheritance_GL and Category_GL

rect_Inheritance_Link. That is, an Entity (super-entity) can have only one Direct_Inheritance_Link,
and a Direct_Inheritance_Link can be connected with only one super-entity. This Well-Formedness
rule is important because two or more Direct_Inheritance_Link, at the same super-entity, can be
modeled (without semantic loss) using a disjoint or overlap inheritance. Therefore in order to avoid
this modeling redundancy, our metamodel only allows one Direct_Inheritance_Link by super-entity.
Furthermore, the Direct_Inheritance_Link meta-entity also has a target relationship with the Entity
meta-entity. In this relationship, an instance of Direct_Inheritance_Link has only one instance of En-
tity as target, but an instance of Entity can be target for many instance of Direct_Inheritance_Link
(i.e., a multiple inheritance). At last, a Direct_Inheritance_Link also has the role meta-attribute.
Similar to the last three figures, in Fig. 8 we show a fragment of our metamodel and a piece an
EER schema and its occurrence diagram that illustrate the cardinalities of the source and target
relationships. In the Fig. 8 we are focusing on Direct_Inheritance_Link (depicted in thick line).

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

Metamodeling the Enhanced Entity-Relationship Model · 415

Fig. 8. A example of Direct_Inheritance_Link

Finally, note that a Link cannot exist without a Node (total participation), but a Node can be
instantiated without a connection to a Link (partial participation), because we understand that a de-
signer first models nodes and after models links to connected the nodes. Furthermore, all inheritances
are disjoint (mutually exclusive) and total (completely defined), and all meta-attributes, except the
role meta-attribute, are mandatory. In the next section, we present the main well-formedness rules
that are automatically supported by our metamodel.

4.1 Well-Formedness Rules

A metamodel (or abstract syntax) of a modeling language describes the concepts, the relationships
between them, and the structuring rules that constrain the combination of these concepts according
to the domain rules of a modeling language. That is, a metamodel is useful to provide a precise
definition of all modeling concepts and the well-formedness rules needed for creating syntactically
correct models [Kelly and Tolvanen 2008]. In this context, we enumerate the main well-formedness
rules that are intrinsically assured by our metamodel. That is, these well-formedness rules are directly
derived from our metamodel and, for this reason, they can be checked against it (the same way as
when it is necessary to check whether a model provides support to assure business rules).

(1) A Node cannot be connected to another Node without a Link, and vice-versa. That is, neither a
node can be directly connected to other nodes nor a link can be directly connected to other links;

(2) A Link cannot be created without a Node as a source and another as a target. That is, a Link
cannot be depicted isolated in the drawing area;

(3) A Relationship_Link neither can connect an Entity to others nor a Relationship to others. That
is, Relationship_Link cannot exist among entities or among relationships;

(4) An Inheritance or a Category cannot have an Attribute and an Attribute cannot be linked to
more than one Element. That is, an Attribute only belongs to an Entity, an Associative_Entity,
a Relationship or another Attribute (composite attribute);

(5) An Inheritance can be disjoint or overlap, total or partial and have many Specialization_Links,
but cannot have more than one Generalization_Link. In other words, an Inheritance can be
specialized in many sub-entities. However, an Inheritance must be generalized to only one super-
entity;

(6) A Category neither can have overlapping nor more than one Specialization_Link, but it can have
many Generalization_Link. That is, a Category is disjoint, has only one sub-entity, but can have
many super-entities;

(7) An Entity cannot be source of more than one Category_SL. That is, a sub-entity can have only
one Category_SL.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

416 · Robson N. Fidalgo et al

(8) An Entity cannot be source of more than one Direct_Inheritance_Link. That is, a super-entity
can have only one Direct_Inheritance_Link.

4.2 Comparative Analysis

In this Section, we present the results of the comparative analysis of our metamodel (EERMM) against
the metamodels of CWM and IMM. Table 1 summarizes the main points discussed in Sections 3 and 4,
and presents the results of our analysis. In this sense, we can see that (i) neither CWM nor IMM sup-
port Weak Entity/Relationship, composite attribute, discriminator attribute, and category; (ii) CWM
indirectly supports: associative entity, multi-valued attribute, derived attribute, and relationship with
attribute; (iii) IMM does not also support Associative Entity, relationship with attribute, multiple
inheritance, total/partial inheritance, and disjoint/overlap inheritance; and (iv) Our metamodel cov-
ers all EER constructors. In summary, as highlighted throughout this article, the EER metamodels
of OMG are clearly not capable of providing a full support to the EER Model according to Chen’s
notation, such that IMM (the most recent one) only covers 55% of the features shown in Table 1 and
CWM (the precursor of IMM), although it can cover until 80% of the features (considering indirect
constructions derived from the UML notation), it is a UML profile without OCL rules to assure valid
models. That is, given these shortcomings, we have good reasons to propose a new metamodel rather
than modify the existing proposals, mainly because we have no guarantees that the work required
to define OCL rules or to add the missing features is less complex than the effort required to define
EERMM. Furthermore, the modified metamodel can be more complex than EERMM.

5. A PRACTICAL APPLICATION

A metamodel is a specification for builders of CASE tools. That is, a CASE tool that implements a
metamodel prevents the specification of invalid models, because it effectively ensures the consistency
of its models. In this context, in order to demonstrate the feasibility, expressiveness, and usefulness
of our metamodel, we have developed a CASE tool, named EERCASE, and have used it to design

Table I. Comparing CWM, IMM and Our Metamodel

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

Metamodeling the Enhanced Entity-Relationship Model · 417

our metamodel (see Fig. 4). With our CASE tool, the designer can interact with an EER schema
by inserting, excluding, editing, visualizing at different zoom levels, and exporting it as a figure or
as an XMI (XML Metadata Interchange) file. The CASE tool is implemented using Java/Eclipse
technologies (i.e., Eclipse Modeling Framework (EMF) [Steinberg et al. 2009], Graphical Modeling
Framework (GMF) [FOUNDATION 2013] and Epsilon Framework [Kolovos et al. 2011], which are
conformed to the Essential Meta Object Facility (EMOF) [OMG 2013] standard. Moreover, the
tool generates SQL code for PostgreSQL and it can be easily extended to deal with any database
management system (new compilers just need to consider the data types and reserved words of the
new target SQL/DDL dialects). In Fig. 9 we show an implementation view of our metamodel,
which was used to develop our CASE tool. This implementation view is specified in Ecore [Steinberg
et al. 2009] (the Java/Eclipse technology used to represent models in EMF/EMOF) and it extends
the conceptual view presented in Fig. 4 in order to (i) add eight meta-attributes (datatype, size,
isNull, isUnique, check, defaultValue, comment and cardinality) in the Attribute metaclass (because
these meta-attributes are useful for code generation or annotation purposes); (ii) add the isIdentifier
meta-attribute in the RelationshipLink meta-entity (this meta-attribute allows to set Entity.isWeak =
True and Relationship.isIdentifier = True with only one click to define RelationshipLink.isIdentifier =
True); (iii) incorporate the enumerations that specify the valid values for an attribute; and (iv) remodel
the Associative_Entity metaclass as an inheritance of an Entity and a composition of Relationship
(because Java does not support multiple inheritance).

In Fig. 10 we show the Graphical User Interface (GUI) of our CASE tool with a fragment of a
hypothetical schema for a manufacturing Company. It is important to point out that our goal is
to present a didactic and expressive example that is as simple as possible and that covers all the
constructors of the EER Model. In this sense, aiming not to clutter up Fig. 10, we only depict
one example of each attribute type. Hence, in this figure we illustrate a weak entity (Computer),
an associative entity (Task), regular entities (all entities, except Computer), a composite attribute
(address), a multi-valued attribute (phone), a derived attribute (age), a key attribute (id), a dis-
criminator attribute (start_date), an relationship with an attribute (start_date), simple, single-value
and stored attributes (all attributes, except these recently listed), a unary relationship (Supervise),
a ternary relationship (Work), two binary relationships (Use and Has), roles (supervisor and super-
vised), participation constraints (total or partial – drawn using relationship links with a double or
single line, respectively), cardinality constraints (one or many –depicted using the characters “1” or
“N” on relationship links, respectively), inheritances (disjoint, overlap, total and partial – represented
using: “d”, “o”, double line and single line, respectively) and categories (depicted using “u”).

Fig. 9. Implementation view of our metamodel

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

418 · Robson N. Fidalgo et al

Fig. 10. GUI of our CASE tool with an EER schema using all constructors of the EER Model

Note that the GUI of our CASE tool has a palette (area “B” in Fig. 10) with all constructors of
the EER Model. The modeling tasks start with a click on the desired constructor of the EER Model
followed by the selection where it will be placed in the drawing area (area “A” in Fig. 10). Next, the
designer may edit the properties of the constructor (area “C” in Fig. 10), and add new constructors.
Once finished the modeling, the designer may validate its schema using our CASE tool (Menu Edit ->
Validate or saving the schema). For example, it can check whether: (i) there are two entities or two
attributes (in the same entity) with the same name; (ii) the completeness and disjointness constrains
of an inheritance are correctly defined (these constraints can be only defined in an inheritance with
at least two sub-entities); (iii) there are isolated nodes; and (iv) a relationship as well as a weak
entity have an identifier attribute (in these cases, we must use a discriminator attribute when an
identification is needed). These validations are implemented using the Epsilon Validation Language
(EVL) [Kolovos et al. 2011]. Once validated, the designer may automatically generate the SQL/DLL
code for the modeled schema. The generation code for SQL/DDL scripts is implemented using the
Epsilon Generation Language (EGL) [Kolovos et al. 2011]. Due to scope and space limitations, a
detailed specification of our CASE tool is not included in this article. However, more information
about our CASE tool (including its download link) can be found at http://www.cin.ufpe.br/veercase.

6. FINAL REMARKS

Metamodels play a fundamental role in modeling language definition and CASE tool construction,
because they describe the constructors and effectively guide the development of CASE tools for mod-
eling languages. That is, a metamodel specifies modeling constructors, their relationships, and their
well-formedness rules, preventing the specification of invalid models. Therefore, a metamodel provides
facilities for building CASE tools. For example, a CASE tool based on a metamodel can detect errors
earlier or even prevent them from happening, guide towards preferable design patterns, check com-
pleteness by informing about missing elements, reduce modeling work by applying conventions and
default values, support full code generation, and keep specifications consistent. Moreover, a metamodel
also can serve as a straightforward option for interchanging the metadata with other tools. Therefore

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

Metamodeling the Enhanced Entity-Relationship Model · 419

a metamodel is as useful for a modeling language/CASE tool as a grammar is for a programming
language/compiler [Kelly and Tolvanen 2008].

Although the EER Model is one of the most used modeling languages for the conceptual design of
database and much work has been done on this model, to the best of our knowledge, there are only two
proposals of EER metamodels, and they do not address all constructors of the Chen’s notation (see
Sections 3 and 4.2). Moreover, neither a discussion about the engineering used for formalizing these
metamodels was presented nor a reasoned comparison among them can be found in the literature.
For these reasons, in this article we have shown a detailed and practical view of how to formalize the
EER Model by means of a metamodel that (i) covers all constructors of this modeling language; (ii)
defines well-formedness rules for preventing the modeling of syntactically incorrect EER schemas; (iii)
can be used as a starting point (a theoretical framework) by works that aim to build EER CASE tools
(e.g., extending or reusing part of our metamodel to address new features or interchanging metadata
among tools); and (iv) supports automatic SQL/DDL code generation.

Aiming to specify a technology independent metamodel, we have specified a conceptual view of our
metamodel (see Fig. 4) by means of the EER Model (i.e. a reflexive metamodel). Furthermore, we
also present an implementation view of our metamodel (see Fig. 9). This implementation view was
modeled according to Ecore/EMOF technologies and was employed to build our CASE tool, which
was used to model the conceptual view of our metamodel.

In order to show the feasibility, usefulness, and expressiveness of our metamodel, we have used
our CASE tool to model a simple example that covers all EER constructors, confirming that our
metamodel is feasible and more expressive than related ones (cf. Sections 3 e 4.2). Our CASE tool was
implemented in Java using the EMF, GMF, and Epsilon framework. In its current version, it generates
SQL/DDL code for PostgreSQL. In future work we plan to cover other database management systems
as well. We also plan to extend our metamodel to support spatial and temporal data modeling, perform
a usability test of our CASE tool, develop reverse engineering modules and specify mathematical
formalizations/proofs to show the correctness of our metamodel and its well-formedness rules.

In conclusion, our work contributes to advance the state of the art of metamodels for the EER
Model, because it provides a novel perspective of scientific research and industrial application in
the field of database conceptual modeling, since it pinpoints current limitations and shows a more
expressive way to define an EER metamodel. In other words, our metamodel is the first one to covers
all elements of the Chen’s notation, which is particularly important because it defines the basis for
the EER Model. That is, our metamodel defines a set of statements that must not be false for any
valid EER Model.

REFERENCES

ACM/IEEE. Computer Science Curriculum 2008: an interim revision of CS 2001.
http://www.acm.org/education/curricula/ComputerScience2008.pd, 2008.

Amalfi, M., Artale, A., Calì, A., and Provetti, A. Generating Preview Instances for the Face Validation of
Entity-Relationship Schemata: the acyclic case. In Proceedings of International Conference on Database Systems for
Advanced Applications. Hong Kong, China, pp. 225–234, 2011.

Badia, A. and Lemire, D. A Call to Arms: revisiting database design. SIGMOD Record 40 (3): 61–69, 2011.
Bavota, G., Gravino, C., Oliveto, R., De Lucia, A., Tortora, G., Genero, M., and Cruz-Lemus, J. A. Iden-

tifying the Weaknesses of UML Class Diagrams During Data Model Comprehension. In Proceedings of International
Conference on Model Driven Engineering Languages and Systems. Wellington, New Zealand, pp. 168–182, 2011.

Bollati, V. A., Atzeni, P., Marcos, E., and Vara, J. M. Model Management Systems vs. Model Driven Engi-
neering: a case study. In Proceedings of Annual ACM Symposium on Applied Computing. Trento, Italy, pp. 865–872,
2012.

Calì, A., Gottlob, G., and Pieris, A. Query Answering Under Expressive Entity-Relationship Schemata. In
Proceedings of International Conference on Conceptual Modeling. Vancouver, BC, Canada, pp. 347–361, 2010.

Chen, P. P.-S. The Entity-Relationship Model - toward a unified view of data. ACM Transactions on Database
Systems 1 (1): 9–36, 1976.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

420 · Robson N. Fidalgo et al

Combi, C., Degani, S., and Jensen, C. S. Capturing Temporal Constraints in Temporal ER Models. In Proceedings
of International Conference on Conceptual Modeling. Barcelona, Spain, pp. 397–411, 2008.

Connolly, T. M. and Begg, C. E. Database Systems: a practical approach to design, implementation and manage-
ment. Addison-Wesley Publishing Company, USA, 2009.

Dullea, J., Song, I.-Y., and Lamprou, I. An Analysis of Structural Validity in Entity-Relationship Modeling. Data
& Knowledge Engineering 47 (2): 167–205, 2003.

Elmasri, R. and Navathe, S. Fundamentals of Database Systems. Addison-Wesley Publishing Company, USA, 2010.
FOUNDATION, E. Graphical Modeling Framework. http://www.eclipse.org/gmf/, 2013.
Franceschet, M., Gubiani, D., Montanari, A., and Piazza, C. From Entity Relationship to XML Schema:

a graph-theoretic approach. In Proceedings of International XML Database Symposium on Database and XML
Technologies. Lyon, France, pp. 165–179, 2009.

Garcia-Molina, H., Ullman, J. D., and Widom, J. Database Systems: the complete book. Prentice Hall Press,
USA, 2008.

Hartmann, S. Reasoning About Participation Constraints and Chen’s Constraints. In Proceedings of Australasian
Database Conference. Adelaide, Australia, pp. 105–113, 2003.

Irani, P., Tingley, M., and Ware, C. Using Perceptual Syntax to Enhance Semantic Content in Diagrams. IEEE
Computer Graphics and Applications 21 (5): 76–85, 2001.

Jones, T. H. and Song, I.-Y. Analysis of Binary/Ternary Cardinality Combinations in Entity-Relationship Modeling.
Data & Knowledge Engineering 19 (1): 39–64, 1996.

Karanikolas, N. N. and Vassilakopoulos, M. G. Conceptual Universal Database Language: moving up the
database design levels. In Proceedings of East European Conference on Advances in Databases and Information
Systems. Riga, Latvia, pp. 330–346, 2009.

Kelly, S. and Tolvanen, J.-P. Domain-Specific Modeling: enabling full code generation. Wiley-IEEE Computer
Society Pr, 2008.

Kolovos, A., Rose, L., García-Romínguez, A., and Paige, R. The Epsilon Book. Eclipse.org, 2011.
Lucia, A. D., Gravino, C., Oliveto, R., and Tortora, G. Data Model Comprehension: an empirical comparison
of ER and UML class diagrams. In Proceedings of IEEE International Conference on Program Comprehension.
Netherlands, pp. 93–102, 2008.

Lucia, A. D., Gravino, C., Oliveto, R., and Tortora, G. An Experimental Comparison of ER and UML Class
Diagrams For Data Modelling. Empirical Software Engineering 15 (5): 455–492, 2010.

Motta, G. and Pignatelli, G. From Strategic to Conceptual Information Modelling: a method and a case study. In
Information Technology and Innovation Trends in Organizations, A. D’Atri, M. Ferrara, J. F. George, and P. Spag-
noletti (Eds.). Physica-Verlag HD, pp. 179–186, 2011.

OMG. Common Warehouse Metamodel (CWM) Specification Volume 2 - extensions, organization.
http://www.omg.org/spec/CWM/, 2001.

OMG. Common Warehouse Metamodel (CWM) Specification. http://portals.omg.org/imm/, 2003.
OMG. Information Management Metamodel (IMM) Specification Volume2 - business modeling.

http://www.omgwiki.org/imm/doku.php, 2009.
OMG. Essential Meta-Object Facility (EMOF). http://www.omg.org/spec/mof/2.4.1/pdf, 2013.
Rumbaugh, J., Jacobson, I., and Booch, G. Unified Modeling Language Reference Manual, The (2nd Edition).

Pearson Higher Education, 2004.
Silberschatz, A., Korth, H., and Sudarshan, S. Database System Concepts. McGraw-Hill Education, 2010.
Song, I.-Y. and Chen, P. Entity Relationship Model. In Encyclopedia of Database Systems, L. Liu and M. T. Ozsu

(Eds.). Springer US, pp. 1003–1009, 2009.
Song, I.-Y., Evans, M., and Park, E. K. A Comparative Analysis of Entity-Relationship Diagrams. Jornal of
Computer and Software Engineering, 1995.

Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E. EMF: eclipse modeling framework 2.0. Addison-
Wesley Professional, 2009.

Ware, C. and Bobrow, R. Motion to Support Rapid Interactive Queries on Node–Link Diagrams. ACM Transactions
on Applied Perception 1 (1): 3–18, 2004.

Xu, C., Liang, P., Wang, T. G., Wang, Q., and Sheu, P. C.-Y. Semantic Web Services Annotation and Compo-
sition Based on ER Model. In Proceedings of IEEE International Conference on Sensor Networks, Ubiquitous, and
Trustworthy Computing. USA, pp. 413–420, 2010.

Zhang, F., Ma, Z. M., Lv, Y., and Wang, X. Formal Semantics-Preserving Translation from Fuzzy ER Model to
Fuzzy OWL DL Ontology. In Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology. Australia, pp. 503–509, 2008.

Journal of Information and Data Management, Vol. 4, No. 3, October 2013.

