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Abstract. There are different scalable data management solutions that can take advantage of cloud features making
them more attractive for a deployment in such environments. One of the most critical operations in data processing is
joining large data sets. This is one of the most expensive and hardest operations to optimize. We are mainly concerned
here with join operations expressed in PigLatin, an abstract query language for a high-level platform, called Pig, which
creates MapReduce programs with Hadoop. In this work we explore statistical methods, namely multiple regression
analysis, in order to predict three distinct join types execution times, comparing them with actual running times.

Categories and Subject Descriptors: H.2 [Database Management]: Experimentation
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1. INTRODUCTION

An important contribution to large scale data processing has been the MapReduce programming model
[Dean and Ghemawat 2004]. It was designed to deal with fault-tolerant systems, to enable high-
availability and to run on heterogeneous hardware. It has become almost a de facto standard for
massive data set computations in the cloud. However, the amount of code generated to perform
relatively simple data management tasks such as projections and filters may become a problem. For
instance, join execution in Hadoop (an open-source platform for the MapReduce paradigm) is a very
hard task for users even though joins are one of the most critical operations in data processing. Along
with known problems such as estimating the output result size and join selectivity, new challenges
arise when considering MapReduce abstractions e.g. data localization and skewness.

Research projects like Pig [Olston et al. 2008] and Hive [Thusoo et al. 2009] try to make things
simpler by creating an abstraction layer for MapReduce programming tasks. Hive is a data warehouse
that uses Hadoop Distributed File System (HDFS) for storing its data, with a SQL-like language
called HiveQL to access the data. Pig works on top of Hadoop framework [hadoop 2010] using a high-
level programming language called PigLatin. PigLatin has some similarities with SQL because both
perform some similar operations from relational algebra, but they aim at different goals. PigLatin
expresses transformations as a sequence of steps while SQL describes the desired outcome. This feature
is considered an advantage because writing a sequence of steps is more natural to developers. This
procedural view allows them to write more complex data-flows when compared to plain MapReduce,
or even trying to express their data-flows with a regular data oriented language.
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These high-level programming languages help improving the usability of MapReduce by simplify-
ing the use of MapReduce’s API and tuning parameters as they provide a query language similar to
traditional structured query language (SQL). In spite of the fact that these programming languages
abstract and simplify some MapReduce complexity, they still need further improvements. For exam-
ple, cost-optimizers are still work in progress and most of the data is stored with no corresponding
metadata, among other extra features of traditional database systems. We explore a statistical ap-
proach to find relationships among the known information about our data set and usual data center
infrastructures. We evaluate query execution time by using a set of join queries from the TPC-DS
database benchmark. We hypothesize that using statistical models we could run "what-if" workload
scenarios by analyzing an input workload and measuring its performance in order to predict it.

This article aims to investigate the expected efficiency of systems like Pig and Hive, by using a
statistical method for modeling join operations’ execution time and, then, being able to predict their
performances. In our approach, the construction of such a model is done by building up a training
data set and performing cross-validation to verify it.

One of the challenges encountered in this research work was the lack of a data set to evaluate
specific operations in large scale systems. We used a known database benchmark, TPC-DS, to simulate
real data with real data distributions. Nevertheless, queries proposed in TPC-DS are not suitable for
systems based on the MapReduce programming model. To overcome this issue, we have converted
relations described in the TPC-DS into PigLatin queries to specifically evaluate join operations.

This article is structured as follows: Section 2 presents the motivation, some background informa-
tion and related research works. In the following section, we present the Hadoop Joins as they are
implemented by the Pig system. In Section 4, the approach and design decisions about our main pro-
posal are explained. We give also some experimental results obtained as well as the insights gathered
from them. Finally, Section 5 presents the conclusions of this work and discusses some future work.

2. BACKGROUND AND MOTIVATION

In order to take advantage of the infinite resource supply offered by the cloud computing paradigm,
specific parallel query languages were needed. A very important contribution to the cloud computing
research area is the programming model MapReduce [Dean and Ghemawat 2004]. It has become a
de facto standard for massive data set computations in the cloud, a nice abstraction to facilitate
distributed coding to programmers. The MapReduce framework provides characteristics such as fault
tolerance, load balancing and task parallelization in a transparent way.

2.1 Hadoop, Pig and PigLatin

There are many implementations of this distributed computing paradigm. One of the most used is
the open source framework Hadoop [hadoop 2010], created to support the Nutch [Agarwal et al. 2010]
search engine initiative. Later, it was taken by Yahoo!, now Apache, in order to address critical
business needs like managing increasing volumes of data. Hadoop is used in many other open source
projects due to its ability to process data in a distributed way while using commodity hardware.

To take full advantage of the distributed computation, MapReduce uses an underlying distributed
file system, Google File System (GFS) [Ghemawat et al. 2003], to locally access data. GFS has a
master/slave architecture with a large number of working nodes. All the files stored in the GFS are
broken up into fixed size chunks in order to have a better performance in I/O operations due to size
similarity with sectors in regular file systems. These file chunks are then stored and distributed along
with all the available working nodes, or chunk servers, while the metadata associated with all of them
is kept in the Master node. There is also an open-source implementation of GFS that works along
with the Hadoop framework called Hadoop Distributed File System (HDFS) [Nutch 2011].
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In the open source world, Pig and Hive are important projects. Particularly, Pig is an abstraction
layer of the Hadoop framework that compiles data analysis tasks into MapReduce jobs and executes
them on Hadoop. Pig uses a language for expressing its dataflow called PigLatin. One of PigLatin’s
biggest advantages is that it enables programmers to express data transformation tasks in few lines.
PigLatin also differs from SQL in which the former allows expressing transformations as a sequence
of steps, and the latter describes desired outcome. This is seen as an advantage because writing a
sequence of steps comes natural to developers and allows them to write more complex data flows.

For example, consider the following SQL query that filters the data by applying a user-defined
function called ’Clean’. It then counts the number of remaining entries in the log per region.

SELECT U.regions, count(*) as total

FROM UsersRegistry U

WHERE Clean(U.query) = 10

GROUP BY U.regions

In PigLatin, this example could have been written as:

user_registry = LOAD ’UsersRegistry.dat’

AS (userId, userRegions, userQuery);

users_filtered = FILTER user_registry BY Clean(userQuery);

users_grous = GROUP users_filtered BY userRegions;

output = FOREACH users_grous

GENERATE $0 AS regions, count($1) as total;

STORE output INTO ’results.txt’ USING PigStorage();

These works on Pig, Hive and Hadoop show that high level programming languages for programming
large-scale parallel computations are going to be more predominant than plain MapReduce jobs.

2.2 Related Work

Predicting job execution times is a known problem in the distributed systems field. In a very inter-
esting research work [Smith 2007] the construction of a system prediction services is explained. The
system was built using an instance-based learning technique to predict job execution times, batch
scheduling queue wait times and file transfer times of the Texas Advanced Computing Center Lonestar
System [University of Texas 2010]. Even though the approach shows relatively high prediction error
for the training data (ranging from 37% to 115%), the author discusses that it would be possible to
reduce the prediction error by using a larger set of training data. However, it might be possible that
the system on which they are working might be simply less predictable than other systems better
performances. Nevertheless, the results obtained show a lower prediction error in more structured
and well behaved workloads when compared to the work of Vazhkudai et al. [2002].

On the other hand, estimating query execution time is also a very interesting research topic for
the database community due to the fact that this information can help improving the whole system’s
performance, but can also lead to more proactive decisions of the DBMS (maintaining statistics,
choosing better execution plans, etc.). In spite of the similarities of the database world with MapReduce
environments, they are still different in many aspects, and a very important one is the amount of
metadata kept by databases. MapReduce environments tend to keep only operational information (i.e.
information they need to keep functioning) in order to remain simple, but reliable.

A known scenario with similar features to MapReduce environments is the one studied by Multi
Database Management Systems (MDBS) [Bright et al. 1994]. For instance, Zhu [1993] discusses the
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need of good selectivity estimates before query execution so that the global query optimizer in a MDBS
can choose a low cost execution plan from many alternatives. The author also presents an integrated
method to estimate selectivity in a MDBS based on the discussion. He accomplishes this by applying
the techniques proposed by Lipton and Naughton [1995] to an MDBS scenario overcoming difficulties
such as not knowing the local structure of a relation, or not being able to modify it. Zhu and Larson.
[1994] proposed a query sampling method to derive cost estimation formulas for autonomous local
database systems in an MDBS. The main idea of their work is to classify local queries with similar
costs, sample each query class, and to use the observed costs of the sample queries and statistically
derive local cost estimation formulas for the queries performed on the local databases i.e. using
query sampling for estimating local query costs in an MDBS. If the available information were not
enough, they would classify queries with similar performance behavior into the same class so that
their estimation errors would not be large.

Likewise Olston et al. [2006] describe the needs in high-level dataflow languages built on top of
large-scale parallel dataflow systems. Due to the fact that they provide a faster program development
environment and an easier way to maintain the code, they also bring new difficulties and opportunities
e.g. automatic optimization and query rewriting. The authors argue about the different possible types
of optimizations in Data-Intensive Scalable Computing (DISC) [Bryant 2007] and in database systems.
They also point out the differences that make these two contexts similar.

We claim that high-level dataflow systems using the MapReduce paradigm could benefit from the
use of cost estimates. Those estimates should not have a negative impact on performance e.g. longer
execution times, extra complexity. Then, they should be obtained using only known information of
the job execution such as cluster capacity, input size, among other known execution parameters.

Therefore, we would like to explore different approaches to extract the relationships between input
parameters and measured performance i.e. execution time. Using statistical methods to identify these
relationships, we could extrapolate "what-if" workload scenarios using the statistical model created
as a functional instance of the whole system. Our interest lies specifically on join operations because
they are generally more time-consuming, and they are still user-driven in the Pig system.

3. JOIN TYPES IN THE PIG FRAMEWORK

The join operation tries to match records from two distinct input sets. Join execution is one of the
workhorses of data processing and likely to be present on the majority of PigLatin scripts. There
are four types of join implemented in the Pig Framework: hash join, fragment-replicate join,
merge join, and skew join. We will evaluate only the first three because the skew joins depend on
data with a skewed distribution. We would have to know a priori the underlying data distribution,
which is not possible most of the time.

3.1 Hash Join

This is the default join operator in the Pig framework. The main idea of this join is to use keys for
each input. Then, when those keys are the same, the two records will be joined and the records that
did not fulfill the condition are dropped. Fig 1 illustrates this main idea.

Pig implements this strategy by tagging each record with which input it came from in the map
phase, and using the join key as the shuffle key. This type of join needs a reduce phase where all
the records with the same value for the join key are collected together, and then it performs a cross
product between the records from both inputs. Pig tries to minimize memory usage by making the
records of the first input arrive first, cache them, so when the records of the second input arrive, they
can be probed against each record from the left side to produce an output record [Gates 2011].

An important feature of the hash join is that when using a multi-way join all the inputs except
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Fig. 1. MapReduce Hash Join

the last one will be held in memory. So, the last input can be streamed through. In this way, it is a
good practice to place at last the input with more records per given value of the key. Thus, a better
memory usage will be made and the Pig script’s performance can be improved.

The code below shows how this type of join is implemented by a PigLatin script. The example
shows the sequence of steps to perform a join between two relations, inventory and item. The first
line shows how to load the "inventory.dat" file from the "pigData" folder, using the ’|’ character as
column delimiter. The second line shows the same loading operation, but for the "item.dat" relation.
And the third line shows the join operation between both relations.

--hash.join.pig

inventory = LOAD ’pigData/inventory.dat’ using PigStorage(’|’) AS

(inv_date_sk:int, inv_item_sk:int,

inv_warehouse_sk:int, inv_quantity_on_hand:int);

item = LOAD ’pigData/item.dat’ using PigStorage(’|’) AS

(i_item_sk:int, i_item_id:chararray, i_rec_start_date:chararray,

i_rec_end_date:chararray, i_item_desc:chararray);

join_inventory_item = JOIN inventory BY inv_item_sk, item BY i_item_sk;

3.2 Fragment-Replicated Join

We could run a routine task and perform lookups using a smaller input data. For instance, if we would
have to process all the sales for a long period of time, where we would use the item’s description rather
than the item’s code number to identify it. It would be easier to load all of our items into memory
and then translate items’ codes into their descriptions. This is because we have less items than the
total number of sales. We could avoid a reduce phase by sending the smaller relation to every working
node and performing the join locally without copying data through the network. This join strategy is
called fragment-replicate join because we fragment one file (the bigger one, whose fragments will be
processed by the mappers) and replicate the smaller one (that will be replicated to all the mappers).
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Fig. 2. MapReduce Fragment-Replicated Join

In order to implement this join strategy, Pig takes advantage of a tool the Hadoop framework
provides, the distributed cache. This tool enables us to send a file to the working nodes, and to pre-
load it onto the local disks, so the mappers or reducers can access it if needed. The main advantage of
using this tool is not straining HDFS when a small file is needed by many mappers. For instance, if a
fragment-replicate join would need 100 mappers, then opening a file stored in HDFS from 100 different
nodes at a specific moment will certainly put pressure on the NameNode and on the nodes which have
the replicated blocks of that file. Such situations are the motivations for using the distributed cache
so no extra pressure is put on the HDFS. Another situation where it is very useful is when multiple
mappers are executed on the same working node because all these tasks can share the files in the
distributed cache. Therefore, a file has to be copied a fewer times around the network.

In addition, Pig executes a MapReduce job to pre-process the file in order to get it ready for sharing
through the distributed cache. If there are other operations such as filtering, then these operations are
also part of this initial job, so the file passed to the working nodes is as small as it can be. Therefore,
the join operation itself will be done in the second map-reduce job.

The code below shows how this type of join is implemented by a PigLatin script. It is similar to
the example presented for the hash join operator, but to tell Pig to use this specific type of join, we
have to specify the type of join to use. We accomplish this by adding the "USING ’replicated’" hint.

--frag-rep.join.pig

web_sales = LOAD ’pigData/web_sales.dat’ using PigStorage(’|’) AS

(ws_sold_date_sk:int, ws_sold_time_sk:int,

ws_ship_date_sk:int, ws_item_sk:int);

item = LOAD ’pigData/item.dat’ using PigStorage(’|’) AS

(i_item_sk:int, i_item_id:chararray, i_rec_start_date:chararray,

i_rec_end_date:chararray, i_item_desc:chararray);

join_ws_item = JOIN web_sales BY ws_item_sk, item BY i_item_sk USING ’replicated’;
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When writing this type of join, we must be careful enough to always put the smaller input as the
second one. This is because the second input listed will be always loaded into memory. If Pig cannot
load it into memory, the join query will fail.

3.3 Merge Join

The sort-merge join is a join strategy in traditional relational databases and consists in sorting both
inputs on the join key and scan them simultaneously performing the join. Sorting would require a full
MapReduce job, as Pig’s default join does; therefore it does not become the most efficient strategy. In
spite of that, if both inputs are already sorted on the join key, then this join strategy could be the
most efficient. In this case, both inputs could be opened in the map phase and iterate over them.
That is why this strategy is known as merge join, but the sort has to be done before performing the
join. The following code shows how this type of join is implemented by a PigLatin script:

--merge.join.pig

catalog_sales = LOAD ’pigData/catalog_sales.dat’ using PigStorage(’|’) AS

(cs_sold_date_sk:int, cs_sold_time_sk:int, cs_ship_date_sk:int,

cs_bill_customer_sk:int, cs_bill_cdemo_sk:int, cs_bill_hdemo_sk:int);

date_dim = LOAD ’pigData/date_dim.dat’ using PigStorage(’|’) AS

(d_date_sk:int, d_date_id:chararray, d_date:chararray);

join_date_cs = JOIN date_dim BY d_date_sk, catalog_sales

BY cs_sold_date_sk USING ’merge’;

Fig 3 shows the Merge Join job schema execution, which runs a MapReduce job to get samples of the
second input in order to build an index which will be used as the value of the join key. These samples
are the first records of every input split i.e. from each HDFS block, indeed a very fast sampling
process. Pig will use another MapReduce job which will use the first input (in this case date_dim) as
its input. When each mapper reads the records in its split, it will take it and look it up in the index
built by the previous job. It will look for the entry that is less than the value it read from the first
input. Then, it will open the specific split of the second input pointed by the index entry.

Once the correct block of the second input is opened, Pig will start checking for a match of the
index. When it finds a match, it gets all the records that matched into memory, and then perform
the join. It then gets another record of the first input, and if the key is the same as the last one, then
it performs the join. If it is not, it then checks the index to see which the proper file split is to get it
and to check again. If it cannot find a match within the second input, it simply advances to another
record of the first input and checks again. This type of join only supports currently two way joins and
inner joins. It is also more efficient than a hash join because it can be done without a reduce phase.

Our work aims to explore statistical methods to help systems take decisions on which join operator
to use, but without user’s hints. We will present our approach and practical results in the next section.

4. STATISTICAL APPROACH AND PRACTICAL EVALUATION

The Pig system allows the use of four different types of join operators (merge, hash, fragment-
replicated, and skew joins). However, to use them the user needs to pass a hint in PigLatin to
the optimizer specifying the type of join to be used. This type of communication with the optimizer
might be suitable for some experienced users who probably can choose wisely between these operators.
However, for new users the constraints and advantages of each type of join operator may not be so
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Fig. 3. MapReduce Merge Join

Fig. 4. System Architecture for Our Statistical Model

clear. In this way, new users can be mistaken when choosing the correct type of join operator, which
can lead to bad performances and misused of computational resources.

One of the main goals of this research work is to investigate possible statistical methods that
could fit well for use within our system architecture depicted in Figure 4. We may investigate the
parameters involved in creating this statistical model, specifically the design decisions to model and
evaluate execution times for the different types of PigLatin join operators. This model would help a
rule-based optimizer to choose the most appropriate join operator for each situation.

In that way, we see a possibility of applying studied concepts from the database field into large scale
data processing. More specifically, we see a chance in integrating these prediction capabilities into
the Pig system [pig 2010] to improve its query execution capabilities. Figure 4 shows how integrating
these concepts into the system would be like. The left part of the figure exhibits the model constructor
of the system. This component should use only a priori information about the input relations and the
operations to create a model that characterizes them. Thus, we can use the model to obtain query
execution times estimates beforehand. The right part of the figure shows how this a priori information
can be used by the optimizer in order to make good decisions and create better execution plans.
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4.1 Choice of a Data Set

Research has also been done to evaluate different aspects of these non-traditional data stores. Shi
et al. [2010] benchmark five different tasks: data load, grep query, range query, aggregation and fault
tolerance. Cooper et al. [2010] supply several workloads with different combinations of insert, read,
update and scan operations. Nevertheless, all these workloads focus on systems like PNUTS, which
provide online read and write access to data. Analytical systems are not mentioned in these research
works as they try to evaluate different aspects of cloud data management that make the data sets
used specialized for their specific benchmark scenarios.

As there is no data set available for testing MapReduce jobs1, we have decided to start with a
popular benchmark from the database community. There are several benchmarks used, some specific
for transaction processing and others for analytical processing. We have not chosen any of the OLTP
benchmarks because their main motivation is to evaluate transactions. Moreover, the MapReduce
model has been designed for analytical workloads due to its batch-oriented nature and not for single
operations. We have considered then TPC-DS [TPC 2010a], which is a decision support workload
from the Transaction Processing Performance Council [TPC 2010b]. Nambiar and Poess [2006] explain
that using both synthetic and real world data for designing the TPC-DS has many advantages over
benchmarks that use only one type of data. This is because synthetic data sets built using studied
distributions such as the Normal or Poisson distributions have many positive points, but they are
not well suited for dynamically substituting bind variables. The TPC-DS utilizes traditional synthetic
distributions, yielding uniformly distributed values with a Gaussian distribution.

Scaling a data set can be done in two different ways: The number of tuples in the data set is
expanded, but the underlying value sets (domains) remain static, or number of tuples remains fixed,
but the domains used to generate them are expanded. In the case of TPC-DS, an hybrid approach was
chosen, so most table columns employ data set scaling instead of domain scaling, especially fact table
columns; Some small tables’ columns use domain scaling. As a result of this approach, fact tables
scale linearly with the scale factor while dimensions scale sub-linearly.

We decided to use the TPC-DS data because we could have some information about the data set as
well knowing how scaling it would affect the underlying data distribution. The data obtained from
the TPC-DS were plain text files which we load into our local HDFS to perform our tests.

Due to the fact that the TPC-DS has been designed as a relational database benchmark, queries
outlined by TPC [2010a] were meant to evaluate a data warehouse and are not suitable for our
experiments. Queries were specifically designed for testing different aspects of DBMS and characterize
general purpose queries. Our work aims to characterize a specific (join) operator.

We decided to analyze the database schema proposed by Nambiar and Poess [2006] for the TPC-DS,
extract the relationships between tables and create queries based on such relationships. For example,
Figure 5 shows all the relationships between the table Store_Sales and the ones related to it such as
some fact tables (Item, Promotion, etc.) and some dimension tables (Time_Dim, Date_Dim). We
generated join queries using such entity’s relationships, but keeping in mind the restrictions posed by
each type of join. We have created 96 PigLatin queries using a Fragment Replicate Join, 23 PigLatin
queries using a Merge Join and 102 queries using a Hash Join. More details are given by Mogrovejo
[2011].

4.2 Model Construction

The parameters used to build the multiple regression analysis are chosen having in mind that only
a priori knowledge about the job execution must be used. Statistical techniques, such as multiple

1although there is the SWIM (https://github.com/SWIMProjectUCB/SWIM/wiki) ongoing project.
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Fig. 5. Relationships from some TPC-DS’ tables.

Table I. Workload features.
Feature Type Multiple Regression
Job name Categorical Not used

Number of Map processes Numeric Used
Number of Reduce processes Numeric Not Used

Map input bytes Numeric Used
Map input records Numeric Used
Join Selectivity Numeric Used

regression analysis, aim to find relationships between workload features (e.g. number of computers
used, network latency, input size) and performance features (e.g. execution time, I/O metrics). In
our case, we have considered those features listed in Table I.

We could have chosen other statistical approaches. Indeed, clustering techniques, are common for
data analysis in different fields e.g. data mining, pattern recognition, image analysis, and bioinfor-
matics. These techniques consist in assigning a set of observations into subsets, called clusters, based
on the similarity of multiple features. This is considered a method of unsupervised learning because
it tries to find hidden structures in unlabeled data defining a distance measure between points in the
data set. Partition clustering algorithms such as Kmeans [MacQueen 1967] are used to identify a set
of points that are the nearest ones to a test data point, but they are not suitable for performance
modeling because the clustering process would have to be applied on the workload features and on
the performance features separately. The similar points with respect of the workload features do not
actually reflect the points that cluster together with respect to some other performance features.

Another approach is known as Principal Component Analysis (PCA) and is mostly used for ex-
ploratory data analysis, but also for making predictive models. It is the oldest technique for finding
relationships in a multivariate data set [Hotelling 1933]. The main idea of PCA is to identify dimen-
sions of maximal variance in a data set and to project raw data onto these dimensions by performing
eigenvalue decomposition of the data covariance matrix. The main drawback of using PCA for per-
formance modeling is that the dimensions of maximal variance in workload found do not resemble
dimensions that most affect performance. In addition, PCA is not able to correlate workload features
with performance ones which makes it not suitable for our needs. Canonical Correlation Analysis
(CCA) is a generalization of PCA [Hotelling. 1936]. The main idea is that it evaluates pair-wise data
set in order to find dimensions of maximal correlation between the workload features and the perfor-
mance features. This method and its kernelized variant (Kernel Canonical Correlation Analysis) are
other statistical machine learning techniques that we find interesting for future work. Kernel Canon-
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ical Correlation Analysis (KCCA) [Bach and Jordan 2002] captures the similarity between features
using a kernel function, and the correlation analysis is done on pair-wise distances, and not on the
raw data itself. Studying these methods is part of our future work.

Finally, in linear multiple regression analysis, the goal is to predict, knowing the measurements
collected on N subjects, a dependent variable Y from a set of J independent variables denoted
{X1,..,Xj,..,XJ}. In this manner, we can map these independent variables to each workload fea-
ture and treat our performance metric as a dependent variable ’y’. The goal of this statistical method
is to solve the equation a1X1 + a2X2 + ... + anXn = y for all the coefficients ai.

In this research work we have decided to adopt multiple regression analysis because (i) it can
make good predictions from multiple predictors (ii) it avoids dependance on a single predictor and
(iii) it is based on optimal combination of predictors. Furthermore, our work aims to predict a given
performance metric, namely, query execution time. Multiple regression analysis becomes an interesting
tool for characterizing join operators because our model also has many different parameters to take
into consideration but only one feature to be predicted. In what follows, we will explore multiple
regression to study PigLatin join’s performances.

4.3 Multiple regression analysis

Our workload features will be used as our independent variables ({X1,..,Xj,..,XJ}), and the query
execution time is our dependent variable (y). We then use the resulting formulas to predict other
queries execution times. An additional parameter that we have added to our model is the join
selectivity for each job execution. It enables the estimation of jobs’ output with a close relationship to
the amount of work to be done. Due to space limitations, the reader may check our work by Mogrovejo
[2011] for further details.

One important thing here is that we must be aware of certain problems that can be caused due to
our parameters. For example, the parameter representing the number of Reduce processes is linearly
dependent on the jobs executed which can lead the multiple regression model to unstable estimates.
The number of reducers to be used is dependent on what the output will be used for, the reduce
capacity of the cluster, the amount of data needing to be reduced, and the time needed to perform the
reduce operation. In our case, this parameter refers to the number of reducers that will be used in the
join operation. All join algorithms used in the Pig Framework try to take advantage of all resources
available in the cluster and to avoid the network overhead of copying data from mappers to reducers.

This parameter does not vary in our jobs’ execution because the number of reducers corresponds
to the capacity of our cluster. Thus, we decided not to use the number of reducers in our model
construction process because it would cause unstable estimates. The number of map processes is
determined by the number of HDFS blocks for the input files and can be computed by dividing the
number of bytes to be processed by the size of HDFS blocks. To predict the execution time for our
validating queries, we estimate the number of map processes and use it for constructing our model.

One important challenge being is the lack of metadata in the MapReduce computing model, also in
its open-source implementation, Hadoop. Systems like Hive [Hive 2010] and Cassandra [Lakshman
and Malik. 2010] are trying to incorporate basic statistics into their systems. Once accomplished,
these systems will be able to develop efficient cost models for handling big data.

Likewise, Pig framework [pig 2010] lacks of metadata like column definitions or relation’s basic
statistics. The Pig framework also inherits some drawbacks of HDFS design as the simple metadata
kept by the Namenode. It maintains information about the location of each block and to which file
it belongs, guaranteeing that two block files never have the same block ID. In spite of the fact that
keeping simple statistics make the system faster, their absence make the system more rigid to perform
different operations than the established ones. Therefore, we need to obtain these basic statistics
manually in order to estimate the parameters we need for our model [Mogrovejo 2011].
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fragment replicated joins.
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Fig. 7. Fragment replicated joins: execution times vs
time estimates for the 80th percentil of the executions.

4.4 Experiments and Practical Results

We used the queries designed for each specific type of join to create two different set of experiments.
The first experiment consists in performing cross validation of the model generated for each type of
join. The second experiment tries to simulate a real workload where many similar queries are executed
in short periods of time. We have decided to create such workload within Pig Framework based on
previous observations made by similar research on parallel computer systems. However, due to space
limitations, we will discuss only the cross validation experiments in this article. The reader may refer
to our work by Mogrovejo [2011] for the complete set of experiments of this research work.

Cross validation is used for evaluating how the results of a statistical analysis will generalize to an
independent data set. In K-fold cross-validation, the original sample is randomly partitioned into K
subsamples. Out of the K subsamples, a single one is retained as the validation data for testing the
model and the remaining K−1 subsamples are used as training data. The process is then repeated K
times (folds), with each of the K subsamples used exactly once as the validation data. The K results
from the folds can be combined to produce a single estimation. The advantage of this method over
repeated random sub-sampling is that all observations are used for both training and validation and
each observation is used for validation exactly once. Our model was validated using a 3-fold validation
due to the relatively small size of our data set, and to the long running times of our tests.

We describe and discuss next the results obtained from executing cross-validation on our data set
of queries. The figures presented show the difference between the real query execution times against
the estimated query execution time for the 3-fold validation process. We performed such validation
on three types of join operators implemented by the PigLatin framework.

Fragment Replicated Joins: We executed 96 queries of the fragment-replicated joins but using
32 queries for validation on each fold. We plot the results in two figures (Figure 6 and Figure 7).
Figure 6 shows the query execution times (QE Time) and the estimates obtained using the join
selectivity parameter (QE Time With JSel), and not using the join selectivity parameter (QE Time
WO JSel). A first observation is that the variation between the estimates gotten using or not the join
selectivity parameter could almost pass unnoticed. The error within our join selectivity parameter
prevents the model to take full advantage of it. Two jobs took longer than the rest of them because
more data were moved through the network.

Figure 7 shows the query execution times from the 80th percentile of the jobs and their execution
time estimates. By restricting our results we can omit jobs that suffered from performance problems,
execution environment changes and poor linear models. For example, the jobs that in our case suffered
from network latency, a key piece for the MapReduce framework.
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mates for the 80th percentil of the executions.

Finally, Figure 8 shows a comparison between the relative error from the two different estimates,
either or not using the join selectivity parameter. The error goes from less than 2% up to 205% for
all jobs, but for the 80th percentile the error ranges from less than 2% until almost 85%.

Merge joins: We executed the 23 queries created for this specific join operator and used 8 queries
for validation. One of the biggest problems for building such queries is the difficulty of creating join
operations between ordered data when most data is unordered. This type of join needs both relations
to be in ascending order in the join key. Many relations of our data set have the primary key - foreign
key relationship, they do share the same key but they are not sorted in the same way on both relations.

Figure 10 shows the differences between the actual query execution times (QE Time) against the
estimates obtained using the model generated with and without the join selectivity parameter (QE
Time With JSel, and QE Time WO JSel respectively). The estimates obtained by using the join
selectivity parameter did not differ considerably from one to the other. There were two estimates in
which the model predicted long execution times. The first one is due to a self-join of the third biggest
relation (226MB). Nevertheless, the query was executed in a very fast manner, only 21 seconds to be
completed. We hypothesize that this was due to the fact that the column used for joining is sufficiently
skewed for the implementation of the merge join operator. The other high point in the figure is also
a join involving the third biggest relation. This join execution time was expected due to the size of
the input and to the environment variables (e.g. network latency). That is why the predictions do
not differ too much from what the time actually took. It differs 7% with the prediction that did not
use the join selectivity parameter and 13% with the one that used it.
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Fig. 12. Query execution times vs time estimates for
hash joins.
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estimates for the 80th percentil of the executions.

Figure 11 shows the actual query execution times against the estimated values for the 80th percentile
of the queries. In this case our error ranges from 7% to 378% for the model not using the join selectivity
operator, and for the model using the join selectivity operator its error ranges from less than 14%
to 423%. This difference in the error from both models is due to the fact that the join selectivity
parameter has already the error of the cardinality estimate in addition to the estimate itself.

Figure 9 shows the percentage error obtained for the 80th percentile of the queries using both models
(applying the join selectivity parameter (Error With JSel), and not applying it (Error WO JSel)).
The highest points in the graphic are due to the fact that the merge join operator takes advantage
of not having to read all of the big relations. Rather, it samples one of the relations and creates a
sparse index on it. Then, it uses this index to access the block directly at probing time. This makes
this operator the least memory intensive one because it does not have to load a whole block of data
into memory. An interesting thing here is that the model using the join selectivity parameter seems
to have a more stable behavior compared to the one that uses the join selectivity parameter. This
is also due to the error accumulated into the join selectivity parameter, which ends up not being so
useful for our discussed model.

Hash Joins: We executed 102 queries of the hash join operator using 34 queries for validation.
Similarly to the other join operators, we will describe the figures comparing the actual execution time
against the estimated execution time using the models built. Figure 12 shows the difference between
the real execution time (QE Time) and the prediction values either using the join selectivity parameter
(QE With JSelectivity) or not using it (QE WO JSelectivity) for building the model. One important
observation about it is that the actual execution times where really fast compared to the estimated
times. We think this is due to the fact that this operator relies heavily on the hardware i.e. on main
memory for maintaining and probing tuples from one relation against the other. Even though we
decide to keep only the 80th percentile of all the queries, Figure 13 does not change substantially. The
real execution times are lower when compared to the estimated execution times.

Therefore, we were expecting high errors in our estimates. Figure 14 compares the estimate’s error
when using or not join selectivity as a parameter. The difference between both estimates is that
the join selectivity parameter causes the query execution time to vary along the plot. The error
considering this parameter is probably too high and our model cannot take advantage.

This huge difference between our estimates and the actual values motivated us to search for an
explanation. That is the reason why we decided to look into the actual jobs executions. In Figure 15
we show the variance between the different query executions of the cross-fold validation. We recorded
each execution time from each run and then compared them against the other query executions. As
we can see, the job execution time varies in hundreds of orders of magnitude from each different
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execution. This means that this join operator heavily depends on how the cluster is being used in
the specific moment when the hash join is executed. It varies because this join operator always loads
into memory the relation from the left and the other one is streamed through. Besides that, the Pig
framework expands four times the size of data when loading it from disk into memory. This join
operator is the less stable compared to other operators because it heavily depends on main memory
which can vary along query execution.

5. CONCLUSIONS

PigLatin needs to receive user hints in order to enable its compiler to choose correctly between the
different types of join it has implemented. Thereby, creating a statistical model to characterize the
different types of joins in order to estimate its execution time beforehand would mean that the most
efficient join operator could be chosen automatically.

The main contributions of this article are (i) a statistical model for query execution time prediction
based on multiple regression applied to join queries in the Pig Framework and (ii) the construction of
a data set for PigLatin join queries with a higher number of queries for each type of join, consequently,
a more realistic evaluation.

We perceived through our experiments that we could expand the number of queries to be executed
as well as their variety. In this work we decided to use the standard queries and data model originally
defined by TPC-DS as it is an accepted database community benchmark. This has led us to obtain
a relatively small volume of join operations’ data that resulted in an overfitted model. Hence, we are
working on building a bigger data set and, at the same time, studying some different approaches to
avoid over fitting of our regression model (e.g., shrinkage methods). We also think about studying the
TPC-WS - not OLAP - as a data set. In addition, we believe that exploring other statistical methods are
very appealing to the approach presented here. Kernel methods such as those used by Ganapathi [2009]
show great advantages compared to regular statistical methods. Locally weighted learning [Kavulya
et al. 2010] and instance based learning [Smith 2007] seem also suitable.
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