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Abstract. Database applications have become very complex, dealing with a huge volume of data and database ob-
jects. Concurrently, low query response time and high transaction throughput have emerged as mandatory requirements.
Among other possible interventions regarding database performance, SQL query rewriting has proved an efficient alter-
native. The idea is to write a new SQL statement equivalent to the initially formulated statement, where the new SQL
statement provides performance gains w.r.t. query response time. In this article, we propose an online, automatic and
non-intrusive approach for rewriting SQL queries, denoted ARe-SQL. ARe-SQL rewrites SQL statements, using a set of
eleven heuristics. Based on ARe-SQL, two different strategies for SQL query rewriting, denoted assisted and automatic,
were implemented. These strategies were evaluated in three different DBMS considering three distinct scenarios. The
results indicate that both strategies can provide performance gains, which, in some cases, reach 92.5%.

Categories and Subject Descriptors: H.3.2 [Information Storage and Retrieval]: Information Storage—File orga-
nization; H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval—Retrieval models

Keywords: database tuning, query processing, query rewriting

1. INTRODUCTION

Database queries are expressed by means of high-level declarative languages, such as SQL (Structured
Query Language), for instance. Such queries are submitted to the query engine, which is responsible for
processing queries in database management systems (DBMS). Thus, query engines should implement
four main activities: query parsing, logical execution plan (LEP) generation, physical execution plan
(PEP) generation and PEP execution. LEP and PEP generation and PEP execution are often called
the query optimization. The main functionality of the query optimizer is to find an efficient execution
plan for a given query. For that purpose, cost-based optimizers search, in a large space of alternatives,
called search space, the PEP, which is expected to be executed in the less amount of time.

An efficient strategy to support optimizers in the task of building efficient execution plans is query
rewriting. The rewriting technique is based on the principle that two queries are equivalent if and
only if their execution produces the same result [Ramakrishnan and Gehrke 2002]. Thus, rewriting a
query Qa consists in specifying a new SQL statement Qb equivalent to Qa, where Qa and Qb return
the same result and the execution of Qb provides performance gains w.r.t. Qa’s execution. In order
to illustrate performance gains achieved by means of query rewriting, consider the queries Qa and Qb
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SELECT * FROM orders
WHERE o_totalprice < ALL (SELECT o_totalprice

FROM orders
WHERE o_orderpriority = ‘2-HIGH’)

Execution time = 13,685 ms

SELECT * FROM orders
WHERE o_totalprice < (SELECT MIN(o_totalprice)

FROM orders
WHERE o_orderpriority = ‘2-HIGH’)

Execution time = 1,825ms

Fig. 1. SQL expression for Qa Fig. 2. SQL expression for Qb

Fig. 3. PEP PQa yielded by PostgreSQL for Qa Fig. 4. PEP PQb
yielded by PostgreSQL for Qb

depicted in Figures 1 and 2, respectively. In order to execute those queries, the TPC-H benchmark’s
database has been created in a PostgreSQL database server.

Looking more closely to Figures 1 and 2, one can observe that Qa and Qb are equivalent. Nonethe-
less, Qa execution lasts 13.685ms, while Qb is executed in 1.825ms. In fact, Qb was obtained by
removing the ALL operator from Qa and including the MIN operator in subquery of Qa.

Therefore, we may formulate the following hypothesis, the way a query Q is formulated in terms of
SQL commands induces the query optimizer to produce a given PEP for Q. To show the veracity of
our hypothesis, consider the execution plans for queries Qa and Qb depicted in Figures 3 and 4. Those
plans have been yielded by PostgreSQL’s query engine. The PEP showed in Figure 4 is more efficient
(1,825 ms) than PEP depicted in Figure 3 (13,685 ms). This fact stems from the least amount of
data materialized in the “Materialize” operation, which is performed after the “Aggregate” operation
(in the PEP illustrated in Figure 4).

Database query tuning tools explore these aspects in order to help query optimizers to produce
better PEPs. These tools may be categorized as (i) online or offline; (ii) automatic or non-automatic;
and (iii) intrusive or non-intrusive. Offline approaches rely on human intervention for specifying
the time window for capturing the workload. In addition, they do not allow the system to react
to workload dynamics [Weikum et al. 2002; Chaudhuri and Weikum 2006]. On the other hand, an
online tuning tool is able to dynamically capture database workload. Automatic query tuning tools
have the ability of automatically triggering adjustments to improve query performance. Conversely,
non-automatic tools transfer to the DBA (Database Administrator) the responsibility for making such
adjustments. This includes the definition of the most appropriate moment to apply the recommended
query changes and to choose, among the suggested actions, those that in fact should be executed and
in which order. Intrusive solutions are those that require changes in the DBMS code and, therefore,
are tightly coupled to a particular DBMS. Non-intrusive solutions are those that are disconnected
from a particular DBMS implementation and that are usually not affected by any new DBMS release.

In fact, there are some tools that aim at tuning database query performance by providing rewriting
recommendations. However, they adopt an offline approach, since they provide recommendations
only when a human (e.g., DBA) requires such recommendations. Most of them are intrusive, which
means that they are DBMS-specific. Additionally, they present a strong issue, for a given query they
may provide several rewriting recommendations. In this case, the DBA is in charge to choose one of
them without any indication (from the tool) that the chosen recommendation will provide the best
performance gains regarding response time.

In this article, we propose an online, automatic and non-intrusive approach for rewriting SQL
queries, denoted ARe-SQL. The proposed approach provides the necessary support to implement
two different strategies for SQL-query rewriting. In the first strategy, denoted automatic, ARe-SQL
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autonomously captures SQL queries submitted by users or applications and identifies which queries
should be rewritten. Thereafter, queries are sent to the database query engine. The second strategy,
denoted assisted, works as an autonomous advisor, which analyze previously executed SQL statements
in order to recommend (through alerts, reports and wizards) SQL tuning opportunities. In both
strategies, the rewritten queries profit from performance gains as we show in Section 4.

The key goal of ARe-SQL is to assist optimizers in building efficient query physical execution plan.
In a proactive manner, ARe-SQL rewrites SQL statements which will induce query engine to produce
better plans than those that would be built by executing the original SQL statements. We advocate
that the main features presented by ARe-SQL are the following.

—Implementation of a non-intrusive strategy. Due to this feature ARe-SQL may be applied to different
database systems. In other words, it is not DBMS-specific.

—Autonomy. ARe-SQL has the ability of automatically triggering query rewritings or recommenda-
tions. This includes the definition of the most appropriate moment to apply the recommended
rewritings and to choose, among the suggested actions, those that in fact should be executed and
in which order.

—Low-overhead tuning activity. By using our approach, the database system keeps running while our
automatic tool runs continuously capturing the workload, in a lightweight manner.

We have implemented the proposed approach, including automatic and assisted strategies. These
strategies were evaluated in three different DBMS (Oracle, SQL Server and PostgreSQL) considering
three different scenarios, comprising the TPC-H benchmark. The experimental results indicate that
both strategies can provide performance gains. In some cases, such performance gains reach 92.5%.

The rest of the article is structured as follows. Section 2 discusses most relevant related work. The
proposed approach is presented and analyzed in Section 3. In turn, Section 4 analyzes experimental
results. Finally, Section 5 concludes this article.

2. RELATED WORK

Bruno et al. [2009] propose a framework, called Power Hints, which enables the creation and use of
hints. In the proposed framework, hints are created by means of regular expressions, making it easy
and flexible to create restrictions for query execution plans, allowing more precise tuning.

Herodotou and Babu [2009] present a tool called zTuned. Its purpose is to facilitate experiments
related to tune SQL queries. The tool produces sets of plans with operators that have the same
cardinality (called neighborhood plans) and chooses the optimal plan among the best plans for each
neighborhood, using the mechanism of cost estimative of the DBMS. The tool works decoupled from
the query optimizer and can potentially be used with any DBMS that has a cost-based optimizer.

Belknap et al. [2009] describe a new Oracle 11g database feature, called Automatic SQL Tuning.
This tool extends the SQL Tuning Advisor (present on Oracle 10g) fully automating the SQL tuning
workflow and solving some SQL performance problems without any DBA intervention. Quest SQL
Optimizer for Oracle [Quest 2010] provides semantically equivalent SQL statements for a given query.
In this case, the DBA should pass to the tool which query should be analyzed. Moreover, it is up to
the DBA to choose one of the several recommended SQL statements.

Markl et al. [2003] discuss an autonomic query optimizer, called LEO (LEarning Optimizer for DB2),
that automatically self-validates its model without requiring any user interaction to repair incorrect
statistics or cardinality estimates. By monitoring queries as they execute, the autonomic optimizer
compares the optimizer’s estimates with actual cardinalities at each step in a PEP, and computes
adjustments to its estimates that may be used during future optimizations of similar queries.
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The tool IBM Optim Development Studio [IBM 2010] collects query performance metrics in DB2.
The metrics are query execution frequency, cost and time. Thus, with such metrics, it is possible to
identify queries, for which query rewriting recommendation are worthwhile. It is important to mention
that this tool collects metrics for a given period of time (defined by the DBA).

Embarcadero DB Optimizer XE [Embarcadero 2010] identifies hints which should be encoded in a
given SQL statement, i.e., it does not propose query rewritings. Its goal is mainly to eliminate unnec-
essary outer joins and Cartesian products. Additionally, Embarcadero may provide recommendations
for improving index configuration.

Therefore, most of the investigated SQL tuning tools (Automatic SQL Tuning Advisor [Dageville
and Dias 2006], IBM Optim Development Studio [IBM 2010], Embarcadero DB Optimizer XE [Em-
barcadero 2010] and Quest SQL Optimizer for Oracle [Quest 2010]) adopt an offline approach. In
this sense, they transfer to the DBA the responsibility for defining the set of queries to be evaluated
for choosing one of the several alternatives provided by them. Observe that DBAs work in a reactive
way, i.e., they only trigger a tool or an advisor when the problem already exists. Furthermore, after
identifying the problem (a time consuming query) and a possible solution, a DBA should rewrite the
SQL statement, test and send it to a programmer to change the application code which is using the
SQL statement. This whole process is rather time consuming. On the other hand, Oracle Automatic
SQL Tuning is an online tool. However, it’s an intrusive solution and runs only with Oracle 11g. The
approach proposed in this article differs from previous work since ARe-SQ is an online, automatic and
non-intrusive approach. Furthermore, most of these tools are proprietary, involving high acquisition
costs. These aspects hinder the performance comparison between ARe-SQL and previous solutions.

Finally, this article extends our previous work [Araújo et al. 2013] in some aspects. First, we present
a more detailed related work. Next, we include a discussion about how ARe-SQL was implemented
in both assisted and automatic approaches. We also present new experiments to evaluate overhead.

3. ARE-SQL

ARe-SQL’s main functionality is to influence query optimizer to choose an effectual query execution
plan. ARe-SQL proactively rewrites SQL statements which will induce query engine to produce better
plans. In order to achieve its goal, ARe-SQL works directed by a set of heuristics. The heuristics
consist of rules to identify potential opportunities for tuning SQL statements and the ways to rewrite
the statements. Table I brings the eleven heuristics applied by ARe-SQL. Furthermore, it indicates
whether or not each heuristic is currently implemented by three major DBMS: PostgreSQL 8.3, Oracle
11g and SQL Server 2008.

3.1 ARe-SQL Architecture

In order to implement ARe-SQL, two different approaches were employed: assisted and automatic.
For each approach, a different tool was implemented. However, both approaches present the following
features. First, it is non-intrusive, since it is completely decoupled from the source code of the DBMS.
This allows that the conceived solution can be used with any DBMS. Second, it is independent of
location. it can run on a machine different than that used to host the DBMS, not consuming server
resources where the DBMS is hosted.

3.1.1 Assisted Approach. A query-rewriting tool based on assisted approach consists of an advisor
which has the ability: (i) to capture the previously SQL statements executed by DBMS; (ii) to
analyze these statements, and; (iii) to recommend (through alerts, reports or wizards) SQL tuning
opportunities. Thus, the advisor can identify SQL statements that could be rewritten. Additionally,
such a type of tool allows the DBA to interact with the tuning process. For instance, a DBA may
select a subset of available heuristics to be applied for the SQL-query tuning process. In other words,
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Table I. Heuristics for SQL Tuning
Heuristcs for SQL Tuning PostgreSQL Oracle SQL Server

H1 Transform queries which create and use temporary table into an
equivalent sub-query.

No No No

H2 Eliminate unnecessary GROUP BY. No No No
H3 Remove having clause whose predicates do not have any aggregate

function. The predicates should be moved to a WHERE clause.
No No No

H4 Change query with disjunction in the WHERE to a union of query
results.

No Yes No

H5 Remove ALL operation with greater/less-than comparison opera-
tors by including a MAX or MIN aggregate function in the sub-
query.

No Yes No

H6 Remove SOME operation with greater/less-than comparison op-
erators by including a MAX or MIN aggregate function in the
subquery.

No Yes No

H7 Remove ANY operation with greater/less-than comparison op-
erators by including a MAX or MIN aggregate function in the
subquery.

No Yes No

H8 Replace IN set operation by a join operation. No Yes No
H9 Eliminate unnecessary DISTINCT. No No No
H10 Move function applied to a column index to another position in

the expression.
No No No

H11 Move arithmetic expression applied to a column index to another
position in the expression.

No No No

the DBA can specify that some heuristics are unnecessary or inappropriate for a given database system
or a given statement.

We have implemented a tool, called ARe-SQL Advisor, which implements an assisted approach for
ARe-SQL. Figure 5 depicts an abstract model of ARe-SQL Advisor architecture. To utilize ARe-SQL
Advisor in a given DBMS, it is necessary to instantiate two specific drivers: a driver for workload
access (DWA) and a driver for statistics access (DSA). These drivers are the only components of ARe-
SQL Advisor which are DBMS-specific. Nevertheless, these drivers are implemented in a non-intrusive
fashion. We have so far implemented drivers for the following DBMS: PostgreSQL 8.4, Oracle 11g
and SQL Server 2008 (see Section 4). The main components of the architecture illustrated in Figure 5
are the following.

—Agent for Workload Obtainment (AWO): This agent observes the operations submitted to the DBMS
and retrieves the SQL statements and then stores them in the local metabase (Local MetaData -
LM). This agent can be configured to run continuously (On-the-fly).

—Local Meta Data (LM): Database that stores workloads captured by AWO.
—Driver for Workload Access (DWA): This component enables ARe-SQL Advisor to access the
metabase (catalog) of a given DBMS.

—Agent for Statistics Obtainment (ASO): This component is in charge of accessing statistics infor-
mation of the target DBMS, such as table cardinality, the amount of disk pages required to store a
database table, the height of (B+ tree) index structures and so forth.

—Driver for Statistics Access (DSA): driver that allows the ASO to retrieve statistics for a specific
DBMS.

—Heuristic Set (HS): set of heuristics used by the agents to identify SQL statements with oportunities
of tuning and in order to rewrite them. HS is composed of 11 heuristics, which are depicted in
Table I. However, new heuristics can be defined and inserted into HS.

—Agent for SQL Tuning (AST): Component responsible for tuning a particular SQL statement using
the set of heuristics (HS).
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Fig. 5. ARe-SQL Advisor’s Architecture Fig. 6. Architecture of ARe-SQL’s Automatic Approach

—Tuning Settings (TS): This component is a preference file containing pairs <SQL statement Q,
subset of heuristics H> defined by the DBA. Each pair indicates a heuristic subset chosen by the
DBA from HS that he/she wants to be applied for tuning Q. If there isn’t an entry in this file for
a given statement Q, all 11 heuristics are applied for tuning Q (in both, Assisted and Automatic
Approaches).

3.1.2 Automatic Approach. The automatic approach consists of a middleware, ARe-SQL Mid, that
works between the application and the DBMS. This middleware is responsible for: (i) automatically
receiving SQL statements sent by applications; (ii) analyzing and rewriting them whenever necessary,
and; (iii) submitting the statements (rewritten or not) to the DBMS. The architecture designed for the
automatic approach is illustrated in Figure 6. The main components of this architecture, in addition
to components that are also present in Figure 5, are the following.

—Middleware for SQL Tuning (MST): is responsible for receiving SQL statements from the applica-
tions; send them to the AST agent; receive from the AST agent the rewritten (or not) statements;
send these SQL commands to the DBMS; receive the SQL results and send them to the applications.

—Driver for Data Access (DDA): driver that allows the engine of the middleware (Middleware for
SQL Tuning) to send the SQL statements to the target DBMS.

Additionally, in order to reduce the overhead in the automatic approach, a query rewriting cache
(QRC) can be used. This component is a cache file containing pairs <SQL statement Qa, rewritten
SQL Qb >, where Qb was produced by ARe-SQL using Qa as input. It is important to note that QRC
is a rewriting cache. Then, it does not store PEPs, just SQL statements. The DBA can enable or not
using QRC. If QRC is disabled or there isn’t an entry in this file for a given statement Qa, ARe-SQL
will need to apply the heuristics to produce Qb.

3.2 Implementing ARe-SQL

Given a particular SQL statement Q, the rewriting process, by means of heuristics presented in Table
I, needs to sweep the text of Q searching for tuning opportunities (eg, the existence of an unnecessary
DISTINCT operator) and then changes the syntax of Q, generating a new command Q′. For this,
we use a SQL parser called ZQL[Thuraisingham et al. 2010]. It is important to note that other SQL
parsers have also been investigated and analyzed, such as General SQL Parser [Merlo et al. 2007] and
SQL Query Parser [Elliott et al. 2009]. Nonetheless, ZQL has been selected to be an easy tool to use,
free (open-source) and additionally it allows the inclusion of new rules in its SQL grammar.

The ZQL parser was developed using JavaCC (Java Compiler Compiler) [Kodaganallur 2004] with a
SQL grammar. In order to recognize SQL statements, ZQL stores elements which may compose SQL
statements in Java data structures. Thus, for a given SQL statement, ZQL generates objects that store
the column list in SELECT clause, the table list in FROM clause, arithmetic or logical expressions,
among others. These objects were used to implement the heuristic set presented in Table I.
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SELECT c_custkey, c_name, c_address, c_phone
FROM (SELECT * FROM customer), nation, region
WHERE c_nationkey = n_nationkey
AND n_regionkey = r_regionkey
GROUP BY c_custkey, c_name, c_address, c_phone

Fig. 7. SQL expression for Qc

Function heuristicH5(Qj)
oqj = a ZQuery instance representing Qj

Vector operators = oqj .getWhere().getOperators()
For each operator ∈ operators do

If ((operator == “>=”) or (operator == “>”) or (operator == “<=”) or (operator == “<”))
leftText = text on the left side of the operator
rightText = text on the right side of the operator
If rightText startsWith “ALL”

sq = the sub-query on rightText
remove “ALL” from sq
If ((operator == “>=”) or (operator == “>”))

add “MAX” function in sq
End If
If ((operator == “<=”) or (operator == “<”))

add “MIN” function in sq
End If

End If
End If
End For
Return Q′

j //The SQL Statement produced by applying H5
End Function

Fig. 8. Algorithm for Heuristic H5

The ZQL receives as input a string containing a given SQL statement Q (select, insert, update,
delete, commit, rollback or set transaction) and creates a Java data structure to represent Q. For
this, ZQL uses the Java Class ZStatement or one of its subclasses ZQuery or ZUpdate.

To illustrate the process of parsing a SQL statement, consider the SQL queryQc depicted in Figure 7.
Now, assume that Qc is sent to the ZQL. Thus, to represent Qc, ZQL creates an instance of the ZQuery
class, denoted by oc. The method getSelect() of oc builds a Vector of objects V containing one object
(instance of the class ZColumn) for each column in the SELECT clause of Qc: c_custkey, c_name,
c_address and c_phone. Similarly, the method getFrom() returns a Vector of objects containing one
object for each table in the FROM clause of Qc. It is noteworthy that, in this case, the vector will
include a ZQuery instance to represent the sub-query SELECT * FROM customer and two objects
(instances of the class ZTable) to depict the tables nation and region. The method getWhere() returns
an object of the ZExpression class. A ZExpression object can contain instances of the ZQuery class.
The method getGroupby() returns an object of the ZGroupby class. A ZGrouby object can contain
instances of the ZQuery class.

For each heuristic inHS (Table I) we have implemented an algorithm. Figure 8 describes the process
of applying the heuristic H5. This algorithm receives as input a SQL statement Qj and produces as
output a SQL statement Q′

j , a new SQL statement equivalent to Qj produced by heuristic H5.

The algorithm illustrated in Figure 9 describes the process of rewriting a SQL query Qj , using the
heuristic set presented in Table I. This algorithm receives as input a SQL statement Qj and produces
as output a SQL statement Q′

j), a new SQL statement equivalent to Qj).
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Function runHeuristics(Qj)
For each heuristic hi ∈ HS do

run hi(Qj)
End For
For each sub-query Qs in the WHERE clause of Qj do

runHeuristics(Qs)
End For
For each sub-query Qs in the FROM clause of Qj do

runHeuristics(Qs)
End For
For each sub-query Qs in the SELECT clause of Qj do

runHeuristics(Qs)
End For
For each sub-query Qs in the HAVING clause of Qj do

runHeuristics(Qs)
End For
Return Q′

j //The SQL Statement produced by the rewriting process
End Function

Fig. 9. Recursive algorithm for SQL rewriting

Note that the DBA has the ability to interact with the tuning suggestions provided by the advisor, in
the assisted strategy. For example, the DBA can decide to apply only a subset of heuristics belonging
heuristic set (HS), the DBA can force the application of heuristics that have not been effectively used
by the advisor or the DBA can choose the order in which the heuristics are performed, among other
options. Besides, the DBA can choose and set a subset of the available heuristics so that they are
always executed in the rewriting process for queries in general or for SQL statement in particular. In
this case, this information is stored in the Tuning Settings (TS) repository. For that reason, before
rewriting a SQL statement Q, the AST agent checks, at the Tuning Settings (TS) component, if there
is a subset of heuristics selected (defined) for rewriting Q. If not, all available heuristics are used to
rewrite Q.

4. EXPERIMENTAL RESULTS

In order to show the potentials of ARe-SQL, several experiments have been conducted. The main
results achieved so far are presented and discussed in this section. Thus, we first provide information
on how the experimentation environment was set up. Thereafter, empirical results are quantitatively
presented and qualitatively discussed.

4.1 Simulation Setup

In order to validate both approaches implemented by ARe-SQL, assisted and automatic, we have
evaluated ARe-SQL in three different scenarios. In the first scenario, TPC-H benchmark has been
used, including its database and workload, which is composed of 23 queries. In the second scenario, a
workload of 30 synthetic queries has been executed on TPC-H database. In both scenarios, we have
used TPC-H benchmark with scale factor of 2 GB with the indexes suggested by OSDL DBT-3 [OSDL
2014]. Finally, in the third scenario, we exploit the database of the Integrated Management System
(IMS), a system used in several Brazilian universities, and another synthetic workload.

The synthetic workloads, used in the second and third scenarios, were designed using the following
strategy. Each synthetic workload was formed by 30 SQL queries. Each SQL query was written in
order to enable the application of one of the heuristics presented in the Table I. It is important to note
that the heuristics provide different gains. Then, a particular heuristic can provide a much greater
benefit than another. However, in all queries that formed the synthetic workloads (used in scenarios
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Fig. 10. Benchmark TPC-H on PostgreSQL
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Fig. 11. Benchmark TPC-H on SQL Server
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Fig. 12. Benchmark TPC-H on Oracle

2 and 3), the used heuristics provided some gain (a positive profit). That is, any query written by
ARe-SQL had a response time smaller than the original query execution time in synthetic workloads.

All experiments were run on a Core i3-2100 (3.10GHz) server, with 4GB RAM and 500 GB HD.
PostgreSQL 8.1, Oracle 11g and SQL Server 2008 have been used as database systems. For each ex-
perimentation scenario, three different experiments have been performed: i) The workload containing
the original queries has been submitted to a database system. The results of this experiment have
been used as baseline; ii) The workload submitted to ARe-SQL advisor (assisted approach). There-
after, the workload with tuned SQL queries was manually submitted to a database system, and; iii)
Each query from original workload has been sent to the automatic approach of ARe-SQL. In this
case, after tuning SQL queries, ARe-SQL automatically submits those queries to a database system.
Then, in the experimental results, the execution time for the assisted strategy includes the query
rewriting overhead. For each test, we have executed the set of queries belonging to the used workload
once, twice, 4, 8, 16, and 32 times. For each different number of executions (iterations), the sum of
execution time of the whole set of queries was computed. For instance, in scenario 1 (Full TPC-H
Benchmark), to get the execution time for 32 executions, we have execute the set of TPC-H queries 32
times, measured the time interval for executing all queries and computed the sum of the 32 measured
execution times.

4.2 Scenario 1: Full TPC-H Benchmark

Figures 10 and 11 bring the result of using the assisted and automatic approach of ARe-SQL running
on PostgreSQL and SQL Server, respectively. It is important to observe that from the 23 queries
that comprise the TPC-H benchmark, two (18 and 20) have been rewritten by ARe-SQL advisor (see
Section 3.1.1). Regarding the results presented in Figures 10 and 11, the assisted approach had a
small decrease in workload runtime. This can be explained by the fact that only two TPC-H queries
have presented opportunities for tuning. Table II shows the execution time of TPC-H queries 18 and
20 in their original formats and after being rewritten. Is important to emphasize that this is not a
bad result, since the TPC-H queries were written by experts in SQL.

On Oracle, however, TPC-H queries 18 and 20 have not been rewritten by ARe-SQL advisor,
because Oracle implements heuristic H8. For that reason, the ARe-SQL automatic approach had, for
32 iterations, a slight performance decrease w.r.t. the baseline (2.45%), see Figure 12 due to the fact
that the automatic approach had the overhead of trying to rewrite both queries.
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Table II. Execution times of the TPC-H queries 18 and 20 in their original formats and after being rewritten
PostgreSQL SQL Server

Original Rewritten Original Rewritten
Query TPC-H 18 134807ms 111933ms 19000ms 14000ms
Query TPC-H 20 912ms 712ms 15000ms 11000ms
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Fig. 13. Synthetic queries in PostgreSQL TPC-H database
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Fig. 14. Synthetic queries in SQL Server TPC-H database
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Fig. 15. Synthetic queries in TPC-H database on Oracle
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Fig. 16. Synthetic queries in IMS database on PostgreSQL

4.3 Scenario 2: TPC-H Database with Synthetic Workload

Figures 13, 14 and 15 show that using ARe-SQL advisor ensures a significant reduction in query
response time. On the other hand, ARe-SQL’s automatic approach presents smaller benefits than
ARe-SQL advisor, since it involves the overhead of tuning the SQL statements received in runtime.

It is important to note that in the test on Oracle (Figure 15), the automatic approach presents a
small decrease in the execution time of the workload. This is explained by the fact that from the total
of eleven heuristics five are already implemented by Oracle (H4, H5, H6, H7 and H8). Besides, from
the six remaining heuristics, three of them (H9, H10 and H11) make use of statistical information, and,
therefore, require additional access to DBMS, which significantly increased the overhead to rewrite
SQL queries.

In the experiment with TPC-H Database and Synthetic Workload on Oracle, the runtime for the 32
iterations of the original workload (without rewriting) took 9226863ms, while the runtime for the 32
iterations of the workload generated after applying the assisted approach lasted 2517264ms (Figure
16). In this case, the assisted approach yielded a gain of 6709599ms (72.7%).

4.4 Scenario 3: IMS Database with Synthetic Workload

For this scenario, only PostgreSQL has been used, as the IMS database is only available for that DBMS.
Again, the proposed approaches have provided a high reduction in time execution of the submitted
workload (Figure 16). In the experiment with IMS Database and Synthetic Workload on PostgreSQL,
the runtime for the 32 iterations of the original workload (without rewriting) took 3145344ms, while
the runtime for the 32 iterations of the workload generated after applying the assisted approach lasted
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Table III. SQL Optimizer for Oracle using TPC-H benchmark
Query # generated

SQL com-
mands

Rewriting
Overhead

# SQL clauses
with cost esti-
mate less than
the original
SQL

# SQL clauses
with response
time estimate
less than the
original SQL

Original SQL
response time

Execution time
for the best
rewritten SQL

2 115 116000ms 3 3 310ms 128ms
3 53 58000ms 3 1 6393ms 4900ms
4 14 15000ms 1 0 4204ms 60000ms
5 228 229000ms 5 0 4658ms 4666ms
7 110 111000ms 1 0 4658ms 7808ms
11 139 140000ms 8 4 600ms 259ms
12 20 21000ms 1 1 1995ms 1993ms
14 5 6000ms 1 0 512ms 538ms
16 35 36000ms 2 0 278244ms 280190 ms
18 160 161000ms 1 0 17384ms 22306 ms
20 92 93000ms 8 3 3261ms 3212ms
21 120 121000ms 5 0 8660ms 8787ms
22 1 1000ms 1 0 407ms 418ms

Table IV. Overhead Analysis using TPC-H benchmark
Query 2 3 4 5 7 11 12 14 16 18 20 21 22
SQL Optimizer 116s 58s 15s 229s 111s 140s 21s 6s 36s 161s 93s 121s 1s
ARe-SQL .01s .31s .12s .08s .05s .13s .16s .002s .03s .11s .24s .28s .08s

352560ms. In this case, assisted approach yielded a gain of 2792784ms (88.79%).

4.5 Overhead Analysis

To analyze the overhead in SQL rewriting process we made an experiment using TPC-H benchmark.
The idea was to measure the time needed to rewrite each one of the 23 SQL queries in the TPC-H
benchmark workload. For this, we have used as a baseline the rewritten time produced by Quest SQL
Optimizer for Oracle. This tool was chosen because it is widely used in real scenarios.

Table III shows a piece of the report generated by Quest SQL Optimizer for Oracle using TPC-H
queries as input. This report indicated that from the total of 23 SQL queries 16 could be rewritten
successfully. Only 7 SQL queries couldn’t be tuned (1, 6, 10, 13, 17, 19 and 23). However, after
performing (with empty cache), for each one of these 16 SQL queries, the best SQL command (w.r.t
cost estimate) generated by the Quest SQL Optimizer for Oracle tool, we noted that only 5 SQL queries
had reduced their runtimes (queries 2, 3, 11, 12 and 20). In practice, queries 4, 5, 7, 8, 9, 14, 16, 18,
21 and 22 had a worsening in their execution times. It is important to note that in some cases, like
queries 4 and 7, the rewritten SQL response time was much greater than the original query runtime.
Additionally, Quest SQL Optimizer for Oracle tool is DBMS-specific (running only with Oracle).
Besides, in some cases, this tool may generate tens or hundreds of rewritten SQL instructions for tune
the same SQL statement, such as, for example, for query 5, 228 different rewritten SQL instructions
were generated. This fact could increase so much the rewritten time, producing a high overhead, and
making this tool unfeasible for online scenarios, that is, those where the SQL statement needs to be
adjusted automatically (at runtime).

Table IV analyzes and compares the rewriting overhead in both tools: Quest SQL Optimizer for
Oracle and ARe-SQL. It is important to note that ARe-SQL showed a lower rewriting overhead in all
analyzed queries. For example, the Quest SQL Optimizer for Oracle spent 161s to rewrite Query 18
while ARe-SQL took only 0.11s in this task.
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5. CONCLUSION

In this article, we presented an online, automatic and non-intrusive approach for rewriting SQL queries,
denoted ARe-SQL. The key goal of ARe-SQL is to assist optimizers in building efficient query physical
execution plans. For this, ARe-SQL rewrites SQL statements, using a set of 11 heuristics. Based on
ARe-SQL, two different strategies for SQL-query rewriting, denoted assisted and automatic, were
implemented. These strategies were evaluated in three different DBMS considering three different
scenarios. The experimental results indicate that both strategies can provide performance gains. In
some cases, such performance gains reach 92.5%. The proposed solutions are applicable to situations
where the query optimizer cannot produce optimal plans, even using access methods and assessment
strategies supported by the DBMS. ARe-SQL is even more important in contexts in which SQL
statements are written by non-experts. As future work we intend to investigate and implement
heuristics based on query hints to tune SQL queries.
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