Classifying High-Speed Data Streams
Using Statistical Decision Trees

Mirela Teixeira Cazzolato, Marcela Xavier Ribeiro

Universidade Federal de S3o Carlos
Departamento de Computacdo - S3o Carlos, Brazil
{mirela.cazzolato, marcela}@dc.ufscar.br

Abstract. Every day a large amount of data is collected by applications such as credit card transactions, monitoring
networks and sensors. This type of data, called data streams, are generated in an automatic way, and its storage and
knowledge extraction techniques differ from those used on traditional data. The classification task builds a model to
describe and distinguish classes of data. In the context of data stream classification, many incremental techniques have
been proposed. The existent methods tent to improve the classification accuracy as the number of processed examples
increases. However, this characteristic makes the techniques conservative when the dataset is not too big, since they
are dependent on the amount of data available. In this work we propose two algorithms that are not dependent on
the number of examples read and that present a high accuracy and low execution time. We describe an incremental
decision tree algorithm called StARMiner Tree (ST), which is based on Very Fast Decision Tree (VFDT) system, deals
with numerical data and uses a method based on statistics as the heuristic to decide when to split a node, and also to
choose the best attribute to be used in the test node. We also present a non-parametric version of ST called AST. We
applied ST and AST in four datasets, one synthetic and three real-world, comparing their performance to the VFDT and
VFEDTcNB, which is an extension of VFDT and uses Naive Bayes in the leaves. In all experiments ST and AST achieved
better accuracy results, dealing well with noise data, describing the data from the earliest examples and maintaining a
good execution time. The obtained results indicate that ST and AST are well-suited for data streams classification.

Categories and Subject Descriptors: H.2.8 [Database Management|: Database Applications—Data Mining

Keywords: automatic StARMiner tree, classification, data stream mining, incremental decision trees, StARMiner tree,
VFDT

1. INTRODUCTION AND MOTIVATION

Data streams are obtained in a continuous way by applications such as sensor networks, credit card
transactions and financial applications, generating large volumes of data. The classification task
builds a model to describe classes of data. Traditional techniques for data mining require multiple
scans on the data, which is not feasible for stream data [Rutkowski et al. 2013]. In the data streams
context, incremental techniques are used to eliminate the need of rebuilding the model every time a
new example arrives. Incremental decision trees are constructed based on sufficient statistics extracted
from the examples, and they generally scan the data once.

According to Zia-Ur Rehman et al. [2012], classification using decision trees is a widely studied
problem in data streams, and the main concern is when to split a decision node into multiple leaves.
The VFDT (Very Fast Decision Tree) algorithm [Domingos and Hulten 2000] is one of the well-known
decision tree algorithms for data streams classification. VFDT uses Hoeffding inequality to achieve a
probabilistic bound on the accuracy of the constructed tree, ensuring that its output is asymptotically
nearly identical to the output of a conventional learner. A disadvantage of VEDT is that the Hoeffding
bound depends on the number of read examples, becoming conservative and requiring more examples

We would like to thank CAPES, CNPq and FAPESP for the financial support.

Copyright(©2014 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computagao.

Journal of Information and Data Management, Vol. 5, No. 1, February 2014, Pages 84-93.

Classifying High-Speed Data Streams Using Statistical Decision Trees : 85

than necessary to describe the data. Taking this gap into account we propose a parametric incremental
decision tree algorithm called StARMiner Tree (ST). ST is based on the general structure of VFDT,
and proposes a decision tree model constructed from numeric data, using statistics as a heuristic to
decide when to perform the division of a tree node and which attribute to use in the internal test.
This heuristic uses the mean and deviation, and is appropriated to classify databases that follow
the Normal Distribution. In general, events in a data stream are the result of many factors operating
independently. A sum of independent random variables follow the Normal Distribution. Because of it,
we can approximate most data streams distributions to the normal model. This is true specially in the
context of this article where the number of data analyzed in each step tends to be large. Unlike VFDT,
our algorithm is not dependent on the number of read examples, and can describe the data since the
first examples. We also describe a non-parametric version of ST, called Automatic StARMiner Tree
(AST). In this work we describe the behavior of the proposed algorithms using different datasets. In
order to validate ST and AST we applied them in four experiments, one using a synthetic dataset and
three using real-world datasets, comparing the obtained results with VFDT and VFDTcNB [Gama
et al. 2003], which is an extension of VFDT and uses Naive Bayes in the leaves.

This article is organized as follows. Section 2 presents the theoretical background of data streams
classification using decision trees. In Section 3, we describe our proposed algorithms, ST and AST.
Section 4 presents the experimental analysis and Section 5 summarizes the obtained results and the
future work.

2. RELATED WORK

In this section we describe some of the main decision tree methods for data streams classification,
briefly highlighting the contributions of each one. Domingos and Hulten [2000] presented a basic
decision tree algorithm for data stream classification called Hoeffding Tree (HT). In the same work,
it was proposed a framework based on HT, called VFDT (Very Fast Decision Tree) system. VFDT
allows the use of Information Gain and Gini Index as the attribute evaluation measure, and adds
several refinements to the original algorithm, HT. In order to find the best attribute to test at a given
node, it may be sufficient to consider only a small subset of training examples that pass through that
node [Domingos and Hulten 2000]. After processing a given stream of examples, the first ones will be
used to choose the root test node. Once the root attribute is chosen, the next examples will be passed
down to the corresponding leaves of the tree and used to choose the appropriate attributes there, and
so on recursively. When a new example is read at a leaf [, the algorithm extracts only the sufficient
statistics needed to maintain the model. After n,,;, examples seen at I, VFDT verifies if [should
be divided, becoming a test node. The parameter n,,;, is used to reduce the time spent to decide
about the split of a leaf, since it is not computational efficient to try to split a node every time a new
example arrives, and one example itself have a small influence on the decision of split or not a node.

VFDT uses a statistical result known as Hoeffding bound (see Equation 1) to decide how many
examples are necessary to be observed at each leaf | before split it. According to Domingos and
Hulten [2000] and Bifet [2010]: let r be a real-valued random variable whose range is R (e.g., for a
probability the range is one, and for an information gain the range is log(c), where ¢ is the number
of classes). Suppose we have made n independent observations of this variable, and computed their
mean 7. The Hoeffding bound states that, with probability 1 — d, the true mean of the variable is at

least 7 — €, where
2
. /R ln(l/é)' (1)
2n

The VFDT system is a very popular decision tree algorithm which has been constantly adapted
and modified. Gama et al. [2003] proposed an extension of VFDT called VFDTcNB. VFDTcNB uses
Information Gain as the heuristic to split a node, handles numeric attributes and uses Naive Bayes
at the leaves, which according to the authors it is a more powerful technique to classify examples.

Journal of Information and Data Management, Vol. 5, No. 1, February 2014.

86 . M. T. Cazzolato and M. X. Ribeiro

The OVFDT (Optimized Very Fast Decision Tree) was proposed by Yang and Fong [2011] to control
the tree size while keeping a good accuracy. According to the authors, this is enabled by using
an adaptive tie threshold and incremental pruning in tree induction. Li et al. [2009] proposed the
OcVFDT (One-class Very Fast Decision Tree) algorithm, applied to one-class classification. It is based
on VEDT and POSC4.5 [Letouzey et al. 2000], an induction tree algorithm built from positive and
unlabelled examples only. The EBT (Empirical Bernstein Tree) was proposed by Zia-Ur Rehman
et al. [2012] to replace the Hoeffding bound by the empirical Bernstein’s bound, in order to achieve a
better probabilistic bound on the accuracy of the decision tree.

One of the issues regarding the data stream classification is the concept drift problem, which oc-
curs when the concept defining the target being learned begins to shift over time. Hulten et al.
[2001] proposed the CVFDT system, an efficient algorithm based on VFDT to construct decision
trees from continuous-changing data streams. The algorithm grows alternative subtrees, and when-
ever the current model becomes questionable it is replaced by a more accurate alternative subtree.
Another decision tree algorithm proposed to the concept drift problem is the H-CVFDT [Ouyang et al.
2008]. According to the authors the H-CVFDT uses an extended hash table and classifies continuous
attributes of data streams with concept drift.

VFEDT has the ability to handle large amounts of data maintaining a good accuracy, with theoretical
guarantees concerning the use of Hoeffding bound. A disadvantage of being so general is that the
Hoeffding bound is conservative, requiring more examples than necessary to describe the data [Zia-
Ur Rehman et al. 2012|. We are particularly interested in this problem, because in some domains it is
important to have a faster convergence, with a model that describes the data since the first examples
available. To perform this, we adapted the VFDT algorithm to fast converge when choosing an node
attribute. We replaced the use of the G (Information Gain or Gini Index) and the Hoeffding bound
to an statistical evaluation of the attribute behavior based in the mean, standard deviation, and a
hypotheses test, employing some ideas presented by Ribeiro et al. [2005]. The method proposed by
Ribeiro et al. [2005] identifies the most significant attributes in a dataset, i.e., the ones which describe
more classes and have uniform behavior. The original algorithm uses three parameters set by the user.
In the work of Watanabe et al. [2012], an automatic estimation of these parameters was proposed,
and we also adapted the automatic parameter estimation to work in our proposed method.

In this article we describe the StARMiner Tree (ST) and the Automatic StARMiner Tree (AST)
algorithms, which are based on the principles of VFDT, but utilize a method based on statistics as a
heuristic to choose the best attribute to be used in the test at a node. The details of implementation
are described in the next section.

3. PROPOSED ALGORITHMS

In this section we first describe the StARMiner Tree (ST), an statistical incremental decision tree
algorithm. When a new example arrives, ST classifies it into its correspondent leaf, according to
the class value. The ST decision tree is built incrementally over time, by deciding to split a node
when a minimum number of examples 7, from more than one class, is read in that leaf node.
In the decision tree, each internal node corresponds to a test using an attribute, and each leaf [
corresponds to a class value, that stores the sufficient statistics extracted from the examples seen
at [. The sufficient statistics kept for each attribute at [are, for each class value k, the mean pug,
the standard deviation oy, and the number of examples observed at that leaf n;;. To convert a leaf
into a conditional node, the algorithm verifies the best attribute to be used in the test based on the
mean, standard deviation, and a hypotheses test (see conditions 1, 2 and 3). In fact, a node split
occurs when there is sufficient evidence that a new conditional node is needed. To check this, at least
Nmin €xamples should be read in that node. The decision of split a node is computed based in an
incremental technique that compute the mean, standard deviation over the attribute values for each
class, and execute an statistical hypothesis test over the mean of each class. The ST algorithm is

Journal of Information and Data Management, Vol. 5, No. 1, February 2014.

Classifying High-Speed Data Streams Using Statistical Decision Trees : 87

Algorithm 1: The StARMiner Tree

Input : Apmin, the minimum difference allowed; o0z, the maximum deviation allowed; v, in, the minimum
confidence
Output: A decision tree ST.

Let ST be a tree with a single leaf (the root)
foreach training example e do
Sort example e into leaf | using ST
Update sufficient statistics in ! (uix, oix and ny, for each class value k of the dataset)
Increment n;, the number of examples seen at [
if n; mod nyin = 0 and all ezamples seen at l are not all of same class then
L = SelectBestAttributes(Apmin, Tmazs Ymin)
if L # 0 then
Let X, be the best attribute of L
Replace | with an internal node that splits on X,
foreach branch generated by the split do
Add a new leaf with initialized sufficient statistics at the leaf I (%, o1k and n;y for each class
value k of the dataset)

© 0 NO s WN

HoH R
N = O

Function SelectBestAttributes(Apmin, Tmazs Ymin)

1 Let L be the list attributes L = {a1,...,a;}

2 Let Li be an empty list of attributes

3 foreach attribute a; € L do

4 foreach class z; € X do

5 if (pa; (Ta;) = pa; (T — Tej)) 2 Apmin then

6 if o4, (sz) < 0masz then

7 Compute Z;; = l"al(T”.ilié;:j(? Taj)
(I Tz [)

8 Get Z; and Z5 values

9 if Zij < Zi or Zij > Z5 then

10 L Add a; to Ly

11 return L4

presented in Algorithm 1, followed by a more detailed explanation.

The algorithm starts with a tree ST containing a single empty leaf node (line 1). Each new example
e is classified into its corresponding leaf I (according to its attribute values) using ST (lines 2 and 3).
At line 4 the sufficient statistics at (p, ok, and the number of examples observed ny for each class
k) necessary to build the tree are collected and updated. The number of examples seen at leaf [(n;)
is incremented at line 5. Although ST is not dependent on the number of read examples, we continue
to use the n,,;, parameter because it is not computational efficient to try to split a node every time
a new example arrives, and one example has a small influence on the decision of split or not a node.
Thus, when a minimal number of examples n.,;, is read, it is verified if all data seen at [are not all of
the same class (line 6). If they are of the same class, the algorithm continues to receive examples to
process until n; mod Ny, = 0, i.e. until the algorithm receives 7,,;, more examples. If the conditions
in line 6 are satisfied, the Function SelectBest Attributes is called in line 7.

The Function SelectBestAttributes selects the attributes that satisfy both of the following condi-
tions.

Condition 1. The a; attribute should have a behavior at class x; different to its behavior in other
classes (line 5 of Function SelectBestAttributes);

Condition 2. The a; attribute should present an uniform behavior in the data from class z; (line 6
of Function SelectBestAttributes).

To satisfy these conditions the algorithm uses the two following constraints of interest, received as
parameter: (i) Apmipn is the minimum difference between the means of the attribute a; at examples

Journal of Information and Data Management, Vol. 5, No. 1, February 2014.

88 . M. T. Cazzolato and M. X. Ribeiro

Vinin
09 | 0.95 | 0.99
Z, | -1.64 | -1.96 | -2.58

reject
region

reject
region

Z, | 164 | 196 | 2.58 Z,] 22
(a) Z values according (b) Reject regions
to Ymin

Fig. 1: The rejected regions obtained according to the 7,y parameter

from class z;, and the examples from the remaining classes; and (il) Omaq 18 maximum deviation
allowed for the attribute a; at examples from class z;.

Finally, the ST uses the constraint of interest ~,,;, to verify the followed condition.

Condition 3. Reject with minimum confidence 7, the hypothesis H that the means p,,(7%,) and
pa; (T — Ty,) are statistically equal at the sets of examples from class x; and from the other classes,
ie. T, and T — T, respectively.

This condition is verified according to equation presented at the line 7 of Function SelectBestAttributes.
At line 8 (Function SelectBestAttributes) the Z values are obtained according to the 7, parameter,
as it is shown in Figure 1(a). At line 9 (Function SelectBestAttributes) it is checked if the Z;; value
is between the rejected regions, as it is illustrated in Figure 1 (b). If this condition is satisfied, the
attribute is added to the list Li. As the result, the Function SelectBestAttributes returns a list Lq of
attributes that satisfy the three conditions described above. At line 8 of the Algorithm 1 it is checked
if the list L of attributes returned is not empty, i.e., if at least one attribute has been selected. If
more than one attribute has been selected, at line 9 (Algorithm 1) it is chosen the attribute X, which,
respectively, identifies more classes, have higher jio, (7' — T%;) and lower oq,(T,,). Then X, is used to
split the leaf [turning it into an internal node at line 10. For each branch of the split the algorithm
adds a new leaf [and initialize the sufficient statistics pg, oy and nyy (for each class value k) (lines 12
and 13, Algorithm 1). ST can generate and adapt the built model without the restriction of reading
a large number of examples, being more flexible than VFDT in this context.

The estimation of parameters is not always easy to accomplish, sometimes requiring prior knowledge
of the used data. In the work of Watanabe et al. [2012] an automatic estimation of parameters
was proposed to work in an algorithm based on statistical association rules, used to automatically
select the most significant features to produce rules. The algorithm uses the principles presented by
Ribeiro et al. [2005], also used to construct our proposed algorithm, ST. In this work we propose
and extension of ST, the Automatic StARMiner Tree (AST), which uses the automatic estimation
proposed by Watanabe et al. [2012] to calculate the constraints Ay, and 0,44, given as parameters
in the original algorithm ST. These values are computed as follows:

A'u'mi" = mzn(mm) + (maz(mai) - min(mai))zf” (2)

where Ma; = mm(”ﬂai (TwJ> ~ Ha; (T - T:EJ)| - |Ulli (TGJJ) — Ha; (TIJ)| - |Mai (T - Tlﬂj) — Oa; (T - TIJ)H>
Omaz = Ymin * maw(oai (TIJ)) (3)

In the Equation 2 the exponent has been modified, because it showed better results in empirical
experiments. Equation 3 shows the maximum deviation allowed ¢,,4,, Wwhich is the minimum con-
fidence multiplied by the maximum deviation of an attribute in a class value. AST is presented in
Algorithm 2. The algorithm is very similar to ST. The difference is that the AST receives as input
just the minimum confidence, and the two other constraints fi,, and Ay, are computed (line 7).

In the next section we present an experimental comparison of VFDT, VFDTcNB (an extension of
VEDT that uses Naive Bayes in the leaves), and our proposed algorithms, ST and AST.

Journal of Information and Data Management, Vol. 5, No. 1, February 2014.

Classifying High-Speed Data Streams Using Statistical Decision Trees : 89

Algorithm 2: The Automatic StARMiner Tree

Input : 9,,in, the minimum confidence
Output: A decision tree AST.

1 Let AST be a tree with a single leaf (the root)

2 foreach training example e do

3 Sort example e into leaf ! using AST

4 Update sufficient statistics in ! (uix, oix and nyi for each class value k of the dataset)
5 Increment n;, the number of examples seen at [

6 if n; mod nyin = 0 and all examples seen at l are not all of same class then

7 Compute Ma,, Apmin and omax

8 L = SelectBestAttributes(Apmin, Tmazs Ymin)

9 if L # 0 then
10 Let X, be the best attribute of L
11 Replace | with an internal node that splits on X,
12 foreach branch generated by the split do
13 Add a new leaf with initialized sufficient statistics at the leaf I (yx, o1k and nyy for each class

value k of the dataset)

4. EXPERIMENTAL ANALYSIS

In this section we present four experiments performed using datasets of different sizes, with and
without noise. We compared the results of ST and AST with VFDT and VFDTcNB, in terms of
final and mean accuracy (percentage of correct classifications), accuracy variance, kappa statistic,
F-measure, tree size (number of nodes) and execution time (which is the average execution time of ten
experiments performed for each dataset using each algorithm) using the prequential validation. The
prequential validation, also called interleaved test-then-train, is a scheme used to interleave the test
and train phases of the classification process. According to Patil and Attar [2011] each example can be
used to test the model before it is used for training, and from this the accuracy can be incrementally
updated.

4.1 Datasets and Configurations

We applied our algorithms using four datasets, one synthetic and three real-world. In Table I the
datasets configurations are presented. The synthetic dataset SEA was generated using MOA!, and
according to Hulten et al. [2001] it contains abrupt concept drift (see more details in [Street and
Kim 2001|). The Electricity dataset was obtained in the MOA! website. It contains data collected
from the Australian New South Wales Electricity Market, where prices are not fixed and are affected
by demand and supply of the market. We have excluded two attributes from the original dataset
(date and day) and normalized all data. We inserted levels of noise in the class attribute using the
WEKA tool [Witten et al. 2011]. The Sick Euthyroid dataset was obtained at the UCI Repository?.
We considered only the numerical attributes in the experiments. The Skin Segmentation was also
obtained in the UCI Repository?. We compare the results using the StARMiner Tree (ST) and the
Automatic StARMiner Tree (AST) to VFDT and VEFDTcNB. The version of VFDT used in the
experiments uses majority class in the leaves, while VEFDTcNB uses Naive Bayes, as described in the
Related Work section. All the experiments were performed on a i7 / 2.8GHz CPU, 8GB memory
computer, considering the parameter v = 0.9 for all experiments. The configurations not cited were
considered as the default employed on MOA"!. In the experiment using the SEA generator the model
was tested at each 50 thousand examples. Using the Electricity dataset we tested the examples at each
3 hundreds examples. With the Sick Euthyroid dataset the algorithms read the examples 5 times,
since the dataset was smaller, and the model was tested at each 150 examples, considering the grace
period n = 200. The configurations of ST are shown in the two last columns of Table I. These
values were obtained after performing a set of experiments, with different values of Ay and oppas-

! Massive Online Analysis: http://moa.cms.waikato.ac.nz/
2UCI - Machine Learning Repository: http://archieve.ics.uci.edu/ml

Journal of Information and Data Management, Vol. 5, No. 1, February 2014.

90 . M. T. Cazzolato and M. X. Ribeiro

Table I: Dataset configurations and ST parameters used in the experiments

Dataset configurations ST Parameters

Datasets n. instances n. attributes instances per class Apmin Omax
Electricity 45,312 6 "up" = 19,237 - "down" = 26,075 0.014 0.36
SEA 1 million 3 "classl" = 356,752 - "class2" = 643,248 0.014 0.36

Skin Segmentation 245,057 4 "skin" = 50,859 - "nonskin" = 194,198 0.01 0.04
Sick Euthyroid 3,163 5 "positive" = 293 - "negative" = 2,870 0.014 0.036

Table II: Experiment results using the Skin Segmentation and Sick Euthyroid datasets

Experiment results

Datasets Mean Accuracy Final Accuracy Accuracy Variance Kappa F-Measure
ST 99.68 99.9 0.235 99.69 0.990
Skin Segmentation AST 99.07 99.4 0.193 98.13 0.977
VEDT 98.08 99.3 4.03 97.83 0.951
VEFDTcNB 98.8 99.2 1.067 97.49 0.972
ST 98.22 98.1 0.103 89.67 0.903
Sick BEuthyroid AST 97.85 97.9 0.379 88.97 0.879
VEDT 95.57 95.8 0.52 79.38 0.787
VFDTcNB 93.57 93.1 0.48 68.45 0.706

4.2 Experiment Results

The mean and final accuracy obtained with the datasets Skin Segmentation and Sick Euthyroid are
summarized in Table II. In both cases the best results were achieved by ST and AST, followed by
VFDT and VFDTcNB. In Figure 2, it is shown that the ST achieved the best accuracy variation in
almost all the classification process. AST also described well the data since the first examples, finishing
the process with the second best accuracy. Although VFDT and VFDTcNB did not start well, after
the first 100 thousand examples they achieved results very close to AST, finishing the classification
almost equal. On the other hand, using the Sick Euthyroid dataset it is visible the difference between
the use of ST and AST results (which are not dependent of the number of examples) and the VFDT
and VFDTcNB. The accuracy variance of ST and AST was significantly smaller than VFDT and
VFDTcNB, showing that the results of the proposed algorithms had a uniform behavior. The kappa
statistic is a measure used to verify the difference between how much agreement is observed, in
comparison with how much agreement is expected to be present. We used the reference of Landis e
Koch [Emam 1999] to evaluate the agreement of the kappa values achieved. A complete agreement
corresponds to 100%, and a lack of agreement corresponds to 0% (indicating random coincidences of
rates). The kappa results achieved by using the Skin Segmentation dataset was "almost perfect" for
all the algorithms. Using the Sick Euthyroid dataset the results of ST and AST were "almost perfect",
while the results of VEDT and VFDTcNB were "substantial". Similarly, the F-measure values show
that ST and AST were better than VFDT and VFDTcNB.

A significance test was performed to reject the hypothesis Hy that the mean accuracies of the
algorithms are statistically equal, with 95% of confidence. Table IIT shows the results of the two-sided
T-Test performed between mean accuracies of two classifiers at a time, using the Skin Segmentation
and the Sick Euthyroid datasets. A value "1" indicates that the row algorithm has an accuracy
statistically superior to the column algorithm, rejecting Hy; "-1" indicates that the row algorithm has
an accuracy value statistically inferior in comparison with the column, also rejecting Hop; a value of
"0" indicates that both algorithms are statistically equal, rejecting Hy. The results show that ST had
the best accuracy results in comparison with the others. Using the Skin Segmentation dataset AST
obtained a better result than VFDT, and a statistically equal result than VFDTcNB. Finally, with
the Sick Euthyroid dataset AST had better results than VFDT and VFDTcNB.

Figure 3 shows the tree sizes using the Skin Segmentation and Sick Euthyroid datasets. ST and
AST created bigger trees in both experiments. However, the graphic presented in Figure 6 shows that
the execution time of ST and AST using these two datasets was very close (when not smaller) than
VFDT and VFDTcNB. This is plausible because the computation of the Information Gain used by
VFDT and VFDTcNB is more computationally costly than the performance of the StARMiner split

Journal of Information and Data Management, Vol. 5, No. 1, February 2014.

Classifying High-Speed Data Streams Using Statistical Decision Trees : 91

Table III: Significance results using the Skin Segmentation and Sick Euthyroid datasets

Significance test of the accuracies using T-Test

Skin Segmentation Sick Euthyroid
ST AST VFDT VFDTcNB ST AST VFDT VFDTcNB
ST 0 1 1 1 0 1 1 1
AST -1 0 1 0 -1 0 1 1
VEDT -1 -1 0 0 -1 -1 0 1
VFDTcNB -1 0 0 0 -1 -1 -1 0
Skin Segmentation Dataset - Accuracy Sick Euthyroid Dataset - Accuracy
g g w - : AN
o [RO .., o .
8 8 " gerrrnan ™
m
%2 AT —@—
T umberofeamples P imberofeamples

Fig. 2: Experiment using the Skin Segmentation and Sick Euthyroid datasets

Skin Segmentation Dataset Sick Euthyroid Dataset
Tree Size Tree Size
300 ., 8

3
3 200 g o
s

0
3
3 £ 40
0 0 (= [w—
ST

ST AST VFDT VFDTcNB AST VFDT VFDTcNB

Fig. 3: Tree sizes using the Skin Segmentation and Sick Euthyroid datasets

criterion. ST and AST created bigger trees because they start to split the nodes before VEFDT and
VCFDTcNB (since the first available examples). This characteristic can increase the execution time,
since a bigger model takes longer to classify the examples.

The accuracy results obtained using the SEA generator and the Electricity datasets are summarized
in Table IV, according to the noise level, in terms of accuracy. The results obtained using the SEA
generator show that ST and AST achieved the best accuracy on the data containing up to 15% of
noise, and the VFDT achieved values very close to ST and AST with more than 15% of noise. AST
obtained the best mean and final accuracy in almost all the experiments, independently on the noise
level. The mean execution time obtained by each algorithm in the experiments are presented on
Figure 6. Figure 4 shows the accuracy variation of the algorithms using the datasets containing noise.
With the Electricity dataset the algorithms ST and AST acquired the best results with the first levels
of noise. VFDT obtained better results with 25% and 30% of noise.

Figure 5 shows the kappa statistic of the experiments with the SEA and Electricity datasets. Using
the SEA dataset, with 0% of noise the ST result is "substantial" and the other algorithms are "moder-
ate". The kappa values tends to decrease as the noise increases. With 30% of noise the VFDT kappa
result was "fair", while the others were "slight" results. Using the Electricity dataset the results were
similar. Without noise the algorithms obtained "moderate" results. The agreement declined as the
noise increased. AST finished with a "fair" result, close to the others, which achieved "slight" results.
Summarizing, the significance of the results tends to decrease as the quantity of noise in the data
increases. In general the results were close in both experiments.

Using the datasets containing noise, ST and AST constructed bigger trees in comparison with VEDT
and VFDTcNB. Considering the Electricity dataset, ST had an average tree size of 317 nodes, AST
220 nodes, VFDT 37 nodes and VFDTcNB 38 nodes. With the SEA dataset, ST created trees with the
average of 169 nodes, AST with 134, VFDT and VFDTcNB with 698 nodes. In Figure 6 it is possible
to observe that using the Electricity dataset the algorithms VFDT and VFDTcNB achieved better
execution times, and with the SEA generator the VFDT obtained a lower time, followed respectively

Journal of Information and Data Management, Vol. 5, No. 1, February 2014.

92

80
= 60
8 40
~

X 20

0

M. T. Cazzolato and M. X. Ribeiro

Table IV: Experiment results using the SEA generator and the Electricity dataset

Experiment results

Noise / %

Datasets Accuracy i) 5 0 5 50 55 30
or Mean 81.26 7824 7510 71.09 68.09 6586 62.68

Final 81.9 790 76.6 731 69.9 663 63.3
AST Mean BL16 78.14 7518 718 0886 6554 62.52

SEA Final 81.4 794 77.0 740 71O 675 63.8
pp— Mean 8009 781 7516 7104 688 G571 627

Final 815 791 765 740 702 66.9 63.2
Mean — 80.68 77.76 7462 71.26 6841 64.93 6L73

VFDTeNB 81.7 790 76 722 69.3 659 613
- Mean 7808 7521 71.36 68.68 065.61 62.06 59.05

Final 8.3 76 712 716 645 624 59.3

ST Mean 7915 7571 722 6951 6606 6323 G0

Blectricity Final 80.1 762 758 68.7 680 623 59.9
pp— Mean — 74.61 7202 7045 6742 6410 GL75 587

Final 758 72.2 71.06 68.7 67.6 632 62.9
Mean 77.16 72.07 69.02 67.08 6449 G120 58.78

VFDTeNB gy) 773 684 641 631 611 588 55.2

o
Q
Q.
N
mmrﬁhﬁn}iﬁhrﬂ: ="
0
0 5 10 15 20 25 30

Electricity Dataset - Accuracy Sea Dataset - Accuracy

% correct
% correct

st ——
65 AT —@—

VFDT sesteane
VFDT!JV_E
20 pi 30 o 5 10

15 E) x 30
% noise

15
% noise

Fig. 4: Experiment with noise using the SEA and Electricity datasets

Electricity Dataset - Kappa SEA Generator - Kappa

T

% Noise

% Noise

WST DAST @VFDT @VFDTCNB WST DAST @VFDT @VFDTCNB

Fig. 5: Kappa values obtained using the Electricity and SEA datasets

by ST, AST and VFDTcNB.

5. CONCLUSION

In this work we described two algorithms, the StARMiner Tree and the Automatic StARMiner Tree,
which are statistical decision tree algorithms for data streams classification. We applied them in
four datasets, one synthetic and three real-world. The obtained results show that ST and AST are
well-suited to classify data with or without noise, in a small or large size. In almost all performed

experiments ST and AST obtained the best mean and final accuracy, maintaining good execution
time, in comparison with VFDT and VFDTcNB.

The ST and AST algorithms, when applied in datasets containing concept drift, should be used
along with a drift detection method. Normally, a drift detection method is used independently on
the classifier. When we use ST or AST in a context with concept drift, the algorithm should be used
with a drift detection method that, for example, monitors the error rate of the model and triggers
an alarm informing that the model should be replaced (or adapted), when it becomes outdated. Due

Journal of Information and Data Management, Vol. 5, No. 1, February 2014.

Classifying High-Speed Data Streams Using Statistical Decision Trees : 93

Execution Time
8

6

2 :
| - | el

Electricity SEA Skin Segmentation Sick Euthyroid

time /s

Datasets

WST BAST BVFDT @VFDTcNB

Fig. 6: Execution time of the algorithms.

to the fast convergence of the methods ST and AST, the algorithms construct the model since the
first examples available, and may get more sensitive to changes in the distribution. In this case, it is
important to chose a drift detection method that considers this sensibility, detecting the concept drift
when the method does not describe the newest data properly.

REFERENCES

BireT, A. Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data Streams. Frontiers in Artificial
Intelligence and Applications. IOS Press, Incorporated, 2010.

Domincos, P. anp HurreEn, G. Mining high-speed data streams. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. Boston, Massachusetts, USA, pp. 71-80, 2000.

Emam, K. E. Benchmarking Kappa: Interrater Agreement in Software ProcessAssessments. Empirical Software
Engineering 4 (2): 113-133, 1999.

Gama, J. A., RocHa, R., aAND MEDAs, P. Accurate Decision Trees for Mining High-Speed Data Streams. In ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, D.C., pp. 523528, 2003.

HurtEN, G., SPENCER, L., AND DoMmiNGOs, P. Mining Time-Changing Data Streams. In ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. San Francisco, CA, pp. 97-106, 2001.

LeTtouzey, F., DENIs, F., AND GILLERON, R. Learning from Positive and Unlabeled Examples. In International
Conference on Algorithmic Learning Theory. pp. 71-85, 2000.

L1, C., ZuaNg, Y., anD L1, X. OcVFDT: one-class very fast decision tree for one-class classification of data streams.
In International Workshop on Knowledge Discovery from Sensor Data. Paris, France, pp. 79-86, 2009.

Ouvang, Z., Wu, Q., aAND WanG, T. An Efficient Decision Tree Classification Method Based on Extended Hash
Table for Data Streams Mining. In International Conference on Fuzzy Systems and Knowledge Discovery. Vol. 5.
pp. 313-317, 2008.

PatiL, A. AND ATTAR, V. Framework for performance comparison of classifiers. In International Conference on Soft
Computing for Problem Solving, K. Deep, A. Nagar, M. Pant, and J. C. Bansal (Eds.). Advances in Intelligent and
Soft Computing, vol. 131. Springer India, pp. 681-689, 2011.

RiBeIRO, M. X., BaLAN, A. G., FELIPE, J. C., TRAINA, A. J. M., AND TRAINA-JR, C. Mining Statistical Association
Rules to Select the Most Relevant Medical Image Features. First International Workshop on Mining Complex Data,
Houston, USA, pp. 91-98, 2005.

Rutkowski, L., PiIETruczuK, L., Dupa, P., AND JAwoORsKI, M. Decision trees for mining data streams based on the
mcdiarmid’s bound. IEEE Transactions on Knowledge and Data Engineering 25 (6): 1272-1279, 2013.

STreeT, W. N. anD KiM, Y. A streaming ensemble algorithm (sea) for large-scale classification. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. San Francisco, CA, pp. 377-382, 2001.

WaranaBg, C., RiIBEIRO, M., TraiNa, A., AND TraiNa-JR, C. A statistical associative classifier with automatic
estimation of parameters on computer aided diagnosis. In International Conference on Machine Learning and
Applications. Vol. 1. pp. 564-567, 2012.

WitTEN, 1., FrRANK, E.; AND HALL, M. Data Mining: Practical Machine Learning Tools and Techniques: Practical
Machine Learning Tools and Techniques. The Morgan Kaufmann Series in Data Management Systems. Elsevier
Science, 2011.

Yang, H. anp Fong, S. Optimized Very Fast Decision Tree with Balanced Classification Accuracy and Compact Tree
Size. In International Conference on Data Mining and Intelligent Information Technology Applications. pp. 57 —64,
2011.

Z1a-Ur ReEnmaN, M., L1, T.-r., anD L1, T. Exploiting empirical variance for data stream classification. Journal of
Shanghai Jiaotong University (Science) vol. 17, pp. 245-250, 2012.

Journal of Information and Data Management, Vol. 5, No. 1, February 2014.

