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Abstract. Work on multiscale issues presents countless challenges that have been long attacked by GIScience re-
searchers. Research is usually concentrated in one of two directions - new data models to support handling multiple
scales, or data structures and algorithms to process data across scales. Complementary implementation aspects are
concerned with generalization (and/or virtualization of distinct scales), or with linking entities of interest across scales
(e.g., using bottom-up implementation of specific structures, without relying on any specific DBMS). However, re-
searchers seldom take into account the fact that multiscale scenarios are increasingly constructed cooperatively, and
require distinct perspectives of the world, in which each research group considers specific aspects of a problem. The
combination of handling multiple scales at a time, and having multiple user perspectives per scale constitutes what we
call multi-focus research. This paper presents our proposal to attack multi-focus scenarios, which considers distinct as-
pects of the problem of managing multiple scales, illustrated with examples of multiscale geospatial data. Our approach
builds upon a specific database version model – the so-called multiversion MVDB – which has already been successfully
implemented in several geospatial scenarios, being extended here to support multi-focus research. This extension was
implemented and tested in a real world case study, briefly discussed here.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous; H.3 [Information Storage and
Retrieval]: Miscellaneous

Keywords: geospatial data, multiple aspects, multiscale, version

1. INTRODUCTION

Issues involving multiscale data management can be found in most scientific domains, and are asso-
ciated with data-intensive science. For instance, in February 2011, Science1 dedicated an entire issue
to challenges of handling scientific data and the data deluge. There, 23 articles from experts working
in many scientific fields exemplify open problems of dealing with data management, indexing, anal-
ysis and visualization. In all of these papers, one can find problems concerning analysis of multiple,
interacting space-time scales. Regardless of the theme, there are a few common concerns. The first
one is data availability and sharing – and thus problems of consistency, security, privacy and curation.
The second is the need for new data analysis and visualization mechanisms, with emphasis on data
evolution through time. A third concern involves handling heterogeneity – of data and of expert
domains – and hence, the issue of multiple interacting abstraction levels.

1Dealing with Data – Challenges and Opportunities – Special Issue. Science, vol. 331, Feb 2011, http://www.
sciencemag.org/site/special/data/
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A large percentage of these papers is related to the concept of "anthropocene-linked research".
The emphasis of such research is to study the impact of humans on the environment, and vice versa.
Geological societies, all over the world, are adopting the term "Anthropocene" to designate a new
geological epoch whose start coincides with the impact of human activities on the Earth’s ecosystems
and their dynamics. The name was coined in 2000 by Nobel prize chemist Paul Crutzen, who proposed
that the Anthropocene starts with the invention of steam engines. Others claim that this has to be
pushed back to the first human settlements, thousands of years ago. Regardless of when it started,
related studies rely heavily on the analysis of multiscale spatio-temporal data. Moreover, there are
multiple perspectives under which a given region can be analyzed, for a specific geographic scale and
time period.

For such scenarios, one can no longer consider data heterogeneity alone, but also the heterogeneity
of processes that occur within and across scales. Such heterogeneity is intrinsic to the need to combine
many kinds of expertise to solve a problem. This is complicated by the following: (a) there are distinct
fields of knowledge involved (hence different data collection methodologies, models and practices); and
(b) the study of complex systems requires complementary ways of analyzing a problem, looking at
evidence at distinct aggregation/generalization levels – a multi-focus approach. Since it is impossible
to work at all foci at once, each group of scientists will concentrate on a given (sub)problem and try to
understand its complex processes. The set of analyses performed under a given focus has implications
on others. From now on, this paper will use the term "multi-focus" to refer to these problems, where
a "focus" is a perspective of a problem, including data (and data representations), but also modeling,
analysis and dynamics of the spatio-temporal entities of interest, within and across scales. It must be
stressed that multi-focus research is not restricted to geospatial anthropocene phenomena; this paper,
however, will concentrate on such phenomena.

Let us now provide a few examples of the challenges in multi-focus anthropocene research. A good
example is transportation planning. At a given granularity, engineers are interested in individual
vehicles, for which data are collected (e.g., itineraries). Other experts may have a distinct focus for
the same data – they store and query trajectories, and associate semantics to stops. At a higher
level, traffic planners study trends - the individual vehicles disappear and the entities of study become
clusters of vehicles and/or traffic flow [Medeiros et al. 2010]. A complementary focus comes from
climate research (e.g., floods cause major traffic disturbances). Cultural habits (and thus social
science studies) can also interfere with traffic and produce particular traffic patterns across a country.
This can be generalized to several interacting granularity levels. In spite of advances in transportation
research involving spatial data, e.g., in moving objects, there are very few results in representation
and interaction of multiple foci.

Global warming presents a different set of challenges to multi-focus work. Studies consider a hi-
erarchy of ecological levels, from community to ecosystem, to landscape, to a whole biome. Though
ecosystems are often considered closed systems for study purposes, the same does not apply to land-
scapes, e.g., they can include rivers that run into (or out of) boundaries (similar to studies in traffic in
and out of a region...). A landscape contains multiple habitats, vegetation types, land uses, which are
inter-related by many spatio-temporal relationships. A given study may target (i.e., focus) vegetation
patches, while another will concentrate on the impact of cattle raising in desertification.

In agriculture – the running example in this paper – the focus varies from sensor to satellite data,
analyzed under land use practices. Another focus would be to use the same data to study the response
of crop strains to climate variables, and still another to economic implications of labor practices in
a region – while the former is related to research in agriculture, the latter involves social scientists,
for widely distinct analyses and models. Each of the disciplines involved has its own work practices,
which require analyzing data at several granularity levels; when all disciplines and data sets are put
together, one is faced with a highly heterogeneous set of data and processes that vary on space and
time, and for which there are no consensual storage, indexation, analysis or visualization procedures.
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The previous examples illustrate our concept of focus – it corresponds to a perspective of study of
a given problem, where data can be restricted to one specific scale/representation, or put together
objects from distinct scales. Moreover, given the same set of data, distinct foci will arise when the data
are analyzed under different models, processed using focus-specific algorithms, or even visualized with
particular means. This scenario opens a wide range of new problems to be investigated [Longo et al.
2012; Longo and Medeiros 2013]. This paper has chosen to concentrate on the following challenges,
all concerning anthropocene problems:

—How can research on spatial data provide support to research that is characterized by the need to
analyze data, models, processes and events at distinct space and time scales, and represented at
varying levels of detail, and studied under multiple foci?

—How to keep track of events as they percolate bottom-up, top-down and across space, time and foci
of interest?

—How to provide adequate management of these multi-focus multi-expertise scenarios and their evo-
lution?

Previous work of ours in traffic management, agriculture and biodiversity [Medeiros et al. 2010;
Longo and Medeiros 2013] brought to light the limitations of present research on spatio-temporal
information management, when it comes to supporting multi-focus studies. As will be seen, our work
combines the main solution trends found in the literature, handling both data and processes in a
homogeneous way, expanding the paradigm of multiversion databases, under the MVDB model of
Cellary and Jomier [1990]. The multiversion database (MVDB) model has been already implemented
to support several geospatial applications [Peerbocus et al. 2004]. This paper extends the work
published by Santanche et al. [2012] where we lay the grounds for our proposal to support multi-
focus research by extending the multiversion database paradigm. Though this paper is directed to
anthropocene-related geospatial data issues, many of its central ideas – in particular, concerning
multi-focus research – can be generalized to other multi-focus fields.

2. RELATED WORK

Research on multi-focus data management involves state-of-the-art work in countless fields. For in-
stance, protein structure prediction and folding is a canonical example in which computer scientists,
biologists, and theoretical physicists and chemists have joined efforts. Another example is found in
the recent development of multiscale simulation approaches, which draws on finite element methods of
computational engineering and atomistic simulation techniques, well-known to computational physi-
cists and chemists, with direct impact in, for instance, nanotechnology and to the study of materials
and systems across multiple space and time scales. Chemoinformatics is yet another recent and fast
growing field in which computer scientists and chemists combine their expertise to develop a variety
of methods and tools designed for applications in the areas of drug design and modeling of complex
chemical reactions. Multidisciplinary research involving multiple foci is also at the heart of multi-
national initiatives, such as the MAPPER project [MAPPER 2007], where teams of scientists from
several countries are beginning to investigate multiscale and multi-focus issues in five areas: fusion,
clinical decision making, systems biology, nano science, and engineering.

Since a "focus", in this paper, is defined as a perspective of study that requires selecting and tailoring
the data of interest to a group of users/application, there are many fields in Computer Science where
this concept is considered, in particular in databases, complex networks (and graph databases) and
software engineering (e.g., use-case diagrams can be seen as a means to specify a focus).

In databases, a perspective that is constructed on top of a database is often treated under the view
paradigm. Though a view was originally defined to be the result of a query, its definition has evolved
with time to designate a portion of the data that is of interest to a specific group of users – and thus,
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close to our focus definition. Research on views started in the 70’s and ranges from view specification
and construction-materialization to mapping updates. Views are also involved in query optimization
strategies, and in security concerns [Furtado et al. 1979; Stonebraker et al. 1990; Medeiros et al. 2000;
Halevy 2001; Olivier et al. 2008]. This original notion is now being extended to new database models,
in particular views on graph databases [Fan et al. 2014]. Interactions across views are also studied
under many guises, for distinct kinds of database models.

Research in multiple foci is also discussed under the generic umbrella of "complex networks", often
analyzed at multiple aggregation levels. Complex networks are used as a unifying framework to study
a wide range of domains, from social networks [King 2011] to biodiversity, e.g., the so-called trophic
networks. Not only do these networks evolve with time, as relationships (edges across nodes) change,
but node aggregations also appear and disappear dynamically. In the context of this paper, a sub-
network, or even a node aggregation, might be considered a focus, created to meet the requirements of
a specific user or set of users, given the underlying base data. Many researchers are investigating the
implementation of complex networks using graph databases. Here, a particular challenge is finding
out new constructs, in such databases, to allow creating and joining arbitrary sub-graphs to meet a
focus constraint [Daltio and Medeiros 2014].

This paper concentrates on geospatial data issues, where spatial and temporal scales are examples
of particular foci, but where the multi-focus perspective occurs in any such scale. As pointed out
by Spaccapietra et al. [2002], multiple cartographic representations are just one example of the need
for managing multiple scales. In climate change studies, or agriculture, for instance, a considerable
amount of the data are geospatial – e.g., human factors.

While research on foci, in the geospatial sense, is usually restricted to representation issues, there is a
vast amount of literature when focus is synonym to geographical scale. Present research on multiscale
issues has several limitations in this broader scenario. To start with, in the geospatial context, it is
most frequently limited to vectorial data, whereas many domains, including agriculture, require other
kinds of representation and modeling (including raster data) [Leibovicia and Jackson 2011]. Also, it
is essentially concerned with the representation of geographic entities (in special at the cartographic
level), while other kinds of requirements must also be considered.

The example reported by Benda et al. [2002], concerning riverine ecosystems, is representative of
challenges to be faced and which are not solved by research on spatio-temporal data management. It
shows that such ecosystems involve, among others, analysis of spatio-temporal data and processes on
human activities (e.g., urbanization, agricultural practices), on hydrologic properties (e.g., precipita-
tion, flow routing), and on the environment (e.g., vegetation and aquatic fauna). This, in turn, requires
cooperation of (at least) hydrologists, geomorphologists, social scientists and ecologists. An event at
a given focus (e.g., change of agricultural practices) will impact others (e.g., sediment transport and
deposition, impacting erosion, fauna and flora at a much larger scale).

Multi-scale analyses are also performed to cope with large amounts of data, by aggregating data in
space and/or time. For instance, the work of García et al. [2013] aggregates trajectory segments to
be able to compute positional properties of moving objects. Here, new scales are artificially created
to help derive useful information (e.g., rather than looking at individual points, regions of interest
are created by aggregating sets of points). Still another facet of the same kind of issue concerns a
combination of focus and multi-resolution queries. For instance, the work of Nutanong et al. [2012]
proposes query and visualization mechanisms to process geospatial data, so that users can zoom into
a given region, and select objects of interest (i.e., focus) when that region contains hundreds (or even
millions) of overlapping objects. Here, zooming in and out use several generalization algorithms,
whereas selection is based on a combination of filtering and sampling.

There are three basic approaches to managing multi-scale spatial data: (a) store data at just one
scale, and compute other scales on the fly, e.g., using generalization; (b) store detailed data at each
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scale of interest, and maintain each separately; (c) a hybrid approach, in which a few scales are
stored and others are computed. As will be seen, our approach to this spatial scale issue follows the
third phylosophy, and takes advantage of a database versioning model to manage multi-scale data.
Generalization algorithms are mostly geared towards handling multiple spatial scales via algorithmic
processes; multi-representation databases (MRDBs) are geared towards approach (b), supporting data
management at multiple spatial scales. Generalization and MRDBs respectively correspond to Zhou
and Jones [2003] multi-representation spatial databases and linked multi-version databases2. Most
solutions, nevertheless, concentrate on spatial "snapshots" at the same time, and frequently do not
consider evolution with time or variation of focus.

Generalization-based solutions rely on the construction of virtual spatial scales from a basic initial
geographic scale, Oosterom and Stoter [2010] in their model mention that managing scales require
"zooming in and out", operations usually associated with visualization (but not data management).
Here, as pointed out by Zhou and Jones [2003], scale and spatial resolution are usually treated as one
single concept. Generalization itself is far from being a solved subject. As stressed by Buttenfield et al.
[2010], for instance, effective multiscale representation requires that the algorithm to be applied be
tuned to a given region, e.g., due to landscape differences. Generalization solutions are more flexible
than MRDBs, but require more computing time.

While generalization approaches compute multiple virtual scales, approaches based on data struc-
tures rely on managing stored data. Options may vary from maintaining separate databases (one for
each scale) to using MRDBs.The latter concern data structures to store and link different objects of
several representation of the same entity or phenomenon [Sarjakoski 2007]. They have been success-
fully reported in, for instance, urban planning, or in the aggregation of large amounts of geospatial
data and in cases that applications require data in different levels of detail [Oosterom 2009; Gao et al.
2010; Parent et al. 2009]. The multiple representation work of Oosterom and Stoter [2010] comments
on the possibility of storing the most detailed data and computing other scales via generalization.
This presents the advantage of preserving consistency across scales (since all except for a basis are
computed), but multiple foci cannot be considered.

Our motivation for adopting the hybrid approach is twofold. First, it supports computing new
objects at a given scale, thereby supporting arbitrary foci. Second, multiscale data are materialized in
a few choice scales due to modelling requirements and application efficiency, which influence the best
scale to be used [Bertino et al. 2010]. Depending on the case, it may be necessary to vary the scales
for better data visualization or for different types of analysis, which can result in loss of valuable
information. It is up to the user to define which scales to materialize, and which to derive. For
instance, consider two different spatial scales A and B such that A is larger than B. In cartography,
this means that ach object B will contain one or more corresponding objects of A, but the reverse
may be not true [Camossi et al. 2008]. Moreover, inconsistencies may occur by varying the scale.
Modifications in objects in a scale (e.g., geometry, localization) can make the data in other scales
inconsistent. The same remarks apply to scaling in time.

The previous paragraphs discussed work that concentrates on spatial, and sometimes spatio-temporal
issues3. Several authors have considered multiscale issues from a conceptual formalization point of
view, thus being able to come closer to our focus concept. An example is the work of Spaccapietra
et al. [2002], which considers classification and inheritance as useful conceptual constructs to conceive
and manage multiple scales, including multiple foci. The work of Duce and Janowicz [2010] is con-
cerned with multiple (hierarchical) conceptualizations of the world, restricted to spatial administrative
boundaries (e.g., the concept of rivers in Spain or in Germany). While this is related to our problem
(as multi-focus studies also require multiple ontologies), it is restricted to ontology construction. We,
on the other hand, though also concerned with multiple conceptualizations of geographic space, need

2We point out that our definition of version is not the same as that of Zhou and Jones
3The notion of scale, more often than not, is associated with spatial resolution, and time plays a secondary role.
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to support many views at several scales – e.g., a given entity, for the same administrative boundary,
may play distinct roles, and be present or not.

We point out that the work of Parent et al. [2006] concerning the MADS model, though centered
on conceptual issues concerning space, time and perspective (which has similar points with our focus
concept), also covers implementation issues in a spatio-temporal database. Several implementation
initiatives are reported. However, a perspective (focus) does not encompass several scales, and the au-
thors do not concern themselves with performance issues. Our extension to the multiversion database
(MVBD) approach, discussed next, covers all these points, and allows managing both materialized
and virtual data objects within a single framework, encompassing both vector and raster data, and
letting a focus cover multiple spatial or temporal scales.

3. RUNNING EXAMPLE

Let us briefly introduce our running example – agricultural monitoring. In this domain, phenomena
within a given region must be accompanied through time. Data to be monitored include, for instance,
temperature, rainfall, but also soil management practices, and even crop responses to such practices.
More complex scenarios combine these factors with economic, transportation, or cultural factors.

Data need to be gathered at several spatial and temporal scales – e.g., from chemical analysis on a
farm’s crop every year, to sensor data every 10 minutes. Analyses are conducted by distinct groups of
experts, with multiple foci – agro-environmentalists will look for impact on the environment, others
will think of optimizing yield, and so on.

We restrict ourselves to two data sources that vary with time, satellite images (typically, one image
every 10 days) and ground sensors, abstracting details on the actual data being produced. These
sources are analyzed against a background of non-evolving data, namely, vectorial data on the region
itself – e.g, topography, waterways. From a high level perspective, both kinds of dynamic sources give
origin to time series, since they periodically produce data that are stored together with timestamps.
We point out that these series are very heterogeneous. Sensor (stream) series data are being studied
under distinct research perspectives, in particular data fusion and summarization [McGuire et al.
2011]. Some of these methods are specific for comparing entire time series, while others can work
with subsequences. Satellite images are seldom considered under a time series perspective: data
are collected less frequently, values are not atomic, and processing algorithms are totally different –
research on satellite image analysis is conducted within remote sensing literature [Xavier et al. 2006].
Our multi-focus approach, however, can treat both kinds of data sources homogeneously.

Satellite time series are usually adopted to provide long-term monitoring, and to predict yield;
sensor time series are reserved for real time monitoring. However, data from both sources must be
combined to provide adequate monitoring. Such combinations present many open problems. The
standard, practical, solution is to aggregate sensor data temporally (usually producing averages over
a period of time), and then aggregate them spatially. In the spatial aggregation, a local sensor network
becomes a point, whose value is the average of the temporal averages of each sensor in the network.
Next, Voronoi polygons are constructed, in which the "content" of a polygon is this global average
value. Finally, these polygons can be combined with the contents of the images. Joint time series
evolution is not considered. Our solution, as will be seen, allows to solve these issues within the
database itself – rather than creating external software layers to process data.

4. SOLVING ANTHROPOCENIC ISSUES USING MVDBS

Our solution is based on the Multiversion Database (MVDB) model, which will be only introduced
in an informal way. For more details the reader is referred to the work of Cellary and Jomier [1990].
The solution is illustrated by considering the monitoring of a farm within a given region, for which
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Fig. 1. (a) Practical scenario of a polygon over a satellite image; (b) The relationship between DBVs, logical and
physical identifiers.

time-evolving data are: (a) satellite images (database object S); (b) the farm’s boundaries (database
object P), and (c) weather stations at several places in the region, with several sensors each (database
object G).

4.1 Introducing MVBD

Intuitively, a given real world entity can correspond to many distinct digital items expressing, for
example, its alternative representations, or capturing its different states along time. Each of these
"expressions" will be treated in this work as a version of the object. Consider the example illustrated
in Figure 1(a). On the left, there are two identified database objects: a satellite image (Obj S) and
a polygon to be superimposed on the image (Obj P). delimiting the boundaries of the farm to be
monitored.

As illustrated by the table on the right of the figure, both objects can change along time, reflecting
changes in the world, e.g., a new satellite image will be periodically provided, or the boundaries of
the farm can change. For each real world entity, instead of considering that these are new database
objects, such changes can be interpreted as many versions of the same object4. This object has a
single, unique, identifier – called an Object Identifier Oid5.

A challenge when many interrelated objects have multiple versions is how to group them coherently.
For example, since the satellite image and the farm polygon change along time, a given version of
the satellite image from 12/05/2010 must be related with a temporally compatible version of the
farm polygon. This is the central focus of the Multiversion Database (MVDB) model. It can handle
multiple versions of an arbitrary number of objects, which are organized in database versions - DBVs.
A DBV is a logical construct. It represents an entire, consistent database constructed from a MVDB
which gathers together consistent versions of interrelated objects. Intuitively, it can be interpreted as
a complex view on a MVDB. However, as shall be seen, unlike standard database views, DBVs are not
constructed from queries.

To handle the relation between an object and its versions, the MDBV model distinguishes their
identifications by using object and physical identifiers respectively. Each object has a single object
identifier (Oid), which will be the same independently of its multiple versions. Each version of this
object, materialized in the database by a digital item – e.g., an image, a polygon etc. – will receive a
distinct physical version identifier PVid. In the example of Figure 1(a), there is a single Oid for each
object – satellite image (Obj S) and the farm boundaries (Obj P). Every time a new image or a new
polygon is stored, it will receive its own PVid.

DBVs are the means to manage the relationship between an Oid (say, S) and a given PVid (of S).
Figure 1(b) introduces a graphical illustration of the relationship among these three elements: DBV,

4Here, both raster and vector representations are supported. An MVDB object is a database entity
5Oids are artificial constructs. The actual disambiguation of an object in the world is not an issue here
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Oid and PVid. In the middle there are two DBVs identified by DBVids – DBV 1 and DBV 1.1 – and
represented as planes containing logical slices (the "views") of the MVDB. The figure shows that each
DBV has versions of P and S, but each DBV is monoversion (i.e., it cannot contain two different
versions of an object). The right part of the figure shows the physical storage, in which there are two
physical versions of S (identified by Ph1 and Ph9), and just one version of P.

DBV 1 relates S with a specific satellite image and P with a specific polygon, which form together a
consistent version of the world. Notice that here nothing is being said about temporal or spatial scales.
For instance, the two satellite images can correspond to images obtained by different sensors aboard
the same satellite (e.g., heat sensor, water sensor), and thus have the same timestamp. Alternatively,
they can be images taken in different days. The role of the DBV is to gather together compatible
versions of its objects, under whichever perspective applies.

Since DBVs are logical constructs, each object in a DBV has its own logical identifier. Figure 1(b)
shows on the left an alternative tabular representation, in which DBVids identify rows and Oids
identify columns. Each pair (DBVid, Oid) identifies the logical version of an object and is related to a
single PVid, e.g., (DBV 1, ObjS)→Ph1. The asterisk in cell (DBV 1.1, Obj P) means that the state
of the object did not change from DBV 1 to DBV 1.1, and therefore it will address the same physical
identifier Ph 5.

4.2 DBV Evolution and Traceability

DBVs can be constructed from scratch or from other DBVs6. The identifier of a DBV (DBVid)
indicates its derivation history. This is aligned to the idea that versions are not necessarily related to
time changes, affording alternative variations of the same source, as well as multiple foci – see section
5.

The distinction between logical and physical identifications is explored by an MVDB to provide
storage efficiency. In most of the derivations, only a partial set of objects will change in a new derived
DBV. In this case, the MVDB has a strategy in which it stores only the differences from the previous
version. Returning to the example presented in Figure 1(b) on the left table, DBV 1.1 is derived from
DBV 1, by changing the state of Obj S. Thus, a new PVid is stored for it, but the state of Obj P has
not changed – no new polygon is stored, and thus there is no new PVid.

The evolution of a DBV is recorded in a derivation tree of DBVids. To retrieve the proper PVid for
each (virtual) object in a DBV, the MVDB adopts two strategies: provided and inferred references7,
through navigation in the tree. This allows keeping track of real world evolution. We take advantage
of these concepts in our extension of the MVDB model, implemented to support multiple spatial
scales [Longo et al. 2012]. First, we create one tree per spatial scale, and all trees grow and shrink
together. Second, the notion of object id is extended to associate the id with the scale in which that
object exists - (Oid, Scaleid). This paper extends this proposal in two directions: (1) we generalize
the notion of spatial scale to that of focus, where a given spatial or temporal scale can accomodate
multiple foci, and the evolution of these foci within a single derivation tree; (2) we provide a detailed
case study to illustrate the internals of our solution.

5. FROM MULTIVERSION TO MULTI-FOCUS

5.1 From Multiversion to Multiscale

The extension of the MVBD model to support multi-focus is presented in two steps. First, we intro-
duced a modification in this model to support multiple scales in space and time [Longo 2013]. Here,

6DBV derivation trees, part of the model, will detailed in section 6.
7For the logical version (DBV 1.1, Obj P), the reference will be inferred by traversing the chain of derivations.
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the main modifications were the following: (a)for each scale, a new derivation tree is constructed, and
changes in the world in a given scale are synchronized across version trees; and (b) a scale becomes
part of an oid, The first modification implies that a given DBV (containing a set of objects) can be
created in several scales (where all objects are consistent with that scale). The second modification
indicates that the logical version of an object requires not only the identification of its DBV, but also
of the scale under which it is being studied.

This work was implemented and tested on vectorial data – see section 6. An additional charac-
teristic of this implementation is that integrity constraints can be specified and checked between two
consecutive (stored) scales. In this extension to the MVBD model, the notion of focus is restricted to
a scale – i.e., it does not support a focus in which people work in subsets of objects, or with objects
constructed dynamically. The only relationships between objects (or scales) are spatial (topologic,
direction) or temporal. We now describe the next step, in which this is extended to the full multi-focus
approach.

5.2 From Multiscale to Multi-focus

This paper extends the MVDB model to support the several flavors of multi-focus. This implies
in synthesizing the multiple foci which can be applied to objects – scales, representations etc. –
as specializations of versions. Figure 2 illustrates an example of this extension. There are three
perspectives within the logical view - see the Figure.

In the Physical perspective, there are three objects – two versions of satellite image S (with identifiers
Ph1 and Ph2), and one version of a set of sensor data streams, corresponding to a set of weather stations
G – global identifier Ph7). Satellite image and sensor data are to be combined by Applications, which
can only access them through DBVs – i.e. they cannot address them straight in the Physical Storage.
So, several DBVs are built, each of which corresponding to a distinct focus. The arrows between DBV
objects and stored objects appear whenever a logical object has a provided reference (not inferred or
computed) to a physical object – it means that this object was updated in this DBV. In the figure,
the DBV corresponding to Focus 1 makes available the satellite image version Ph1 and all data from
all weather stations G. The DBV corresponding to Focus 2 makes available the satellite image version
Ph2, and computes a set of Voronoi polygons from the weather station data streams – the resulting
polygon is displayed in the figure with a dotted line to show that it is not directly copied from the
database, but is computed from it. Finally, DBV-Focus3 contains only one image, which has been
computed from DBV-Focus2.

Applications access these three DBVs in the following way. Application Scale A is built from DBV-
Focus1; it corresponds to a particular spatio-temporal focus of the database, in which the image and
the polygons are directly copied from the DBV. Application Scale B is built from DBV-Focus2; it
corresponds to another spatio-temporal focus of the database, in which the image is directly extracted
from the DBV and a set of Voronoi polygons is computed from the DBV. The third DBV is not being
used by any application. Additional data sources of our running example are added the same way –
e.g., our static data sources can be added for each scale (A or B).

Figure 2 reflects the following facts. First, DBVs can contain just objects that are in the database,
or computed objects, or a mix of both. Second, applications constructed on top of the DBVs can
use exactly the same objects (object S on Scale A / DBV-Focus1 directly uses the same contents
of DBV-Focus2), but also compute other objects (the Voronoi polygons on Scale B / DBV-Focus2,
computed from DBV-Focus1). Third, DBVs now can be interrelated through many kinds of derivation
operations.

In our case study, each application corresponds to one spatial scale (scale B smaller than scale A),
and sensor data are preprocessed either at the application, or by the DBMS, to allow combination
of these distinct data sources. DBV-Focus 3 is an example of at least three possible scenarios: in

Journal of Information and Data Management, Vol. 5, No. 2, June 2014.



Multi-focus Research and Geospatial Data - anthropocentric concerns · 155

Fig. 2. Handling multiple foci

one, S corresponds to an even smaller spatial scale, for which sensor data do no longer make sense;
in another, S becomes the result of combination of satellite image and sensor data; in the third, the
focus concentrates in some characteristics of the satellite image, and sensor data can be ignored for
the purposes of that DBV.

In order to support multiple foci, our multi-scale extension of the MVDB model was extended in
two aspects: (i) we added more types of relationships between DBVs; (ii) we introduced an extended
strategy to infer and derive values, and compute logical object versions. In the classical MVDB the
only relationship between two DBVs is the derivation relationship. Our multi-focus approach requires
a wider set of relationships. Therefore, now the relationship between two DBVs is typed. Besides
derivation, new types are created: generalization, aggregation etc. This typing system is extensible,
affording new types. This requires that new information be stored concerning each DBV, and that
the semantics of each object be stored alongside the object, e.g., using ontologies.

Different from the classical inference mechanism adopted for derivations, these new relationship
types require new inference algorithms. For example, a digital item from a scale A must be resized
to a scale B. The inference will be influenced by four variables: (1) the types of the involved DBVs;
(2) the type of the relationship between them; (3) the datatype of the digital item; (4) the semantics
in which the object will be handled. This requires that new information be stored concerning each
DBV, and that the semantics of each object be stored alongside the object, e.g., using ontologies.

Returning to our example in Figure 2 consider an application that will access the contents of S in
DBV-Focus3. Since there is no explicit reference to it in the DBV-Focus2, the only information is that
the state of S in the third focus has been derived in some kind of relationship with the state of S in the
second DBV. Let us consider that this is a generalization relationship, i.e., the state of S in the third
DBV is a cartographic generalization of the state of S in the DBV-Focus2. In order to use this logical
version of S in an application, the construction of DBV-Focus3 will require an algorithm that will:
(1) verify that the type of the relationship between DBVs is generalization and that they are typed
by geographic scales; therefore, S must be transformed to the proper scale; (2) check the semantics of
S and its datatype, verifying that it is a raster satellite image, and therefore generalization concerns
image processing, and scaling.

Figure 3 shows the UML diagram of the data model that supports our multi-focus paradigm; this
diagram was specialized to support management of inter-scale integrity constraints [Longo 2013]. This
specialization is a first approach to evaluate some of the proposed features, with some restrictions:
(i) the DBV typing system is still restricted to spatial scales; (ii) the object typing system is still
restricted to geo-objects but we provide an extension mechanism.

Physical versions of objects can be defined as subclasses of the GenericPV class and will not
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Fig. 3. UML diagram of the multi-focus model

be discussed here; this helps support multiple kinds of relationship across physical versions. The
MultiversionObject class has five attributes. The first is the identifier, the second is some title which
identifies the object in the real world, the third is some complement of the title attribute, the fourth
says if the object is an aggregator, and the fifth is the set of encapsulated objects if this is an aggregator.

The Scale class has an identifier, an attribute that indicates the type of the scale (spatial, temporal,
etc) and another that is the value associated to the type (e.g., “1:10000” for spatial scales, “minutes”
for temporal scales).

The DBV class has five attributes. The first is the identifier, the second is the version stamp, the
third is the associated scale, the fourth stores the stamp of the next child to be created by derivation
(e.g., if a DBV with stamp 0.1 has already two children – 0.1.1 and 0.1.2 – the next child attribute
will indicate 0.1.3), and the fifth is the DBV from which it was derived. The PhysicalVersion abstract
class has an identifier, a geometry, and an initial and final timestamp: ti and tf , respectively. The
GenericPV subclass has no aditional data besides PhysicalVersion attributes (users can create other
subclasses of PhysicalVersion entering new attributes to be versioned). Finally, the LogicalVersion
class links a DBV and a multiversion object with a physical version.

In order to support multiple kinds of relationships across DBVs, as described, the derivation
(self)relationship among DBVs in the Figure is extended to accommodate all intended derivation
types. Moreover, class Scale represents all kinds of focus.

6. IMPLEMENTATION OF MULTISCALE MANAGEMENT

We implemented a multiscale data management platform, for geospatial data, using our extension of
the DBV model to handle multiple scales – see section 5.2 This implementation does not consider
multiple relationships across DBVs (which is our modeling approach to full multi-focus support); it
only treats multi-scale modeling and storage. In other words, this implementation only gives limited
support to specific kinds of focus, namely when a focus corresponds to objects within a single spatial
or temporal scale.

This work, detailed by Longo [2013], also allows the specification and checking of multi-scale integrity
constraints, specified on spatial (vectorial) and temporal scales. Here, we give a brief overview of
this implementation, showing how our proposal can be implemented using a database versioning
mechanism. In this implementation, a focus is created from all objects within a single scale, selected
via their oids (that include the scale identifier). It does not allow to restrict the set of objects to be
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Fig. 4. Architecture of the DBV multi-scale platform

managed (though this can be changed by constructing views on top of DBVs). The implementation
does not support the computation of virtual objects, or arbitrary relationships across DBVs. It
supports, however, scaling relationships specified as multiscale integrity constraints.

The platform8 was implemented on top of the PostGIS spatial database extension for PostgreSQL
due to its widespread adoption and to its support of geospatial features. Our implementation uses
the Java programming language, Java Persistence API (JPA) and Generic Spatial DAO library, which
is a generic DAO (Data Access Object) with spatial extensions (using Hibernate Spatial) and utility
methods, for geographic data object/relational mapping.

Figure 4 shows a high level model of the platform, divided in five modules: Domain Data Mapping,
Database Handlers, Consistency Handlers, Multi-Scale Integrity Constraints and Controller.

There follows a brief description of each module:

—Controller – accessed by applications to select the DBVs to use and to perform operations on DBVs
and objects, as well as to request constraint checking. It plays the role of mediator among the
platform’s modules, and between the platform and external applications;

—Domain Data Mapping – maps application objects into the underlying DBMS;
—Database Handlers – translate Controller requests into database operations (queries and updates),
considering data mappings;

—MS-ICs – implements multiscale integrity constraints as Java classes. Each class has a method that
checks the multiscale consistency between two versions of an object, i.e., one version per scale, and
another that checks the multiscale consistency between two pairs of objects (one pair per scale).

—Consistency Handlers – code that checks multi-scale consistency, invoking the appropriate MS-IC
methods.

This platform supports, among others, the following: creation of a new DBV, accessing a DBV,
adding or modifying a logical version of an object in a DBV, checking multi-scale consistency across
DBVs. For implementation details, the reader is referred to the work of Longo [2013].

Visualization and interaction facilities were constructed using the Java programming language, JSF
(Java Server Faces) framework, RichFaces visual components for JSF, OL4JSF library, which helps
the use of OpenLayers for JSF.

This execution example used multi-scale geospatial real world data provided by Embrapa9. The
data sets contain 5641 geometry features related to the Rio Pardo watershed and its rivers, at two
scales:1:250k and 1:1M. Let us consider the user wants to construct some scenarios using the DBV
multi-scale platform, involving watershed polygons at these two scales, and river polylines.

Figure 5 shows the (synchronized) derivation trees of this execution. DBV stamps appear at the top
left corner of each DBV. The initial DBVs have no data (by default). The set of DBVs with stamps 0.1

8http://code.google.com/p/dbv-ms-platform
9http://www.embrapa.br
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Fig. 5. Derivation trees for the case study

Fig. 6. Scenario corresponding to 0.1.1

has only the watershed polygons in the two scales. For DBVs 0.1.1, we now have the watershed with
all rivers in the two scales. Here, we do not have to store the watershed polygons again, because they
are shared from the previous DBVs. The same occurs in 0.1.2, where besides the watershed polygons,
the main river appears.

The user starts by choosing to create empty DBVs, one for each scale, and then inserts data. Version
0.1 was constructed by creation of a DBV per scale, followed by insertion of objects corresponding
to watershed and rivers. This was achieved by execution of operations on multiversion objects and
DBVs, via invocation of methods of the platform, e.g., adding or updating versions of objects, and
working in a scale at a time. When a new DBV is created from the current, the changes are saved.

This is achieved by demanding the creation of two new DBVs (one for each scale) descending from
DBV(s) stamped 0. The top left side of each screen shows how new versions are progressively created,
while the maps portray the actual visualization of multi-scale data at each DBV. At each DBV and
scale, the user can visualize more or less details by clicking on the +/- buttons.

Next, suppose the user wants to add data in order to represent two alternative scenarios: one
contains the watershed and all its rivers and another with the watershed and only its main river. For
each scale, two new DBVs are created descending from versions 0.1. Figures 6 and 7 are screen copies
of these two alternative situations, respectively numbered 0.1.1 and 0.1.2.

Figure 6 left shows a zoom of scenario 0.1.1, where river polylines are displayed in more detail.

7. CONCLUSIONS AND ONGOING WORK

This paper presents our approach to handling multi-focus problems, for geospatial data, based on
adapting the MDBV (multiversion database) approach to handle not only multiple scales, but multiple
foci at each scale. Most approaches in the geospatial field concentrate on the management of multiple
spatial or temporal scales (either by computing additional scales via generalization, or keeping track
of all scales within a database via link mechanisms). Our solution encompasses both kinds of approach
in a single environment, where an ad hoc working scenario (the focus) can be built either by getting
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Fig. 7. Scenario corresponding to 0.1.2

together consistent spatio-temporal versions of geospatial entities, or by computing the appropriate
states, or a combination of both. Since a DBV can be seen as a consistent view of the multiversion
database, our approach also supports construction of any kind of arbitrary work scenarios, thereby
allowing cooperative work. Moreover, derivation trees allow keeping track of the evolution of objects
as they are updated, appear or disappear across scales.

Our ongoing work follows several directions. One of them includes domain ontologies, to support
communication among experts and interactions across levels and foci. We are also concerned with
continuing our work on formalizing constraints across DBVs (and thus across scales and foci).

We point out that we might also in the future take advantage of another DBV implementation,
called MyDraft (www.myDraft.org). Though not constructed for multi-focus purposes, MyDraft is
a web platform meant to build and run data-oriented rich web applications. Application designers
can define and run executable models (classes, attributes, states, use cases) with little or no code,
in incremental, user experience driven, two minutes cycles. Traceability features include automatic
history logging and instant time-machine for both data and model definition. Although myDraft is a
general purpose platform, geographic applications can be built using chart components. Nevertheless,
in order to take advantage of this product, we would have to modify it to support focus manipulation.
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