
An Apriori-based Approach for First-Order Temporal Pattern

Mining

Sandra de Amo1,Daniel A. Furtado2, Arnaud Giacometti2, Dominique Laurent3

1 Universidade Federal de Uberlândia, Computer Science Department - Uberlândia - Brazil

deamo@ufu.br, danielfurtados@yahoo.com.br
2 LI-Université de Tours, UFR de Sciences - Blois - France

giaco@univ-tours.fr
3 ETIS-CNRS-ENSEA-Université de Cergy Pontoise - Cergy Pontoise - France

dominique.laurent@dept-info.u-cergy.fr

Abstract. Previous studies on mining sequential patterns have focused on temporal patterns specified by some form of
propositional temporal logic. However, there are some interesting sequential patterns whose specification needs a more
expressive formalism, the first-order temporal logic. In this article, we focus on the problem of mining multi-sequential
patterns which are first-order temporal patterns (not expressible in propositional temporal logic). We propose two
Apriori-based algorithms to perform this mining task. The first one, the PM (Projection Miner) Algorithm adapts
the key idea of the classical GSP algorithm for propositional sequential pattern mining by projecting the first-order
pattern in two propositional components during the candidate generation and pruning phases. The second algorithm,
the SM (Simultaneous Miner) Algorithm, executes the candidate generation and pruning phases without decomposing
the pattern, that is, the mining process, in some extent, does not reduce itself to its propositional counterpart. Our
extensive experiments shows that SM scales up far better than PM.

Categories and Subject Descriptors: Information Systems [Miscellaneous]: Databases

Keywords: Temporal Data Mining, Sequence Mining, Sequential Patterns, Temporal Data Mining, Frequent Patterns,
Knowledge Discovery

1. INTRODUCTION

The problem of discovering sequential patterns in temporal data has been extensively studied in several
recent papers ([Agrawal and Srikant 1995; 1996; Zaki 2001; Han et al. 2000; Pinto et al. 2001]) and
its importance is fully justified by the great number of potential application domains where mining
sequential patterns appears as a crucial issue, such as financial market (evolution of stock market shares
quotations), retailing (evolution of clients purchases), medicine (evolution of patients symptoms),
local weather forecast, telecommunication (sequences of alarms output by network switches), etc.
Different kinds of temporal patterns have been proposed ([Mannila et al. 1997; Bettini et al. 1996;
Das et al. 1998; Lu et al. 2000]), as well as general formalisms and algorithms for expressing and mining
them have been developed ([Joshi et al. 1999; Padmanabhan and Tuzhilin 1996; Berger and Tuzhilin
1999]). Most of these patterns are specified by formalisms which are, in some extent, reducible to
Propositional Temporal Logic. For instance, let us consider the (propositional) sequential pattern of
form 〈i1, i2, . . . , in〉 (where ij, j ∈ {1, ..., n}, are sets of items) that have been extensively studied in
the literature in the past years ([Agrawal and Srikant 1995; 1996; Zaki 2001; Han et al. 2000]). This
pattern is considered frequent if at least α% of clients (α is the minimum support specified by the
user) buy the items of ij sequentially, i.e., the items of i1 are bought at time t1, the items of i2 are

bought at time t2, and so on, with t1 < t2 < ... < tn. Denoting by p
j
k (k = 1, ..., nj) the propositional

Copyright c©2010 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010, Pages 57–70.

58 · S. Amo, D. A. Furtado, A. Giacometti and D. Laurent

variables representing the items in ij, this pattern can be expressed in Propositional Temporal Logic

by the formula i1 ∧ ♦(i2 ∧ ♦(i3 ∧ (. . . ∧ ♦in)...)), where ij is the formula (pj
1 ∧ p

j
2 ∧ . . . pj

nj
) and ♦ is

the temporal operator sometimes in the future.

Recent research in Inductive Logic Programming (ILP) ([Masson and Jacquenet 2002; Lee and
Raedt 2002]) proposed temporal formalisms which are more expressive than the ones used so far for
modeling sequential patterns. Indeed, usual formalisms based on propositional temporal logic are not
expressive enough to specify many frequent patterns, like Unix-users logs, for instance [Jacobs and
Blockeel 2001]. Undoubtedly, the need for more expressive formalisms to specify temporal patterns
arise naturally, as well as methods for mining them in a large amount of data.

In this article, we propose a new kind of temporal pattern, called multi-sequential pattern (or msp),
which is not expressible in Propositional Temporal Logic. Such patterns appear in several application
domains like financial market, retailing, and roughly speaking aim at representing the behavior of
individuals related to each other by some criteria, throughout time. The following situations are
examples of multi-sequential patterns: (a) the quotations of shares x, y belonging to the same holding
company frequently present the following behavior: an increase of n points of x is followed by an
increase of m points of y and an ulterior decrease of k points of y; (b) clients x and y working in
the same place usually present the following purchasing behavior: when client x buys a computer
M , some time later his(her) colleague y buys the same computer M , then client x buys a printer P ,
which is followed by y purchasing the same printer P . Contrarily to the (propositional) sequential
patterns studied so far ([Agrawal and Srikant 1995; 1996; Zaki 2001; Han et al. 2000]), multi-sequential
patterns are not expressible in Propositional Temporal Logic and need the expressive power of First-
Order Temporal Logic for their specification. For instance, the pattern expressing the behaviour of
stock market shares belonging to a same holding company can be specified by the following first-order
temporal formula (∃x1∃x2)(group(x1, x2) ∧ up(x1, n) ∧ ♦(up(x2, m) ∧ ♦down(x1, k))).

Besides proposing a new kind of sequential pattern that needs a more expressive formalism than
the usual Propositional Temporal Logic, we also propose two algorithms for mining them: Projection
Miner (PM) and Simultaneous Miner (SM). The first one is based on a technique that decomposes the
multi-sequential patterns in two propositional sequential patterns during the candidate generation and
pruning phases. So, the mining process can be achieved by adapting the classical GSP algorithm for
(propositional) sequential pattern mining. In the second algorithm, the mining technique is carried out
without decomposing the pattern. We also present an extensive set of experimental results which allow
us to conclude that SM executes three times faster than PM. In our opinion, the main contribution of
this article is to show that a classical Apriori-like technique based on candidate generation, pruning
and validation can be used to mine first-order temporal patterns, and that a pure first-order technique
(SM) produces better results than a technique (PM) adapted from classical methods for propositional
sequential pattern mining. It is important to emphasize that both algorithms are not based on
temporal logic concepts. Actually, temporal logic is used just as a formalism for expressing the
temporal patterns.

The article is organized as follows. In Section 2, we formalize the multi-sequential discovery problem,
using a more operational formalism to represent them, i.e., a bi-dimensional array representation. In
Section 3, we present the first algorithm PM. In Section 4, we present the algorithm SM, where
the mining process does not involve decomposing the array in two linear sequential components. In
Section 5 we analyse the experimental results carried out over synthetic datasets. Finally, in Section
6 we discuss ongoing and further research.

2. PROBLEM FORMALIZATION

In this section, we formalize the problem of discovering multi-sequential patterns. We suppose the
existence of a finite set I of items and a finite set C of object identifiers. From now on, we will call

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

An Apriori-based Approach for First-Order Temporal Pattern Mining · 59

the elements of C clients1. Items are denoted by a, b, c, ... and client ids by c1, c2, c3, For the sake
of simplifying the presentation, we just consider sequence patterns whose elements are items instead
of itemsets. Indeed, since the main goal of this article is to investigate the problem of mining sets of
sequences, we believe that considering sequences of itemsets could add unnecessary difficulty to the
problem we are interested in.

Let us consider a database schema D = {Tr(T, IdCl, Item, IdG)}, and a dataset D as an instance
of D. Here, T is the time attribute whose domain (denoted dom(T)) is N. Attributes IdCl, Item and
IdG stand for client identifiers, items and group identifiers respectively. Their domain are C, I and
N respectively. The table shown in Figure 1(a) is a dataset.

T IdCl Item IdG T IdCl Item IdG
1 c1 a 1 1 c7 a 3
3 c1 b 1 3 c7 c 3
5 c1 a 1 4 c7 b 3
2 c2 b 1 2 c8 b 3
3 c2 c 1 5 c8 a 3
4 c3 a 1 2 c9 b 4
3 c4 a 2 4 c9 a 4
5 c5 a 2 1 c10 a 4
4 c6 b 2 3 c10 b 4

5 c11 d 4

IdG MSeq
1 {〈a,⊥, b,⊥, a〉,

〈⊥, b, c,⊥,⊥〉,
〈⊥,⊥,⊥, a,⊥〉}

2 {〈⊥,⊥, a,⊥,⊥〉,
〈⊥,⊥,⊥,⊥, a〉,
〈⊥,⊥,⊥, b,⊥〉}

3 {〈a,⊥, c, b,⊥〉,
〈⊥, b,⊥,⊥, a〉}

4 {〈⊥, b,⊥, a,⊥〉,
〈a,⊥, b,⊥,⊥〉,
〈⊥,⊥,⊥,⊥, d〉}

(a) (b)

Fig. 1: Dataset

The notions of sequence and multi-sequence in our approach are defined as follows.

Definition 2.1 A sequence is a list s = 〈i1, . . . , ik〉, where every element ij is in I ∪ {⊥}. The
symbol ⊥ stands for “don’t care”, and k is called the length of s, denoted by | s |.

A multi-sequence is a finite set σ = {s1, . . . , sn}, where every si is a sequence, and for all i, j ∈
{1, . . . , n} we have | si | = | sj | = k. k is called the length of σ and is denoted l(σ). The j-th
component of sequence si is denoted si

j .

We notice that each sequence si of σ is associated to a client of the group.

A dataset can be easily transformed into a table of pairs (g, m) where g is a group identifier and
m a multi-sequence. Figure 1 (b) illustrates this transformation for the dataset D of Figure 1(a). If
(g, m) is in the transformed dataset then we denote m by S(g).

Definition 2.2 A multi-sequential pattern (or msp for short) is a multi-sequence satisfying the fol-
lowing conditions:

(1) For every j in {1, . . . , k} there exists i in {1, . . . , n} such that si
j is in I and for all l 6= i, sl

j = ⊥.

(2) For every i in {1, . . . , n} there exists j in {1, . . . , k} such that si
j 6= ⊥.

The cardinality of σ is called the rank of σ and is denoted by r(σ).

1Depending on the application, items can be interpreted as articles in a supermarket, stock market up(n) and down(p),
etc, and clients can be interpreted as clients, stock market shares, etc.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

60 · S. Amo, D. A. Furtado, A. Giacometti and D. Laurent

Multi-sequences can be represented by a bi-dimensional array where rows are related to clients and
columns (bottom-up ordered) are related to time. For msps2, the conditions (1) and (2) above are
interpreted in the array representation as follows: (1) enforces that for each row, there exists a
unique position containing an item and all the other positions contain the element ⊥. Intuitively, this
condition means that at each time we focus only on one client purchases. (2) means that for each
column there exists at least one position containing an item. The following example illustrates this
definition.

Example 2.1 Let us consider the five arrays depicted below. The array (a) represents the multi-
sequential pattern σ = {〈a,⊥〉, 〈⊥, c〉} whose length and rank are both 2. It is clear that the two
conditions above are satisfied. The same happens for the array (e), whose length is 4 and rank is 3.
Arrays (b), (c) and (d) do not represent multi-sequential patterns. Indeed, in array (b), column 2
contains no items (condition (2) is not satisfied); in array (c), row 1 contains two items (condition (1)
is not satisfied); and in array (d), row 2 contains no items (condition (1) is not satisfied).

„

⊥ c
a ⊥

«

0

@

c ⊥
b ⊥
a ⊥

1

A

„

⊥ ⊥ a
b c ⊥

«

0

@

b
⊥
a

1

A

0

B

B

@

⊥ ⊥ d
⊥ c ⊥
b ⊥ ⊥
a ⊥ ⊥

1

C

C

A

(a) (b) (c) (d) (e)

It is clear that if σ is an msp, then r(σ) ≤ l(σ). We denote by Σn
k the set of msps of rank n and length

k.

In order to compare multi-sequences, we define an order relation between elements x, y ∈ I ∪ {⊥}
as follows: x � y if x = y or x =⊥.

Definition 2.3 Let σ = {s1, ..., sm} and τ = {t1, . . . , tn} be two multi-sequences. We say that σ is a
sub-multi-sequence of τ (or σ is included in τ), denoted by σ ⊆ τ , if there exist j1, ..., jm in {1, ..., n}
and i1, ..., ik such that:

—jp 6= jq for p 6= q

—k = l(σ) and i1 < ... < ik

—for all p ∈ {1, ..., m} and q ∈ {1, ..., k}, sp
q � t

jp

iq
.

If we consider the array representations of σ and τ , σ ⊆ τ means that σ can be obtained by considering
columns j1, ..., jm and rows i1 < ... < ik in τ . So, if σ ⊆ τ then l(σ) ≤ l(τ) and r(σ) ≤ r(τ).

Example 2.2 Let us consider the multi-sequences σ and τ depicted below.

σ =

„

⊥ c
a ⊥

«

τ =

0

@

f e c
⊥ b ⊥
a d d

1

A

It is clear that σ ⊆ τ because if we consider rows 1 and 3 and columns 1 and 3 in τ , we obtain an
msp θ (with l(θ) = r(θ) = 2) such that σi

j � θi
j for each i = 1, 2 and j = 1, 2.

Moreover, it should be noticed that σ is an msp, whereas τ is not. We emphasize in this respect
that the inclusion relation ⊆ is defined over multi-sequences in general, and not only over msps.

2We use the notation msps to indicate two or more multi-sequences patterns

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

An Apriori-based Approach for First-Order Temporal Pattern Mining · 61

Frequent msps are defined as follows.

Definition 2.4 Let D be a dataset in its transformed version and (g, S(g)) ∈ D. We say that g sup-

ports an msp σ if σ ⊆ S(g). The support of an msp σ is defined by: sup(σ) =
|{g|g∈ΠIdGD and g supports σ}|

|D| .

An msp σ is said to be frequent if sup(σ) ≥ α, where α is a given minimum support threshold.

For instance, if we consider the dataset D of Figure 1, the msp of Example 2.1(a) is supported only
by group 1. So, its support is 0.25, and for α = 0.2, this msp is frequent. As shown in the following
proposition, msp frequency is an anti-monotonic property.

Proposition 2.1 Let σ and τ be msps and α a minimum support threshold. If σ ⊆ τ and sup(τ) ≥ α

then sup(σ) ≥ α.

Problem Formulation. The problem we are interested in can be described as follows: Given a
dataset D and a minimum support threshold α, find all msps that are frequent with respect to D and
α.

3. ALGORITHM PM

In this section we describe the algorithm PM (Projection Miner) for mining msps. The notations Cn
k

and Ln
k are used to denote the set of candidate msps and frequent msps of length k and rank n (n ≤ k)

respectively.

First of all, we show how an msp can be completely characterized by two simple (propositional)
sequences. Let σ be an ordered msp with l(σ) = k and r(σ) = n. The characteristic function of σ is
the function fσ : {1, ..., k} → {1, ..., n} such that fσ(i) is the number corresponding to the (unique)
column having an element of I in line i.

Now, we associate to σ two sequences of length k, denoted by Πt(σ) (the item-sequence of σ) and
Πs(σ) (the shape-sequence), as follows: Πt(σ) is the projection of σ over the time axis and Πs(σ) =
〈fσ(1), ..., fσ(k)〉.

For instance, if σ is the msp illustrated in case (e) of Example 2.1, then Πt(σ) = 〈a, b, c, d〉 and
Πs(σ) = 〈1, 1, 2, 3〉.

It is easy to verify that an msp is completely characterized by its shape-sequence and item-sequence.
The numbers k and n are called the length and rank of the shape-sequence Πs(σ) respectively. We
denote by proj(σ) the pair (Πt(σ),Πs(σ)). The inverse function is denoted by ⊠, that is Πt(σ) ⊠

Πs(σ) = σ.

In algorithm PM, the set Ln
k+1 is obtained from Ln

k and Ln−1
k . In order to do so, the msps in

Ln
k are projected in two sequence components: a shape-sequence and an item-sequence. At (sub)-

iteration k + 1 of iteration n, the set of candidate shape-sequences and item-sequences of rank n and
length k + 1 (denoted CIn

k+1 and CSn
k+1, respectively) are generated respectively from the sets of

frequent shape-sequences LSn
k , LSn−1

k and frequent item-sequences LIn
k , LIn−1

k , obtained in previous
iterations.

Figure 2 illustrates how the set Ln
k+1 is obtained from Ln

k and Ln−1
k .

The algorithm PM is given in Figure 3. At steps 3.5 and 3.9.6, the operator ⊠ is used to join the
item-sequences and shape-sequences. In this process, each shape-sequence in CSn

k is joined with all
item-sequences of CIn

k . The resulting set of msps is Cn
k (also denoted by CIn

k ⊠ CSn
k). The JoinI

operation joins the item-sequences in LIn
k ∪ LIn−1

k and returns the set CIn
k+1 of candidate item-

sequences. Analogously, the JoinS operation yields the set of shape-candidates CSn
k+1 by joining

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

62 · S. Amo, D. A. Furtado, A. Giacometti and D. Laurent

L
n

k

LI
n

k

LS
n

k

Join

Join

LI
n-1

k

LS
n-1

k

(pre)CIn

k+1

(pre)CSn

k+1

 Prunning

 Prunning

LI
n-1

k

LS
n-1

k

CI
n

k+1

CS
n

k+1

LI +
n

k

LS +
n

k

C
n

k+1 L
n

k+1
Validation

i

s

proj

 Candidate
 Generation

L
n

k

LI
n

k

LS
n

k

Join

Join

LI
n-1

k

LS
n-1

k

(pre)CIn

k+1

(pre)CSn

k+1

 Prunning

 Prunning

LI
n-1

k

LS
n-1

k

CI
n

k+1

CS
n

k+1

LI +
n

k

LS +
n

k

C
n

k+1 L
n

k+1
Validation

i

s

proj

 Candidate
 Generation

Fig. 2: Ln

k+1
is obtained from Ln

k
and Ln−1

k

shape-sequences in LSn
k ∪ LSn−1

k . The details of these join operations are given in section 3.1 below.
The function proj computes the projections Πi and Πs for all msps in Ln

k and returns the sets LIn
k

and LSn
k .

3.1 Candidate Generation

The JoinI operation between candidate item-sequences (CIn
k) is computed as in [Agrawal and Srikant

1996]. Concerning the generation of the candidate shape-sequences, there are three possibilities for
computing the result of the JoinS operation. Figure 4 illustrates each of these cases. We explain
below the three cases.

Let σ = 〈σ1, σ2, ..., σk〉 and τ = 〈τ1, τ2, ..., τk〉 be two shape-sequences of rank nσ and nτ respectively.
Let denote by σfirst and τ last the sequences obtained by eliminating the first element of σ and the
last element of τ respectively. If σfirst = τ last then σ and τ are joinable. In this case (Case 1), the
resulting sequence is 〈σ1, σ2, ..., σk, τk〉. Otherwise, we test if τ last

i + 1 = σlast
i for all i = 1, ..., k. If

this is verified (Case 2a) then σ and τ are joinable and one resulting sequence is 〈σ1, . . . , σk, τk + 1〉.
We next test (Case 2b) if Inc(τ)last

i = σlast
i for all i = 1, ..., k, where Inc(τ)i = τi + 1 if τi + 1 <

max(nσ, nτ) and Inc(τ)i = 1 otherwise. If this is verified then a second resulting sequence is also
obtained, defined as 〈σ1, . . . , σk, Inc(τ)k〉.

The following example illustrates the process of the candidate generation in PM.

Example 3.1 Let us suppose that L2
3 and L1

3 contain the msps σ and τ given below:

σ =





⊥ c

⊥ b

a ⊥



 and τ =





d

c

b



 γ =









⊥ d

⊥ c

⊥ b

a ⊥









We join σ and τ in order to obtain the candidate msp γ of rank 2 and length 4. We have Πi(σ) =
〈a, b, c〉 ∈ LI2

3 , Πs(σ) = 〈1, 2, 2〉 ∈ LS2
3 , Πi(τ) = 〈b, c, d〉 ∈ LI1

3 and Πs(τ) = 〈1, 1, 1〉 ∈ LS1
3 . By joining

the item-sequences 〈a, b, c〉 and 〈b, c, d〉 we obtain the item-sequence 〈a, b, c, d〉 ∈ LI2
4 . By joining the

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

An Apriori-based Approach for First-Order Temporal Pattern Mining · 63

Input: α: minimum support, N : number of data multi-sequences, D: dataset
1. k = 0; n = 1;
2. Repeat

2.1 k = k + 1;
2.2 L1

k
= frequent sequences of rank 1 and length k (uses GSP);

2.3 if L1
k
6= ∅ then { LI1

k
= L1

k
; LS1

k
= {〈1, 1, . . . , 1〉} };

Until L1
k

= ∅;
3. Repeat

3.1 n = n + 1; k = n;
3.2 CIn

n = JoinI(LIn−1
n−1 , LIn−1

n−1); (Candidate item-sequences generated from LIn−1
n−1)

3.3 CSn
n = {〈1, 2, ..., n〉}

3.4 delete all σ ∈ CIn
n such that ∃τ ⊆ σ, l(τ) = n − 1 and τ /∈ LIn−1

n−1 (pruning);
3.5 Cn

n = CIn
n ⊠ CSn

n (build the candidate msps)
3.6 Foreach group g in D do

Increment the count of all candidate msps in Cn
n that are contained in S(g);

3.7 Ln
n = candidates in Cn

n with count ≥ αN ;
3.8 (LIn

n , LSn
n) = proj(Ln

n); (projects item-sequences and shape-sequences of Ln
n into

LIn
n and LSn

n);
3.9 Repeat

3.9.1 k = k + 1;
3.9.2 CIn

k
= JoinI(LIn−1

k−1
∪ LIn

k−1
, LIn−1

k−1
∪ LIn

k−1
);

(Candidate item-sequences generated from LIn−1
k−1

and LIn

k−1
)

3.9.3 delete all σ ∈ CIn

k
such that ∃τ ⊆ σ, l(τ) = k − 1 and τ /∈ LIn−1

k−1
∪ LIn

k−1
;

(pruning item-sequences)
3.9.4 CSn

k
= JoinS(LSn−1

k−1
∪ LSn

k−1
, LSn−1

k−1
∪ LSn

k−1
);

(Candidate shape-sequences generated from LSn−1
k−1

∪LSn

k−1
)

3.9.5 delete all σ ∈ CSn

k
such that ∃τ ⊆ σ and τ /∈ LSn−1

k−1
∪ LSn

k−1
;

(pruning shape-sequences)
3.9.6 Cn

k
= CIn

k
⊠ CSn

k

3.9.7 Foreach group g in D do

Increment the count of all candidate msps in Cn

k
that are contained in S(g);

3.9.8 Ln

k
= candidates in Cn

k
with count ≥ αN ;

3.9.9 (LIn

k
, LSn

k
) =proj(Ln

k
); (projects item-sequences and shape-sequences of Ln

k
)

Until Ln

k
= ∅;

Until Ln
n = ∅;

Fig. 3: Algorithm PM

1 1 2 2 3

1 2 2 3 2
1 1 2 2 3 2

Case 1

1 2 2 2 3

1 1 1 2 3

1 2 2 2 3 4
2 2 2 3 4

+1

Case 2a

1 2 2 2 3

1 1 1 2 3

1 2 2 2 3 1
2 2 2 3 1

incr()

Case 2b

Fig. 4: Joining shape-sequences

shape-sequences 〈1, 2, 2〉 and 〈1, 1, 1〉 (Case 2a), we obtain the shape-sequence 〈1, 2, 2, 2〉 ∈ LS2
4 . We

notice that Case 2b does not apply here. The sequences 〈a, b, c, d〉 and 〈1, 2, 2, 2〉 uniquely characterize
the msp γ ∈ C2

4 .

The following theorem, whose proof can be found in Appendix A.2, states that, at each iteration step,
the frequent msps are among the generated candidate msps.

Theorem 3.1 For all n, k, 1 ≤ n ≤ k, we have Ln
k ⊆ Cn

k .

Regarding support counting, we note that the technique used in the validation phase is the same
as the one used in Algorithm SM. We refer to the end of the next section for details.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

64 · S. Amo, D. A. Furtado, A. Giacometti and D. Laurent

4. ALGORITHM SM

In this section, we present the algorithm SM (Simultaneous Miner) for mining msps. We remind that
Cn

k and Ln
k denote respectively the sets of candidate msps and frequent msps of length k and rank n,

where n ≤ k.

The general structure of the algorithm is that it generates first the frequent msps of rank 1
(L1

1, L
1
2, L

1
3, . . .), using an algorithm for mining (simple) sequential patterns (for instance, the algo-

rithm GSP ([Agrawal and Srikant 1996])). Then, for each rank n, the algorithm generates iteratively
the sets Cn

k of candidate msps of length k ≥ n. For the initial case k = n, Cn
n is generated from

Ln−1
n−1, which has been generated in the previous step corresponding to rank n−1. For the case k > n,

the set Cn
k (containing the candidate msps of length k and rank n) is generated from Ln−1

k−1 and Ln
k−1

which have been generated in previous steps. The supports for these candidate msps are computed
through a pass over the dataset. At the end of the pass, the set Ln

k (the candidate msps which are
actually frequent) is computed. These msps become the seed for the next pass k + 1. In Figure 5(a),
we illustrate how the set Ln

k is obtained from previous steps and in Figure 5(b), we illustrate the whole
mining process.

rank

length

k=1

k=2

k=3

k=4

n=1 n=2 n=3 n=4

L
1
1

L
1
2

L
1
3

L
1
4

L
2
2

L
2
3

L
2
4

L
3
3

L
3
4 L

4
4

(a)

L
n

k-1
Generation

L
n-1

k-1

(pre)C
n

k Prunning

L
n-1

k-1

C
n

k

L +
n

k-1

L
n

k
Validation

(b)

Fig. 5: Ln

k
is obtained from Ln−1

k−1
and Ln

k−1

The algorithm SM is given in Figure 6. In the pass where frequent msps of length k and rank n are
generated, the algorithm first generates the set Cn

k , the candidate msps (steps 3.2 and 3.6.2). After
that, the msps that contain msps not in Ln−1

k−1 and Ln
k−1 are pruned from Cn

k . This is so because,
according to Proposition 2.1, these msps have no chance to be frequent (steps 3.3, 3.6.3 and 3.6.4).
After the pruning phase, the supports of the candidates are computed through a pass over the dataset
(steps 3.4 and 3.6.5). In paragraph 4.1, we show in detail how candidate msps in Cn

k are built from
the sets Ln−1

k−1 and Ln
k−1 that have been calculated in previous steps.

4.1 Candidate Generation

Now, we show how to generate potentially frequent msps in Σn
k (recall that Σn

k denotes the set of msps
of rank n and length k). In this construction, we suppose that the columns of each msp σ ∈ Σn

k are
ordered by an ordering which is naturally induced by the ordering over time. For instance, in Figure
7(e) we have a non ordered msp (left) and the same msp where columns have been ordered (right).

We use the following notation in the sequel: if σ ∈ Σn
k then σ and σ denote the multi-sequences

(not necessarily msps) obtained by deleting, respectively, row n and row 1 from σ.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

An Apriori-based Approach for First-Order Temporal Pattern Mining · 65

Input: (α: minimum support, N : number of data multi-sequences, D: dataset)

1. n = 1; k = 0;
2. Repeat

2.1 k = k + 1;
2.2 L1

k
= frequent sequences of rank 1 and length k (uses GSP)

Until L1
k

= ∅;
3. Repeat

3.1 n = n + 1; k = n;
3.2 Cn

n = Ln−1
n−1 1 Ln−1

n−1 (New candidate msp’s of rank n and length n are generated from

Ln−1
n−1)

(For details on the operator 1, see Section 4.1);
3.3 delete all candidates σ ∈ Cn

n such that ∃τ ⊆ σ, τ ∈ Σn−1
n−1 and τ /∈ Ln−1

n−1 (pruning);
3.4 Foreach group g in D do

Increment the count of all candidate msp’s in Cn
n that are contained in S(g);

3.5 Ln
n = candidates in Cn

n with count ≥ αN ;
3.6 Repeat

3.6.1 k = k + 1;
3.6.2 Cn

k
= (Ln−1

k−1
1 Ln−1

k−1
) ∪ (Ln

k−1
1 Ln

k−1
) ∪ (Ln−1

k−1
1 Ln

k−1
) ∪ (Ln

k−1
1 Ln−1

k−1
)

(New candidate msp’s of rank n and length k are generated
from Ln−1

k−1
and Ln

k−1
See Section 4.1 for details);

3.6.3 delete all candidates σ ∈ Cn

k
such that ∃τ ⊆ σ, τ ∈ Σn−1

k−1
and τ /∈ Ln−1

k−1
;

(pruning 1)
3.6.4 delete all candidates σ ∈ Cn

k
such that ∃τ ⊆ σ, τ ∈ Σn

k−1
and τ /∈ Ln

k−1
;

(pruning 2)
3.6.5 Foreach group g in D do

Increment the count of all candidate msp’s in Cn

k
that are contained in S(g);

3.6.6 Ln

k
= candidates in Cn

k
with count ≥ αN ;

Until Ln

k
= ∅;

Until Ln
n = ∅

Fig. 6: Algorithm SM

As we can see in line 3.6.2 of Algorithm SM, there are four possibilities to obtain a candidate in
Cn

k :

(1) by joining two msps of Ln−1
k−1 ,

(2) by joining two msps of Ln
k−1,

(3) by joining an msp of Ln−1
k−1 with an msp of Ln

k−1, and

(4) by joining an msp of Ln
k−1 with an msp of Ln−1

k−1 .

Figure 7 gives the conditions for two msps being joinable (below each figure) as well as the result of
the join operation, in the four cases.

The following theorem, whose proof can be found in Appendix A.1, guarantees that: (1) all frequent
msps of Σn

k are included in Cn
k and (2) Cn

k is minimal, in the sense that it contains only the potentially
frequent msps of Σn

k :

Theorem 4.1 For all n, k, 1 ≤ n ≤ k, we have: (1) Ln
k ⊆ Cn

k . (2) If σ ∈ Σn
k and there exists τ ⊆ σ,

τ 6= σ, such that τ is not frequent, then σ 6∈ Cn
k .

4.2 Support Counting

In order to reduce I/O operations over the dataset and compute the support of each msp in Cn
k by

executing only one pass over the dataset, we find all candidates σ which are included in S(g), for
each data multi-sequence S(g). In order to reduce the number of candidates which have to be tested
for inclusion for each data multi-sequence S(g), we use a technique similar to the one described in

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

66 · S. Amo, D. A. Furtado, A. Giacometti and D. Laurent

a

b

c

d

e
f

g

b

c

d

e
f

a

b

c

d

e
f

gL
n-1
k-1

L
n-1
k-1 L

n
k

Case 1: if we eliminate the first column of σ and last

column of τ then the resulting msps are identical.

a

b

c

d

e
f

g

b

c

d

e
f

a

b

c

d

e
f

gL
n
k-1

L
n
k-1 L

n
k

Case 2a: σ and τ are identical.

a

b

c

d

e
f

g

b

c

d

e
f

a

b

c

d

e
f

gL
n
k-1

L
n
k-1 L

n
k

Case 2b: σ and τ are identical after shifting the colomns
of τ one place to the right.

a

b

c

d

e

g

b

c

d

e
f

a

b

c

d

e
f

g

f

L
n-1
k-1

L
n
k-1 L

n
k

Case 3: σ and τ are identical and the last column of τ

oonly contain the symbol ⊥.

a

b

c

d

e
f

g

b

c

d

e
f

a

b

c

d

e
f

gL
n
k-1

L
n-1
k-1 L

n
k

Case 4: The first column of σ only contains the symbol

⊥ and σ is identical to τ after shifting σ one place to the
left.

0

B

B

@

d ⊥ ⊥
⊥ c ⊥
⊥ ⊥ b
⊥ ⊥ a

1

C

C

A

→

0

B

B

@

⊥ ⊥ d
⊥ c ⊥
b ⊥ ⊥
a ⊥ ⊥

1

C

C

A

(e) An msp and its ordered version

Fig. 7: Joining msps

[Agrawal and Srikant 1995] for counting the support of sequences, by storing the set of candidate msps
Cn

k in a set of hash-trees. We omit these technical details here.

5. EXPERIMENTAL RESULTS

To evaluate the performance of the algorithms SM and PM, we ran several experiments using synthetic
datasets. Our experiments have been run on a Pentium 4 of 2.4 GHz with 1GB of main memory and
running Windows XP Professional.

5.1 Synthetic Data

We have developed a synthetic data generator using the idea described in [Agrawal and Srikant 1995]
for the synthetic data-sequences generator. Our generator produces datasets of multi-sequences in
accordance with the input parameters as shown in Table 1.

We have generated datasets by setting N = 3000 and Nm = 1000. The average rank of potentially

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

An Apriori-based Approach for First-Order Temporal Pattern Mining · 67

frequent multi-sequences (|R|) was set to 3 and the average length of potentially frequent multi-
sequences (|S|) was set to 4. Table 2 summarizes the dataset parameter settings. The dataset
D4-G4-C6, for instance, keeps 4000 groups with average number of clients per group equal to 4 and
the average number of transactions per client equal to 6.

Table 1: Parameters used in the Synthetic Data Generator

|D| Number of groups (size of dataset) - in ’000s
|G| Average number of customers per group
|C| Average number of transactions per customer
|R| Average rank of potentially frequent msp’s
|S| Average length of potentially frequent msp’s
N Number of items
Nm Number of maximal potentially frequent msp’s

Table 2: Synthetic Datasets - Parameter Settings

Name |D| |G| |C| Size
MB

D2-G4-C3 2 4 3 1.06
D2-G4-C6 2 4 6 2.09
D2-G6-C3 2 6 3 1.57
D4-G4-C6 4 4 6 4.19

5.2 Performance Analysis

Figure 8 shows the execution times of algorithms SM and PM for the four datasets given in Table
2 as the minimum support decreases from 1% to 0.25%. As expected, the execution times for both
algorithms increase. PM performs worse than SM for low support levels, mainly because more patterns
of large ranks are generated in the generation phase of PM. This set is more refined in SM algorithm
because the generation and pruning of the candidates msps are achieved without decomposing them
into the shape-sequences and item-sequences.

Both algorithms present a similar performance for high support levels. The reason is that, in this
case, the generated patterns have small rank (usually less than 4) and most of the execution time is
spent during the first iteration, which is the same for both algorithms.

5.3 Scale-up

We present some results regarding scale-up experiments for PM and SM. Other scale-up experiments
have also been performed and similar results were obtained. Figure 9 shows how SM and PM scale
up as the number of data multi-sequences (|D|) increases from 1000 to 5000. We show the results for
the datasets Dx-G3-C3 (x = 1, . . . , 5) and a minimum support set to 0,15%. The figure shows that
SM scales more linearly than PM with respect to the number of data multi-sequences.

Figure 10 shows how both algorithms scale up as the number of clients per group (|G|) increases
from 3 to 8. The datasets used were D2-Gx-C3 (x = 3, . . . , 8), for which the minimum support was
set to 0,25%.

We can see that the execution time for PM intensely increases as the number of clients per group
increases, contrarily to SM algorithm, whose execution time increases smoothly. This behaviour is
explained by the fact that PM generates more candidates than SM at each pass. On the other hand,
the execution time of support calculation increases with respect to the number of clients in each group.
So, it is expected that the performance of PM will be worse, since the number of candidates tested
by PM at each pass is greater than the one tested by SM.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

68 · S. Amo, D. A. Furtado, A. Giacometti and D. Laurent

Fig. 8: Execution times: Synthetic Data

Fig. 9: Scale-up w.r.t to data multi-sequences Fig. 10: Scale-up w.r.t. clients per group

6. ONGOING AND FURTHER RESEARCH

The two algorithms proposed in this article are designed to produce all frequent multi-sequential
patterns, regardless to users’ specific interests. At the present time, we are investigating constraint-
based methods for restricting the candidate search space. Often, users require richer mechanisms for
specifying patterns of interest, rather than the simple mechanism provided by minimum support.

Concerning the classical problem of mining sequential patterns ([Agrawal and Srikant 1995]), one
of the most flexible tools enabling user-controlled focus to be incorporated into the pattern mining
process has been proposed in [Garofalakis et al. 1999]: besides the dataset, the user proposes a regular

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

An Apriori-based Approach for First-Order Temporal Pattern Mining · 69

expression as input, which aims at capturing the shape of patterns he/she is interested in discovering.
The automaton associated to this regular expression is incorporated into the mining process that
outputs the sequential patterns exceeding a minimum support threshold and which are accepted by
the automaton. We are investigating the introduction of regular expression restrictions over msps and
the development of algorithms to mine msps satisfying such restrictions.

Another direction for future research concerns performance comparison between our Apriori-based
method SM and methods for first-order sequential pattern mining based on Inductive Logic Program-
ming. We intend also to validate our mining algorithms over real datasets.

REFERENCES

Agrawal, R. and Srikant, R. Mining Sequential Patterns. In Proceedings of the International Conference on Data
Engineering. Taipei, Taiwan, pp. 3–14, 1995.

Agrawal, R. and Srikant, R. Mining Sequential Patterns: Generalizations and Performance Improvements. In
Proceedings of the Fifth Int. Conference on Extending Database Technology. Avignon, France, pp. 3–17, 1996.

Berger, G. and Tuzhilin, A. Discovering unexpected patterns in temporal data using temporal logic. Information
Systems Working Papers Series, 1999.

Bettini, C., Wang, X. S., and Jajodia, S. Testing complex temporal relationships involving multiple granularities and
its application to data mining (extended abstract). In Proceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems. Montreal, Canada, pp. 68–78, 1996.

Das, G., ip Lin, K., Mannila, H., Renganathan, G., and Smyth, P. Rule discovery from time series. In Proceedings
of the 4th International Conference of Knowledge Discovery and Data Mining. AAAI Press, New York City, USA,
pp. 16–22, 1998.

Garofalakis, M. N., Rastogi, R., and Shim, K. Spirit: Sequential pattern mining with regular expression constraints.
In Proceedings of the International Conference on Very Large Databases. Edinburgh, Scotland, pp. 223–234, 1999.

Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., and Hsu, M.-C. Freespan: frequent pattern-projected
sequential pattern mining. In Proceedings of the sixth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. Boston, USA, pp. 355–359, 2000.

Jacobs, N. and Blockeel, H. From shell logs to shell scripts. In Proceedings of the International Conference on
Inductive Logic Programming. Strasbourg, France, pp. 80–90, 2001.

Joshi, M., Karypis, G., and Kumar, V. A universal formulation of sequential patterns. Tech. rep., Technical Report
99-021, Department of Computer Science and Engineering, University of Minnesota, USA, 1999.

Lee, S. D. and Raedt, L. D. Constraint Based Mining of First Order Sequences in SeqLog. In Proceedings of the
Workshop on Multi-Relational Data Mining. ACM SIGKDD, Alberta, Canada, 2002.

Lu, H., Feng, L., and Han, J. Beyond intratransaction association analysis: mining multidimensional intertransaction
association rules. ACM Transactions on Information Systems 18 (4): 423–454, 2000.

Mannila, H., Toivonen, H., and Verkamo, A. I. Discovery of frequent episodes in event sequences. Data Mining
and Knowledge Discovery 1 (3): 259–289, 1997.

Masson, C. and Jacquenet, F. Mining frequent logical sequences with spirit-log. In Proceedings of the International
Conference on Inductive Logic Programming. Sydney, Australia, pp. 166–181, 2002.

Padmanabhan, B. and Tuzhilin, A. Pattern discovery in temporal databases: A temporal logic approach. In Proceed-
ings of the Second International Conference on Knowledge Discovery in Databases. Portland, USA, pp. 351–354,
1996.

Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q., and Dayal, U. Multi-dimensional sequential pattern mining. In
Proceedings of the Tenth International Conference on Information and Knowledge Management. Atlanta, USA, pp.
81–88, 2001.

Zaki, M. J. Spade: an efficient algorithm for mining frequent sequences. Machine Learning Journal vol. 42, pp. 31–60,
2001.

A. PROOFS

We first give the proof of Theorem 4.1, and then, the proof of Theorem 3.1 is provided, based on that
of Theorem 4.1.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

70 · S. Amo, D. A. Furtado, A. Giacometti and D. Laurent

A.1 Proof of Theorem 4.1

(1) Let σ ∈ Ln
k . We suppose the columns of σ are ordered (See Figure 7 (e)). For n = 1, the result

is verified, because the candidate generation procedure used in algorithm Apriori-All is correct, i.e.,
the set of candidates always contains all frequent sequences. For n = k = 2, the result is also verified
because, as σ ∈ L2

2, the msps {〈σ1
1〉} and {〈σ2

2〉} are in L1
1. So, by construction of C2

2 , it is clear that
L2

2 ⊆ C2
2 . Let n, k be such that 2 ≤ n ≤ k and k ≥ 3. We have the following cases to consider:

—The (unique) item of line 2 is placed in column 1 and
(a) there exists an item in column n placed in a line i, with i < k: in this case, σ ∈ Ln

k 1
n
k Ln

k ,
(b) column n contains only one item, which is placed in line k: in this case, σ ∈ Ln−1

k−1 1
n
k Ln

k .

—The (unique) item of line 2 is placed in column 2 and
(a) there exists an item in column n placed in a line i, with i < k: in this case, σ ∈ Ln

k 1
n
k Ln−1

k−1 ,

(b) column n contains only one item, which is placed in line k: in this case, σ ∈ Ln−1
k−1 1

n
k Ln−1

k−1 .

(2) Since τ ⊆ σ and τ 6= σ, τ ∈ Σm
p with m < n or p < k. Then:

—Let m < n and m ≤ p ≤ k. In this case, τ is obtained by deleting at least one column of σ and one
of the lines corresponding to the items in this column. So p < k. We can suppose, without loss of
generality, that only one column has been deleted, i.e. m = n − 1. We have that τ is contained in
an msp τ ′ ∈ Σn−1

k−1 , such that τ ′ ⊆ σ. Since τ is not frequent, then τ ′ is not frequent as well, i.e.,

τ ′ 6∈ Ln−1
k−1 . Then, by construction of the msps in Cn

k , σ 6∈ Cn
k .

—Let m = n and n ≤ p < k. In this case, τ is obtained by deleting at least one line of σ. We can
suppose, without loss of generality, that only one line has been deleted. Thus, τ ∈ Σn

k−1. Since τ is
not frequent, i.e. τ 6∈ Ln

k−1, by construction of the msps in Cn
k , σ 6∈ Cn

k . 2

A.2 Proof of Theorem 3.1

The proof follows from the proof of Theorem 4.1 just above. This is so because the JoinS operation
between shape-sequences is defined in such a way that:

Πs((L
n−1
k−1 1 Ln−1

k−1) ∪ (Ln−1
k−1 1 Ln

k−1) ∪ (Ln
k−1 1 Ln

k−1) ∪ (Ln
k−1 1 Ln

k−1)) =

JoinS(Πs(L
n−1
k−1), Πs(L

n−1
k−1)) ∪ JoinS(Πs(L

n−1
k−1), Πs(L

n
k−1)) ∪

JoinS(Πs(L
n
k−1), Πs(L

n−1
k−1)) ∪ JoinS(Πs(L

n
k−1), Πs(L

n
k−1)). 2

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.

