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Abstract. A vague spatial data warehouse allows multidimensional queries with spatial predicates to support the
analysis of business scores related to vague spatial data, crisp spatial data and conventional data. However, vague
spatial data are often represented and stored as multiple geometries and impair the query processing performance. In
this paper, we describe an index called VSB-index to improve the query processing performance in vague spatial data
warehouses, focusing on range queries and vague regions. We also conduct an experimental evaluation using a real
dataset, demonstrating that our VSB-index provided remarkable performance gains up to 94% over existing solutions.

Categories and Subject Descriptors: H.2 [Database Management]: Database Application—Spatial databases and
GIS; H.2 [Database Management]: Physical design—Access methods

Keywords: Spatial Data Warehouses, Spatial Vagueness, Vague Regions, VSB-index

1. INTRODUCTION

Spatial vagueness is one kind of spatial data imperfection concerning the difficulty of distinguishing an
object’s shape from its neighborhood. Exact models represent vague spatial objects by reusing well-
known crisp spatial data models, extending the theory of spatial data types and spatial predicates and
implementing them as artifacts of vector-based geometries [Clementini and Di Felice 1996; Pauly and
Schneider 2010]. For example, a vague region r might have a known extent and a broad boundary as
a two-dimensional zone surrounding the known extent, instead of a one-dimensional line with minimal
thickness [Clementini and Di Felice 1996]. Then, r consists of a pair of crisp regions: the kernel and
the conjecture. The kernel is the known extent and the determinate part of r, while the conjecture
is the broad boundary and vague part of r. The interior of the kernel is disjoint from the interior
of the conjecture. Points encompassed by the kernel certainly belong to r, points encompassed by
the conjecture possibly belong to r, and points not encompassed by the kernel and neither by the
conjecture do not belong to r [Pauly and Schneider 2010].

Spatial vagueness affects several real world phenomena. Therefore, the design of vague spatial data
warehouses (vague SDW), to allow multidimensional and spatial analysis of business scores regarding
vague spatial data, has recently gained the attention of researchers. Not only vague spatial data are
addressed, but also crisp spatial data and conventional spatial data. The data cube metaphor has
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been used in the conceptual design of vague SDW to enable flexible and multidimensional ways for
representing, querying and aggregating vague spatial data [Siqueira et al. 2014]. The relational model
has been reused to design logical schemas of vague SDW and store a subject-oriented, integrated,
time-variant, voluminous, non-volatile and multidimensional database [Siqueira et al. 2012b]. In order
to avoid an inappropriate use of the vague SDW in a decisional process, the risk associated to the
inclusion of vague spatial data can be identified in advance and organized in tolerance levels before
applying control strategies to obtain the definitive schema [Edoh-Alove et al. 2013].

In a vague SDW, a fact denotes the scores of business activities through numeric measures or
spatial measures, while dimensions hold conventional attributes and crisp or vague spatial attributes
that contextualize values of measures. Spatial range queries select specific parts of the vague spatial
objects stored in the vague SDW, e.g. intersection range query (IRQ) [Siqueira et al. 2014]. In a
previous work [Siqueira et al. 2013], we identified the lack of an index to process range queries against
vague regions in vague SDWs. We also introduced and assessed the Vague Spatial Bitmap Index
(VSB-index) that outperformed indices implemented by DBMSs and indices for crisp SDWs.

Still motivated by the challenge of improving the performance to process range queries against vague
regions in vague SDWs, in this paper, we have kept the same direction by describing the VSB-index
and assessing it through an experimental evaluation. Differently from our previous work [Siqueira
et al. 2013], we have designed and queried a real dataset to demonstrate the high performance of
the VSB-index and its applicability in real problem. In this sense, the novel experimental evaluation
includes a set of representative tasks of typical workloads in the application domain, even though it
has not used an existing application benchmark [Barbosa et al. 2009]. We have also reported novel
results and discussed new insights on how designers can improve the performance of their systems
with the VSB-index. This paper is organized as follows. Section 2 surveys related work, Section 3
describes the VSB-index, Section 4 tackles the design of a vague SDW with real agricultural data,
Section 5 reports the experimental evaluation of the VSB-index and Section 6 concludes the paper.

2. RELATED WORK

In DWs, a bitmap join index created on the column C of a dimension table indicates the set of rows in
the fact table to be joined with a certain value of C [O’Neil and Graefe 1995]. Although the bitmap
join index avoids joining huge tables in DWs, it cannot solve spatial predicates.

The multistep spatial predicate resolution determines that progressive approximations and conser-
vative approximations are used to identify answers of the spatial predicate in the filter step, to reduce
the cost of the refinement step. A conservative approximation is a superset of the extent of the spatial
object, while a progressive approximation is a subset of the extent of the spatial object [Brinkhoff
et al. 1993]. Instead of reusing existing progressive approximations, in this paper, we describe a novel
progressive approximation called MIP.

In crisp SDWs, the aR-tree [Papadias et al. 2001], the SB-index and the HSB-index [Siqueira et al.
2012a] are capable to process spatial predicates, conventional predicates, aggregation and sorting.
They use a single conservative approximation for crisp spatial data: the MBR (minimum bounding
rectangle). Conversely, our VSB-index uses both conservative and progressive approximations. The
aR-tree and the HSB-index have hierarchical data structures and a tree-based search in the filter step
(similar to the R-tree’s [Guttman 1984]), while the SB-index has a sequential data structure and a
sequential search in the filter step (similar to our VSB-index’). Conventional predicates, aggregation
and sorting are processed by the aR-tree manipulating multidimensional arrays, while the SB-index,
the HSB-index and our VSB-index reuse bitmap join indices to process them.

The vague R-tree [Petry et al. 2007] is an index for vague regions based on the R-tree, whose
intermediate nodes maintain a pair of entries per cluster of vague regions. Entry O holds a MBR
circumscribing the MBRs of the clustered vague regions, while entry I holds a MBR circumscribing
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(a) (b) (c) (d)

Fig. 1: Vague region, approximations and query: (a) The MIP5 on the kernel. (b) The MBR on outer boundary and
the MIP5 on kernel. (c) A range query on O⊇K⊆. (d) Another range query on O⊇K⊆.

the MBRs of kernels of the clustered vague regions. Progressive approximations were not addressed and
only algorithms for point queries were designed, differently from our VSB-index that uses progressive
approximations and tackles range queries. Besides, the vague R-tree was not assessed through an
experimental evaluation, differently from our VSB-index. Other existing indices that do not implement
vague spatial objects as artifacts of vector-based geometries are beyond the scope of this paper.

3. THE VAGUE SPATIAL BITMAP INDEX

This section details the VSB-index. We prioritized a multistep resolution of the spatial predicate and
created a specific progressive approximation to be used in the filter step to reduce the cost of the
refinement step. We have chosen range queries as the spatial predicates to be supported by the VSB-
index. Since queries issued on a vague SDW have not only spatial predicates, but also conventional
predicates, aggregation and sorting, the latter three are processed by bitmap join indices that are
often used in DWs. Section 3.1 introduces the progressive approximation MIP. Section 3.2 defines the
data structure of the VSB-index. Section 3.3 focuses on the VSB-index query processing.

3.1 Maximum Area Inscribed Polygon

The Maximum Area Inscribed Polygon (MIP) is a progressive approximation consisting of a polygon
with x vertices. The number of vertices is the suffix, e.g. MIP5 for x = 5. We define MIP to be
applied specially on vague regions, to improve the resolution of spatial predicates in query processing.
Figure 1a shows a vague region, its conjecture (light grey), its kernel (dark grey) and a MIP5 on its
kernel (black contour). The outer boundary of the vague region encompasses the vague region and
therefore a MIP5 on the kernel is also a subset of the outer boundary of the vague region, as shown
in Figure 1b.

3.2 Data Structure

The VSB-index for vague regions has an array whose entries have the type vrbitvector (vague region
bit-vector), comprising: (i) one key value pk ; (ii) one mandatory conservative approximation O⊇ on
the outer boundary of the vague region; (iii) one optional progressive approximation O⊆ on the outer
boundary of the vague region; (iv) one optional conservative approximation K⊇ on the kernel; and (v)
one optional progressive approximation K⊆ on the kernel. The notation considers the conservative
approximation ⊇ as a superset and the progressive approximation ⊆ as a subset. All feasible config-
urations for the VSB-index are listed in Table I. The conservative approximation O⊇ is mandatory
to enable processing queries since the outer boundary of the vague region encompasses the vague re-
gion. Except O⊇, the other approximations are optional and allow flexible data structures and query
processing algorithms (Section 3.3). The VSB-index also has a bitmap join index created on the key
values. Therefore, each entry of the array has a corresponding bitvector in the bitmap join index.
The bitvector indicates the rows in the fact table that reference the entry’s key value.

The size in bytes of a VSB-index entry is s = sizeof(int)+sizeof(O⊇)+sizeof(O⊆)+sizeof(K⊇)+
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Table I: Entry size in bytes (s), number of entries per disk page (L) and number of disk pages to store the index file (A)

O⊇O⊆K⊇K⊆ O⊇O⊆K⊇ O⊇O⊆K⊆ O⊇O⊆ O⊇K⊇K⊆ O⊇K⊇ O⊇K⊆ O⊇

s 228 148 196 116 148 68 116 36
L 35 55 41 70 55 120 70 227
A 5 4 5 3 4 3 3 2

sizeof(K⊆). Each disk page with l bytes maintains L = l DIV s index entries. Some unused bytes
U = c MOD L, where c is the cardinality of the indexed vague spatial attribute, are left between
different disk pages to avoid fragmented entries and prevent two disk accesses to obtain a single entry.
A header disk page stores metadata. Then, A = 1+ c DIV L+ y disk pages are required to store the
VSB-index. If c MOD L = 0 then y = 0, otherwise y = 1. Besides, A disk accesses are required to
build the index file. Table I exemplifies values of s, L and A for MIP5, l = 8192 bytes and c = 129.

3.3 Query Processing

Range queries are supported by the VSB-index as follows. Let w be an iso-oriented rectangle called ad
hoc spatial query window and S be a set of vague regions. An IRQposs(w, S) concerns an intersection
that is possibly true and retrieves vague regions in S whose outer boundary intersects w. Conversely,
an IRQcert(w, S) concerns an intersection that is certainly true and retrieves vague regions in S
whose kernel intersects w. CRQposs and CRQcert are defined analogously for the relationship of
containment. ERQposs and ERQcert are defined analogously for enclosure (“inside of”).

The VSB-index query processing firstly performs a filter step as a sequential scan on the index file
which requires A disk accesses, given by function f1 detailed in Figure 2a or function f2 detailed
in Figure 2b. They produce candidates and answers of the spatial predicate and store them in their
proper sets in the main memory, i.e. setCandidates and setAnswers, respectively.

Function f1 performs a sequential scan over the index file (lines 2-7), which retrieves each disk page
(line 3) and temporarily stores it in the main memory (line 4). Function get obtains the conservative
approximation of every entry transferred to main memory (line 6). Such conservative approximation
is O⊇ or K⊇, depending on the parameter passed, and is tested against the ad hoc spatial query
window (line 6). If the spatial relationship is satisfied, the entry’s primary key value is appended to
a set (line 7). Finally, the index file is closed (line 8). The aforementioned set might be the set of
candidates or the set of answers, depending on the parameter passed.

To identify answers already in the filter step, function f2 performs a sequential scan that firstly
tests the conservative approximation and secondly tests the progressive approximation. For each
entry (lines 5-10), if the spatial relationship is satisfied for both the conservative and progressive
approximations, the entry is considered as an answer and its primary key value is stored in the set of
answers (lines 6-8). However, if only the conservative approximation satisfies the spatial relationship,
the entry is considered as a candidate and its primary key value is stored in the set of candidates (line
10). According to the calls, f2 is particularly useful for IRQposs when O⊇ and O⊆ are available, and
for IRQcert when K⊇ and K⊆ are available. Also, K⊆ can be used to fetch results when querying
IRQposs, as well as O⊇ can be used to indicate candidates when querying IRQcert.

The filter step is a call to f1 or f2 based on a decision regarding the spatial predicate to evaluate
and which approximations are available among O⊇, O⊆, K⊇ and K⊆. In this paper, we focus on
IRQcert and IRQposs which are solved by f1 or f2. The 16 calls to process IRQcert and IRQposs

are listed in Table III. For instance, configuration O⊇K⊆ calls f2 and adds the vague region shown
in Figure 1c to the set of answers already in the filter step, for both IRQcert and IRQposs.

After the filter step, the refinement step is performed using the DBMS and its results are recorded
in setAnswers. A key-matching in setAnswers produces a string with a conventional predicate based
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Fig. 2: Algorithms: (a) Function f1. (b) Function f2.

Table II: Parameters of Algorithms 1 and 2

Parameter Description
conservative Indicator for O⊇ or K⊇

conservativeK Indicator for K⊇
conservativeO Indicator for O⊇

idx The VSB-index file
L The maximum number of index entries that a disk page can hold

progressive Indicator for O⊆ or K⊆
progressiveK Indicator for K⊆
progressiveO Indicator for O⊆

pk The primary key attribute of table
R The spatial relationship (intersection, containment or enclosure)

setAnswers The set of answers of the spatial predicate
setCandidates The set of candidates (possible answers) of the spatial predicate

table The vague spatial dimension table queried
vsa The vague spatial attribute of table
w The ad hoc spatial query window

on primary key values of the vague regions that satisfy the spatial predicate. Such string replaces the
spatial predicate of the query submitted to the vague SDW. Finally, the rewritten query is solved by
efficient bitmap join indices that avoid joining huge SDW tables and provide the query answer.

4. A VAGUE SPATIAL DATA WAREHOUSE ON CITRUS GREENING INFECTION

Greening 1 is a serious disease that infects citrus and impairs the industry. It is caused by a bacterium
transmitted by an insect. As there is not a cure so far, its control is done by visual inspection and
immediate eradication of the infected plant by the roots. Temporal and spatial patterns of distribution
of greening in the field at different scales, as plots and cities, are crucial to reduce the rate of failures
in visual inspections. The infection is examined at various spatial levels, e.g. immediately adjacent
trees within and across row, and trees estimated to be 25 to 30 meters far from an infected tree.

A real dataset regarding citrus greening infection was provided by the Brazilian Agricultural Re-
search Corporation (Embrapa). It comprises data collected in the field in 13 different months regarding
a citrus plot with approximately 9,000 trees. Every area infected by greening was modeled as a vague

1http://www.plantmanagementnetwork.org/pub/php/review/2007/huanglongbing/
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Table III: Calls made to functions f1 and f2 by configuration of the VSB-index

Configuration Function calls of IRQcert and IRQposs (R=intersection)
O⊇O⊆K⊇K⊆ IRQcert: f2 (R, w, conservativeK, progressiveK, setCandidates, setAnswers, idx, L)

IRQposs: f2 (R, w, conservativeO, progressiveO, setCandidates, setAnswers, idx, L)
O⊇O⊆K⊇ IRQcert: f1(R, w, conservativeK, setCandidates, idx, L)

IRQposs: f2 (R, w, conservativeO, progressiveO, setCandidates, setAnswers, idx, L)
O⊇O⊆K⊆ IRQcert: f2 (R, w, conservativeO, progressiveK, setCandidates, setAnswers, idx, L)

IRQposs: f2 (R, w, conservativeO, progressiveO, setCandidates, setAnswers, idx, L)
O⊇O⊆ IRQcert: f1(R, w, conservativeO, setCandidates, idx, L)

IRQposs: f2 (R, w, conservativeO, progressiveO, setCandidates, setAnswers, idx, L)
O⊇K⊇K⊆ IRQcert: f2 (R, w, conservativeK, progressiveK, setCandidates, setAnswers, idx, L)

IRQposs: f2 (R, w, conservativeO, progressiveK, setCandidates, setAnswers, idx, L)
O⊇K⊇ IRQcert: f1(R, w, conservativeK, setCandidates, idx, L)

IRQposs: f1(R, w, conservativeO, setCandidates, idx, L)
O⊇K⊆ IRQcert: f2 (R, w, conservativeO, progressiveK, setCandidates, setAnswers, idx, L)

IRQposs: f2 (R, w, conservativeO, progressiveK, setCandidates, setAnswers, idx, L)
O⊇ IRQcert: f1(R, w, conservativeO, setCandidates, idx, L)

IRQposs: f1(R, w, conservativeO, setCandidates, idx, L)

region. Figure 3a shows 2 vague regions a1 and a2. The kernel was the extent where trees were
infected and eradicated. Conversely, the conjecture was the broad boundary where the insect possibly
transmitted the bacterium to trees that were not eradicated, but that became suspicious.

Each tree was a point with a status of infected or healthy. The kernel of an infected area was a
buffer applied on the point of each infected tree (e.g. a1 in Figure 3a). A buffer did not intersect
any other tree (infected or healthy). Since infection might happen in neighbor trees, if two or more
buffers intersected and did not cover any healthy tree, then such buffers were merged and considered
as a single kernel, where two or more trees were eradicated (e.g. a2 in Figure 3a). Furthermore, the
conjecture of each infected area was outlined by firstly fetching all trees within 25 meters from each
infected tree. Secondly, a convex hull containing each infected tree and its neighbors was built (e.g.
a1 in Figure 3a). The convex hulls built for two or more different infected trees were also merged
whether their corresponding kernels had already been merged previously (e.g. a2 in Figure 3a).

The vague SDW depicted in Figure 3b was built according to existing guidelines [Siqueira et al.
2012b]. GreeningInfection is a fact table referencing dimension tables and holding the numeric mea-
sure of quantity of eradicated plants. The cited vague regions were stored in InfectedArea that is
a vague spatial measure pushed in a vague spatial dimension table with the vague spatial attribute
infectedarea_vgeo of type multipolygon. Plot is a crisp spatial dimension table with the crisp spatial
attribute plot_geo of type polygon. Inspector and Date are conventional dimension tables. Instead
of comparing a vague region to another, which has been widely tackled in the literature [Clementini
and Di Felice 1996; Pauly and Schneider 2010], the user needs to retrieve areas certainly infected
(IRQcert) and areas possibly infected (IRQposs), according to the intersection against an ad hoc rect-
angular query window w such as that shown in Figure 3a. A tipical decisional query is shown in
Figure 4, where IRQcert or IRQposs is chosen as spatial predicate.

5. EXPERIMENTAL EVALUATION OF THE VSB-INDEX

This section details the performance evaluation of the VSB-index. Instead of reusing an existing
application benchmark, we have designed a set of representative tasks of typical workloads in the
domain of greening infection, based on Section 4. We have tackled the spatial predicate resolution
since it was identified as a bottleneck to process queries involving vague regions in vague SDWs
[Siqueira et al. 2013]. Section 5.1 addresses the experimental setup. Results for IRQposs and IRQcert

are reported in Sections 5.2 and 5.3, respectively. Section 5.4 has final remarks.
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(a) (b)

Fig. 3: A vague SDW on greening infection: (a) vague spatial data distribution (b) vague SDW schema

SELECT team, year, SUM(eradicatedtrees) FROM Inspector, Date, InfectedArea, GreeningInfection
WHERE inspkey=inspector_fk AND datekey=date_fk AND infectedarea_fk=infectedarea_pk AND
team=’XY’ AND [IRQcert|IRQposs](appliedarea_vgeo,w) GROUP BY team, year ORDER BY team, year

Fig. 4: Querying the vague SDW shown in Figure 3b

5.1 Experimental Setup

The workbench comprised the vague SDW shown in Figure 3b. The attribute infectedarea_geo had
129 distinct infected areas. Both InfectedArea and GreeningInfection stored 129 rows. The workload
was based on the spatial predicate of the query shown in Figure 4, as follows. Given a dataset with
cardinality c, and a spatial query window w that retrieves k objects from the dataset, the selectivity
was k÷c. We used the following selectivities for IRQposs: 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.50 and
1.00. The null selectivity represents the selection of zero elements of the dataset. Low selectivities
under 0.10 denote the user selecting a constrained extent of interest. Moderate selectivities of 0.10
and 0.50 concern the user selecting a wider extent of interest. The high selectivity of 1.0 retrieves
the whole dataset, e.g. when it must be displayed. Moderate and high selecitivies were acceptable
since the data volume of vague regions was low. For each selectivity, distinct spatial query windows
were used in each of the 10 consecutive IRQposs that were issued. System cache was flushed between
executions. We gathered the average elapsed time and the average number of candidates for each
configuration of the VSB-index. The time reduction measured how much a configuration was more
efficient than another. The same procedure was followed to evaluate IRQcert.

The platform was a computer with a 3.2 GHz Pentium D processor, 8 GB of main memory, a 7200
RPM SATA 320 GB hard disk with 8 MB of cache, Linux CentOS 6.4, PostgreSQL 9.2.2 and PostGIS
2.0.1. All feasible configurations of the VSB-index were implemented using MBR as conservative
approximation and MIP5 as progressive approximation - 5 vertices by analogy with 5C [Brinkhoff
et al. 1993]. They were implemented in C/C++ and the disk page size was set to 8 KB. MIP5 was
built using the CGAL, Computational Geometry Algorithms Library (http://www.cgal.org) version
4.0.2 and the method CGAL::maximum_area_inscribed_k_gon_2. The method uses monotone
matrix search [Aggarwal et al. 1987] and has a worst case running time of O(x×n+n× logn), where
n is the number of vertices provided as input and x is the number of vertices of the MIP.

5.2 IRQposs

Figure 5a reports the elapsed time to process IRQposs, while Figure 5b details the average number of
candidates processed in the refinement step by each configuration. High average number of candidates
as 65 and 129 were omitted (configuration O⊇ and selectivities 0.50 and 1.00, respectively). Note that:
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(a) (b)

Fig. 5: Results for IRQposs: (a) Average elapsed time. (b) Average number of candidates.

—Configurations O⊇ and O⊇O⊆, and the SB-index had similar performances and were reported
together.

—Configurations O⊇K⊇K⊆ and O⊇K⊆ had similar performances and were reported together.
—Configurations O⊇O⊆K⊇K⊆, O⊇K⊇, O⊇O⊆K⊇ and O⊇O⊆K⊆ had similar performances and were
reported together.

Every configuration took time to process queries with selectivity 0, executing the filter step and
the refinement step whether there were candidates. Regarding selectivities between 0.01 and 0.50, the
average number of candidates processed by each configuration determined its performance, as follows.

Configurations that did not hold MIP5, as O⊇, required longer elapsed times independently of the
selectivity. Their filter steps were not able to identify answers of IRQposs due to the absence of a
progressive approximation. Then, more candidates were processed by the refinement step, increasing
its cost and causing low performance.

Configurations that held a single MIP5 on the kernel, as O⊇K⊇K⊆, were able to identify answers
of the IRQposs by calling the function f2 and accessing the MIP5 on the kernel. However, not many
answers were identified since the MIP5 on the kernel might encompass only a small portion of the
vague region, as shown in Figure 1d. As a result, their average numbers of candidates were not
drastically reduced, the refinement step was costly and their elapsed times were not decreased.

Shortert elapsed times were spent by configurations with MIP5 on the outer boundary of the vague
region, as O⊇O⊆K⊇K⊆. They had low average numbers of candidates, even for greater selectivities.
This trend, however, did not occur in the other configurations. Due to processing fewer candidates in
the refinement step, configuration O⊇O⊆K⊇K⊆ imposed a time reduction of at least 33.36% and at
most 69.19% over SB-index (configuration O⊇) for selectivities 0.10 and 0.04, respectively.

Finally, regarding the selectivity 1.00, all configurations holding at least one MIP5 had an empty
set of candidates to process in the refinement step, since all answers were identified already in the
filter step. As a result, they required shorter elapsed times.
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5.3 IRQcert

Figure 6a reports the elapsed time to process IRQcert, while Figure 6b details the average number of
candidates processed in the refinement step by each configuration. High average number of candidates
as 65 and 129 were omitted (configuration O⊇ and selectivities 0.50 and 1.00, respectively). Note that:

—Configurations O⊇, O⊇O⊆, O⊇K⊇, O⊇O⊆K⊇, and the SB-index had similar performances and
were reported together.

—Configurations O⊇K⊆ and O⊇O⊆K⊆ had similar performances and were reported together.
—Configurations O⊇O⊆K⊇K⊆ and O⊇K⊇K⊆ had similar performances and were reported together.

Every configuration took time to process queries with selectivity 0, executing the filter step and
the refinement step whether there were candidates. Regarding selectivities between 0.01 and 0.50, the
average number of candidates processed by each configuration determined its performance, as follows.

Configurations that did not hold MIP5 on the kernel, as O⊇, spent longer elapsed times indepen-
dently of selectivity. Their filter steps were not able to identify answers of IRQcert due to the absence
of a progressive approximation on the kernel. Then, more candidates were processed by the refinement
step, increasing its cost and causing low performance.

Configurations that held MIP5 on the kernel but did not hold MBR on the kernel, as O⊇K⊆,
accessed the MBR on the outer boundary of the vague region in their filter steps. Since the MBR on
the outer boundary might cover a wider extent than the extent covered by the MIP5 on the kernel
(e.g. Figure 1d), these configurations were not able to diminish the set of candidates. Therefore, the
costly refinement step determined a low performance.

Configurations that held both MBR and MIP5 on the kernel, as O⊇O⊆K⊇K⊆, required shorter
elapsed time to process IRQcert than the other configurations. Their average number of candidates
was low due to the use of MIP5 on the kernel. Therefore, their refinement steps were less costly and
the performance was benefited. The configuration O⊇O⊆K⊇K⊆ provided a time reduction of at least
84.22% and at most 94.77% over SB-index (O⊇), for selectivities 0.05 and 0.02, respectively.

Configurations with a MIP5 on the kernel had an empty set of candidates to process in the refinement
step for selectivity 1.00. As all answers were identified in the filter step, the elapsed times were shorter.

5.4 Final Remarks

In the previous sections, we identified that the VSB-index outperformed the SB-index. Besides, the
VSB-index configuration O⊇O⊆K⊇K⊆ achieved the best performance for both IRQposs and IRQcert.
Results also revealed that, to achieve a high performance to resolve IRQposs and IRQcert against
vague regions, it is essential to reduce the number of candidates to be processed in the refinement
step. In this sense, the use of MIP5 as progressive approximation was beneficial.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we detailed the VSB-index to process multidimensional queries extended with inter-
section range queries against vague regions in vague SDWs. We assessed the VSB-index through an
experimental evaluation using a vague SDW designed on a real dataset, to demonstrate the appli-
cability of the VSB-index in a real problem. Results corroborated the efficiency of the VSB-index
that had remarkable performance gains up to 94% over existing solutions. Results also reinforced the
importance of an index for vague SDW. As future work, we intend to extend the VSB-index to index
other data types as vague points and vague lines [Pauly and Schneider 2010], and to enable vague
SOLAP operations as roll-up and drill-down [Siqueira et al. 2014].
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(a) (b)

Fig. 6: Results for IRQcert: (a) Average elapsed time (ms). (b) Average number of candidates.
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