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Abstract. Searching on complex data, such as medical images and financial time-series has attracted several research
efforts in recent years. Feature extraction methods (FEM) and distance-functions (DF) play a crucial role when com-
paring such data, once they can help bridging the semantic gap between users’ intent and the Content-Based Retrieval
Systems (CBRS). Metric access methods (MAM), in turn, are important structures aimed at reducing the CBRS answer
time. Integrating all these components into a single framework is quite challenging. In fact, such framework should
provide flexibility to allow the database administrator (DBA) to add new FEM, DF and MAMs on the fly, as they are
being required and developed, combining them according to the requirements of each CBRS application. An adequate
way to create a framework is extending the Relational Database Management Systems (RDBMS) and the SQL language
to allow integrating the definition of the FEM, DF and MAMs into the core search engine. In this paper we extend
and improve the original strategy of the existing middleware SIREN into a new, complete similarity-enabled framework
called SimbA. Based on a new approach, SimbA allows a much tighter and flexible handling of new complex data types,
FEM, DF and MAM in a seamless abstraction. We adopted a SQL extension in order to represent the users’ queries.
Our extension of the SELECT command for similarity comparisons also provides a canonical query execution plan, which
allows using data distribution estimates to generate cost-based optimization plans. To illustrate our architecture, we
exemplify the developed concepts showing how to add a new complex data type (the ”financial time-series”) as well as
its corresponding FEM into our framework. Through the extended-SQL and by using complex predicates, we provide
example applications to store and query two real datasets as relational tables in commercial RDBMS. The first one
(DDSM_ROI) is composed of mammograms, while the second (BM&F_BOVESPA) contains weeks of the Brazilian
stock exchange index. The experiments performed confirm that our approach can be used as a generic backend for
CBRS, whereas maintaining all the desirable features of a RDBMS.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous; H.3 [Information Storage and
Retrieval]: Miscellaneous; H.2.3 [Languages]: Miscellaneous

Keywords: distance functions, extended-SQL, feature extractors, similarity queries

1. INTRODUCTION

Nowadays, it is mandatory to store complex data such as images, movies, audio and time-series inside
Relational Database Management Systems (RDBMS). The development of techniques to recover these
data, as well as to mine the intrinsic knowledge embedded in them, have required many research efforts
in recent years [Silva et al. 2013]. By following the relational model, the recovery of complex data
should be treated as operations which extend those usually employed by RDBMS over traditional
data [Zezula et al. 2006; Kaster et al. 2010].

When it comes to complex data, the queries do not require the identity nor the order relationship
among the elements. In fact, semantically, it is not often meaningful to express the precedence
relation for these data types [Traina et al. 2003; Yang et al. 2012]. The identity operator can be
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applied accordingly to its universal definition, but the occurrence of two identical complex elements
(e.g. two identical medical images) is very unusual. In the literature, the most solid approach to
retrieve data by content is related to the use of similarity measures [Noh 2012; Bedo et al. 2013]. The
similarity query paradigm relies on distance measures between the complex elements. The result set
is composed of elements in the neighborhood according to a comparison perspective, based on a way
to describe the complex data. Formally, the similarity query concept can be expanded for any data
types, provided that a similarity measure is defined following the metric space requirements [Silva
et al. 2010].

A metric space is defined by a pair < S , d() >, where S is the domain of complex elements and d()
is a metric distance function [Zezula et al. 2006]. The use of d() allows to measure the distances among
the elements of S. The values of distances can be compared in similarity operators. For instance,
given a query element sq ∈ S, it is possible to recover all the elements which are not farther than
a given radium ξ. This generates the selection operator known as Range Query (Rq) [Jahirabadkar
and Kulkarni 2014]. Another common selection operator retrieves the k nearest elements to sq. This
operator is referred as the k-Nearest Neighbor Query (kNNq) [Aha et al. 1991]. Rq and kNNq are
the most employed similarity selection operators in the literature [Yianilos 1993; Silva et al. 2013].
Analogous reasoning can be applied to produce complex join operators as, for instance, the Range
Join [Silva et al. 2013].

Similarity operators are employed as the basis of the Content-Based Retrieval Systems (CBRS) as,
for example, the Content-Based Medical Image Retrieval System (CBMIR) and the Content-Based
Audio Retrieval (CBAR). The original complex data are stored as Binary Large Objects (BLOB)
inside RDBMS. A feature extractor method (FEM) is able to represent the original data as a feature
vector (FV), allowing a distance function (DF) to measure the similarity among each pair of FVs
[Chadha et al. 2012]. Another important point is related to the performance (time demanded) of the
query execution. As with traditional data, index structures may reduce the query answer-time by
orders of magnitude [Skopal 2010; Jr. et al. 2002]. The Metric Access Methods (MAM) are structures
capable of speeding up queries involving predicates with complex attributes, as in the case of metric
spaces where only objects and their distances are available.

Therefore, a generic similarity query system executor should be composed by operators able to
handle and store complex data types and (1) feature extractors, (2) distance functions and (3) metric
access methods. We call those three parts of the query systems as the authorities (formally defined in
the next Section), who guide the complex data type creation and management. Moreover, a structured
language should allow the database administrator (DBA) to employ and tune the aforementioned tech-
niques for specific domains. Toward this aim, some prototypes have been developed to be integrated
into a RDBMS. An interesting initiative is the Similarity Engine Retrieval (SIREN) [Barioni et al.
2006], a middleware able to perform similarity operations over images and audio. However, it does not
provide the dynamics and flexibility to easily incorporate new complex data types and their authorities
(FEMs, DFs and MAMs), which is an important requirement to support the growing development of
experts CBRS (e.g. CBMIR [Bedo et al. 2012]).

In this paper we advance the state-of-the-art by systematically defining the similarity authorities and
their relationships. To do so, we propose a new approach for similarity queries and its implementation
as a new framework : the Similarity by Authorities - SimbA, which employs a powerful data-dictionary
to handle new complex data types and their authorities on the fly. We employed the extended-SQL
definition of the middleware SIREN [Barioni et al. 2006] in order to validate the queries submitted by
the users. To illustrate our new architecture, we show how to add a new complex type (the ”financial
time-series”) as well the adequate FEM and DF for this data type and how to combine them according
to the applications requirements. For the completeness sake, to extend the SQL Data Manipulation
Language (DML) commands, our solution is also able to provide a canonical query execution plan,
giving ground for further estimation of the query cost.
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We evaluated our architecture through SQL DML commands using two distinct real datasets in
example applications. The first one, denominated DDSM_ROI is composed of regions of interest
(ROI) of mammograms, cropped by specialists of the Clinical Hospital of the University of São Paulo
(HCFMRP). We employ FEMs based on color and texture to represent the ROIs and several DFs to
calculate the distances among them. The second dataset (BM&F_BOVESPA) is composed of the
index daily values of the Bovespa Stock Exchange covering every week from 2005 up to 2010. We
employed a new FEM that we developed [Bedo et al. 2013] for this data type and the Euclidean
distance to measure the similarities. The experiments showed that the proposed framework can be
used as a generic backend for CBRS, providing the support for the specific complex data required
by those applications, whereas maintaining all the desirable features of a RDBMS. The remaining of
this paper is structured as follows: Section 2 presents the related work in the literature and the main
concepts required. Section 3 introduces our proposed framework, while Section 4 describes example
applications. Finally, in Section 5 we present the conclusions.

2. BACKGROUND AND RELATED WORK

In this section we present the definitions related to similarity queries and previous work in the lit-
erature. We describe how FEMs are employed to represent complex data in a domain well-suited
for the comparison process performed by a DF, where the results are combined as a query operator
result. Although those concepts are well-known, we present some of them in a slightly different way,
analyzing them in an atomic execution perspective. Our goal is to illustrate the execution pipeline for
similarity queries in a structured way, and how our proposed framework deals with their execution.

Definition 2.1. Feature Extractor Method - FEM: Given a data domain S and a extractor domain
F, a feature extractor method FEM : S→ F, is a computational function able to represent the original
complex data as its summarization in F. The composition of two or more FEMs (FEM | FEM) is also
a FEM.

Definition 2.2. Feature Vector - FV: Given a specific element sq ∈ S and a FEM, the feature vector
fq ∈ F is the concise representation of the original data element generated by the FEM in F, which is
also said to be a mapping of sq in F.

Definition 2.3. Metric Distance Function - DF: Given, fi, fj and fk ∈ F, δ : F × F → R+ is a
metric distance function, if it satisfies the following three properties:

(1) Symmetry: δ(fi, fj) = δ(fj , fi);
(2) Non-negativity: 0 < δ(fi, fj) <∞;
(3) Triangular Inequality: δ(fi, fj) ≤ δ(fi, fk) + δ(fk, fj)

Definition 2.4. Complex Data Descriptor - CDD: A complex data descriptor is a pair < ε, δ >,
where δ is a (weighted) metric distance function and ε is a FEM(s).

Definition 2.5. Data Type Authorities - DTA: The set of FEM, DF and Metric Access Methods
(MAM) assigned to each particular data type is called the Authorities of the type.

Definition 2.6. Nearest-Neighbor Query - kNNq: Given a query element fq ∈ F, a DF δ and a
number of neighbors k ∈ N, the nearest-neighbor query answer is the unitary subset of F such that
kNNq(fq, k) = {fn ∈ F | ∀ fi ∈ F ; δ(fn, fq) ≤ δ(fi, fq)}.

Definition 2.7. Range-Query - Rq: Given a query element fq ∈ F and a maximum distance ξ ∈ R+,
the answer Rq will be the subset of F such that Rq(fq, ξ) = {fi | fi ∈ F ; δ(fi, fq) ≤ ξ}
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2.1 Feature extractor methods

For each domain of complex data there are several methods proposed in the literature able to act as a
FEM [Chadha et al. 2012; Sonka et al. 2007]. For images, generic features are usually based on color,
texture, shape or their relationship. Besides, there is a large number of features specific for particular
domains, such as for face recognition, fingertips, medical imaging, satellite or remote sensing imaging,
etc. In the financial time-series case, statistical values are commonly extracted, such as mean and
volume among others [Mills 2008]. The following Sections present concepts of some features that were
employed in the implementation of our proposed framework.

2.1.1 Color-based FEMs for images. Most of FEMs employ color as the basis for the feature
extraction. Usually, each pixel can be represented as a point in a proper color-scale system. Thus,
taking their relative frequency is the main idea behind the histogram-based methods. The equi-width
histogram [Ioannidis 2003] is sorted by the pixel-value (either gray or true-color scale) entries equally
partitioned, where the sum of frequencies represents the cumulative probability. Formally, for a gray-
color histogram h(bk), we can denote h(bk) = nk where bk is the k-th pixel value and nk is the number
of pixels of intensity bk on the image, considering bk ∈ [0, L− 1] where L is the upper bound of the
gray scale. Analogously, the color histogram can be expressed as a composition of single histograms
taken by each color band [Yang et al. 2012]. Another histogram approach worthy to note is the one
proposed in [Traina et al. 2003] and called as metric-histogram. Such technique can summarize an
original histogram by joining the very similar frequencies in consecutive intensities. The correlations
among the pixel-values are represented by their piecewise approximation in selected intervals of points
(pixel value, frequency) of the original histogram. The set of chosen points produces a reduced version
of the histogram requiring less space to be stored and being faster to compare.

2.1.2 Texture and Shape-based FEMs for images. There are several definitions of surface roughness
and texture for image processing, but generically it can be described as a visual pattern, where there
are several elements repeating. The texture-based FEMs can also be labeled as statistic (based
on density) or structured (based on a previously segmented element). The fourteen characteristics
proposed by Haralick et al. [1973] are able to express texture values such as entropy, variance and
energy based on co-ocurrences matrix of distances and angles. Another important FEM based on
image contraction are the wavelets transforms. The main idea behind the wavelets descriptions is the
reduction of information through a proper filter. Haar and Daubechies provide a basis for wavelets
transforms for images [Mallat 2008]. Other techniques are also useful as image FEMs, such as the
Zernike moments that are able to gather the shape distribution of an image[Sonka et al. 2007].

2.1.3 FEMs for financial time-series. Financial time-series are a particular realization of time-
series, on which a graphical analysis can be performed. Several values can be obtained from a window-
series such as Bollinger bands and the exponential moving average (EMA) [Mills 2008]. Both methods
do not rely on a particular representation of the time-series, which is taken into account by other FEM
methods, such as the gap descriptor (GAP). GAP is based on the candlesticks representation of a fi-
nancial time-series, where the disruptions among two consecutive points (e.g. the closing price of share
is not necessarily its opening price on the next day) are captured by four linear proposed functions.
Although GAP only considers the intrinsic information of share movement (i.e. external variables
as trending volume are discarded), the captured disruptions are adequate to represent trending and
influence, suiting well for the financial time-series domain [Bedo et al. 2013].

2.2 Distance functions

To answer both similarity queries Rq and kNNq it is imperative to measure the similarity among two
feature vectors according to a defined CDD. This quantification is performed by a DF, which evaluates
the similarity of a pair of elements as a distance expressed as a real value. The smaller the distance
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Fig. 1. Comparative characteristics table among SIREN, FMI-SiR, POSTGRESQL-IE and SimbA.

value, the more similar the elements are. There are important functions that can measure similarity
but not all of them respect the requirements of Definition 2.3. For example, Data Time-Warping
(DTW) and the Jeffrey’s Divergence do not satisfy the triangular inequality property [Rakthanmanon
et al. 2012]. For the scope of this work, we will consider only metric distance functions, which
allow using metric access methods. Perhaps, the most iconic family of DFs is the Minkowsky, which
includes the Euclidean distance (L2). DFs of Minkowsky family compare each pair of FVs dimension
by dimension, according to the following expression: Lp(X, Y ) = p

√∑n
i=1 | xi − yi |p, where X =

{x1, x2, ..., xn} and Y = {y1, y2, ..., yn} are generated by the same FEM and the operator {−} is
defined for each dimension of the FVs. A particular variation of L1 is the Canberra Distance, which
is expressed as C(X, Y ) =

∑n
i=1

|xi−yi|
|xi|+|yi| (when xi = yi = 0 the fraction i is defined as 0). Another

widely employed distance of the Minkowsky family is the Chebyshev member (L∞). Notice that
there are DFs able to compare FVs which are not defined over Rn [Zezula et al. 2006]. For instance,
the Metric Histogram Distance is able to obtain the similarity between two metric histograms, by
calculating the area difference under their piecewise linear approximation [Traina et al. 2003].

2.3 Similarity queries support on RDBMS

The goal to integrate complex data into RDBMS is to allow the modeling of complex data using the
entity-relationship paradigm. To query the stored data, a suitable language should also be adopted
[Budíková et al. 2012]. Barioni et al. [2009] has defined an extension to SQL language, which is used by
SIREN. Other prototypes are able to represent similarity queries as user-defined functions, such as the
FMI-SiR [Kaster et al. 2010] and the POSTGRESQL-IE [Guliato et al. 2009]. Although the original
proposal of SIREN allows definitions of CDDs by DDL commands, it lacks flexibility to include new
complex data types and their authorities. On the other hand, FMI-SiR allows the integration of new
FEMs, but lacks flexibility to add new complex data type. As a framework proposed to operate over
ORACLE R© architecture, FMI-SiR stores the complex data and its feature vectors as BLOBs (and
the system ORDImage variations) in a single table, where the DBA is responsible for the creation and
maintenance of the tables. POSTGRESQL-IE, instead, has a proper data-dictionary to store images
(of one specific type) and FVs ∈ Rn, and allow the insertion of new FEM, yet it does not provide
dynamic support for new complex data types or DFs. Figure 1 highlights the main characteristics of
the aforementioned systems. Our proposed approach and its implementation was designed to fulfill
all of those desirable characteristics.

3. THE PROPOSED SIMBA FRAMEWORK

In this section we present our approach and the SimbA framework, designed to handle complex data
storage and retrieval, which provides a flexible support to dynamically include new authorities for
the complex data types. Our solution is based on a set of authorities’ libraries. The integration of
every atomic resources results in a symbiotic backend system: We take advantage of a user-selected
RDBMS system (we evaluated our proposal using Oracle R©, Postgres R© and Oracle MySql R©) to store
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the complex data and FVs as BLOBs and guarantee the ACID properties. On the other hand, we
provide both syntactic and semantic interpretation for every SQL command. When a complex data
is detected in a query command, the system performs all the required processing, translating the
similarity-related command into a query expression tree and a regular SQL for the RDBMS input.

Figure 2 provides a high level view of the architecture of the SimbA framework. The definitions
of FEM, DF and FV of Section 2 are mapped into the authorities libraries, which are responsible
for the execution. The libraries are linked to SimbA as generic classes, which generalizes the entire
concept for the system. For instance, from the image library perspective, the system is able to deal
with several image data types (.jpg, .png, .dicom, etc). On the other hand, from a system perspective,
there is no special format (such as indicated by a file extension), but only the complex object class
representation.

The backend module can also be used to define the CBRS schema through DDL commands, which
supports the extended-SQL. The first task performed by a DBA when configuring a database that
stores complex data is to define how each pair of elements must be compared. The CREATE METRIC state-
ment is the implementation of the CDD concept (Definition 2.4). More than one complex data de-
scriptor may be needed for a given requirement analysis. Thus, the DBA should specify all required
CDD related to the complex data. The second step in a schema definition is the specification of the
tables. We propose to store the complex data into a separated table, linked with the original one
by a foreign key. This solution allow that the original complex data and every system controlled
FVs (Definition 2.2) specified by the CDDs be stored in any table in a way that is transparent to
the users. For the RDBMS-portability sake and for security reasons, our framework always convert
the BLOBs to an hexadecimal or base-64 representation, thus the DBA can dump/load the RDBMS
without data loss and allowing data encryption. Removing the METRIC definition requires removing
all related complex attributes in all internal tables of the schema, warranting the consistency of the
definitions and related data stored in the database.

Figure 3 (a) illustrates how the linked tables are able to store the feature vectors and the complex
data inside a RDBMS. For the INSERT, DELETE and UPDATE commands (Fig. 3 (a) Step 1), the backend
validates the user input through the extended-SQL library ((Fig. 3 (a) Step 2). When a complex
data is identified, the library requests the related FVs to the backend. Then, the backend employs the
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expert library to open the file and perform the extraction (Fig. 3 (a) Step 3) through the complex
object class. The extended-SQL library provides a set of standard INSERT statements containing the
ciphered blobs to the backend (Fig. 3 (a) Step 4), which finally persist the data into the RDBMS
(Fig. 3 (a) Step 5 and 6). Notice that, when a complex data has to be stored, the system actually
stores it in a controlled table, which is transparent to the user. This organization allows the extracted
FVs to be stored in the same tuple of the complex element, but they are hidden from the users. The
controlled’ and users’ table are linked by a system ID. To improve the similarity query performance,
a MAM is always assigned for each complex column definition. Thus the FVs are also inserted into
the respective MAM through its expert library, and any query involving the complex data is always
executed using the corresponding MAM before accessing the data elements.

In order to validate the statement, the data-dictionaries of the RDBMS and SimbA are consulted
and if any non-conformity is found, an error is throw. In the case of the DELETE command, the
CASCADE policy is always applied. In the case of delete/update of tuples involving complex data, an
additional step is required. Once the MAM is not supported by the basic RDBMS, SimbA demands
to the indexes library (through the MAM class) to remove/update the data on index file, which is
stored outside the RDBMS (Fig. 3 (a) Step 7).

Figure 3 (b) illustrates the pipeline execution order for the SELECT command. First, the extended-
SQL library validates the user query (Fig. 3 (b) Step 2). If a complex predicate is part of the query,
the library demands the backend to solve the particular predicate (Fig. 3 (b) Step 3). Thereafter,
the backend requests the MAM library to perform the retrieval operation (Fig. 3 (b) Step 4), which
accesses the indexes files (Fig. 3 (b) Step 5) and returns the identifiers of the FVs, which satisfies the
kNNq or Rq predicate (the transparent table ’IDs’ that links the users’ and controlled’ tables). In
the next step, the backend rewrites the query using the standard SQL (Fig. 3 (b) Step 6), where the
selection predicates are replaced by IN clauses containing the set of returned identifiers. Finally, the
RDBMS receives and executes the standard SQL, providing the query result (Fig. 3 (b) Step 7).

An analogous workflow is employed to solve the complex JOIN predicates. The expert authorities
libraries solve the similarity JOIN operation (i.e. RANGE, NEAREST or CLOSEST), returning a set of joined
transparent ’IDs’ pairs. Thereafter, the backend rewrites the query as a Cartesian product between
the two original tables and a double IN list containing the pairs of elements returned. As the original
query processing is independent of the RDBMS interpretation, our approach allows constructing a
canonical query execution plan, in order to provide the first query-execution estimation. It allows
the query optimizer to determine the best position in the query execution path where the similarity
operations should be executed, considering that our proposed solution act as a middleware and that
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Fig. 4. Proposed SimbA data dictionary model.

Step 1 Step 2 Step 3 Step 4

Fig. 5. Block-diagram for inserting a new complex data-type to be stored in RDBMS.

the similarity-based operations are performed outside the RDBMS.

3.1 The proposed data-dictionary

The definitions of the FEM, DF, CDD, FV and MAMs and the assignment of them to each complex
attribute in each relation were implemented by authority libraries, which are linked to SimbA as class
representations. It is also very useful to model these concepts using an entity-relationship paradigm,
allowing the DBA definitions to be persisted. Thus, as for the authority libraries, we define a new
data-dictionary able to represent the structures as well to store new instances, providing the required
dynamic insertion/deletion of authorities.

Figure 4 provides an overview of the proposed data-dictionary. The available SimbA data types are
the traditional types supported by the RDBMS and the new DBA-defined complex types (previously,
a data type library must be defined). The data-dictionary also unifies the traditional indexes and the
MAM library to represent indexes for all data types. Finally, the system structures are able to store
the relations among the similarity-query components, such as the user-defined CDDs and the tables,
which contain complex-object columns. By adopting the transparent table strategy (Figure 3 (a)),
the complete schema can be straightforwardly stored as a similarity-related meta database.

4. ADDING A NEW COMPLEX DATA TYPE AND RELATED AUTHORITIES

Our strategy employs the proposed architecture and data-dictionary to provide dynamicity of integrat-
ing new resources, as they are being developed. Figure 5 illustrates the workflow of how to incorporate
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a new complex data type and their authorities into a RDBMS. For each new complex data type that
the DBA wants to store inside a RDBMS, the following steps are required:

Step 1 - Implement data-handling procedures to open and write files (for the required file-formats)
and the FEMs and DFs for the specific new data type by the corresponding authority library.

Step 2 - Define the complex object behavior in the Complex Object generic class.

Step 3 - Include the equivalent entries into SimbA data-dictionary. To do so, the DBA should use
the following pre-defined functions, which works as STORED PROCEDURES:

— insert_complex_data - This function stores the reserved word for the complex data type into the
data-dictionary, its characteristics (e.g. MONOLITHIC, SCALAR , etc.) and the acronym to be used
for the transparent tables.

— insert_fem - This function stores the reserved word for the FEM developed and the related
complex attribute. Default FEM parameters should also be provided.

— insert_parameters_of_fem - This function stores the possible parameters employed for a specific
FEM. It is only allowed to call the extractors with parameters that are stored in the data dictionary.

— insert_df - This function stores the reserved word to represent a DF and its characteristics.
— define_fem_df_relationship - This function allows a DF to be used over the FVs generated by an
specific FEM.

— insert_mam - This function stores the reserved word to be used as an index for the complex data
type. A method implemented in the MAM library and the MAM generic class should be previously
defined.

Step 4 - Combine the CDD through extended-DDL commands.

Once fulfilled all these steps, the DBA can start the process of table creation, using the newly
complex data type as the type of attributes that can be added to any table of the user’s schema. The
specified metrics will be used to compare the stored tuples.

5. EXAMPLE APPLICATIONS

We created a web interface and a shell, where the user can pose queries that include the extended-
SQL constructions and visualize the results. Both runs over the SimbA framework. In this Section
we present two case studies using datasets encompassing complex data. The first dataset, called
DDSM_ROI is composed of more than 2000 images containing regions of interest of mammograms
studies cropped by medical specialists of the University of São Paulo Clinical Hospital (HCFMRP).
The second one is composed of daily values of all weeks of the IBOV index from BM&F_BOVESPA
starting on 2005 until 2010. Each point of the financial time-series is composed of four values: the
opening, closing, highest and lowest values assumed by the stock index during each day.

5.1 The medical images analysis case

For DDSM_ROI we created four tables, which compose a ’mammogram study’ - the mammograms
projections: LCC, LMLO, RCC and RMLO. Each table has one complex attribute (STILLIMAGE).
Our schema allows comparing any image, considering distinct CDDs for the comparisons as shown in
commands (1) and (2). It allows choosing the desired metric at each query, using two distinct perspec-
tives. The mammogram images are stored in the four tables, each one following the same structure,
as exemplified in command (3) for table lccMammogram. The other follow equivalent definitions.

(1) CREATE METRIC metricMam1 USING Chebyshev
FOR STILLIMAGE (waveletshaarext (haar AS h));
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Fig. 6. Web interface with similarity-query results by command (4) involving a kNNq predicate. The pop-outs in the
figure are shown in the tool through navigation links: (A) the relational-algebra equivalent expression, (B) and (C) the
constructed parse-tree, and (D) the query-results.

(2) CREATE METRIC metricMam2 USING Canberra FOR STILLIMAGE
(histogramext (histogram AS hist 2), zernikeext (zernike AS zern) );

(3) CREATE TABLE lccMammogram (id INTEGER, idStudy INTEGER, lcc STILLIMAGE,
PRIMARY KEY (id), METRIC (lcc) USING (metricMam1 DEFAULT, metricMam2) );

The first CDD combines one metric, the Haar wavelets (FEM) and the Chebyshev distance function,
while the second CDD employs two FEM: the equi-width histogram with weight 2 and the Zernike mo-
ments, and measures the composed similarity using the Canberra distance. In particular, for medical
domains, it is important to determine the comparison parameter to be used, once each METRIC have
distinct resolutions, and wrong comparisons disturb the expert’s analysis. For instance, previous re-
search on this dataset have shown that the first metric obtains better precision to retrieve images
of ’mass’ evidences, while the second one obtains better precision to retrieve images of ’calcification’
evidences.

A similarity-query involving the kNN predicate can be expressed as shown in command (4). To
illustrate the action of our framework, we also show command (5), which is the command converted
to standard-SQL that the backend submits to the underlying RDBMS.

(4) SELECT * FROM lccMammogram
WHERE lcc NEAR ’center_query.krl’
BY metricMam1 STOP AFTER 3;

(5) SELECT id, idStudy, IPV$lccMammogram_lcc.lcc AS lcc
FROM lccMammogram JOIN IPV$lccMammogram_lcc
ON lccMammogram.lcc = IPV$lccMammogram_lcc.lcc_id
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WHERE lccMammogram IN (7, 1729, 406);

A medical CBMIR system can employ the interpretation and translation of extended-SQL as the
backend to perform similarity queries. Figure 6 presents our developed web evaluation tool, which
performs similarity queries using the SimbA framework through a Common Gateway Interface (cgi)1.
The pop-outs of Figure 6 present the visualization of navigation links - Figure 6 (A) presents the
equivalent relational-algebra expression for the input query, Figure 6 (B) and Figure 6 (C) show the
parse-tree representation for the query-plan and, finally, Figure 6 (D) shows the query-results.

5.2 The financial time-series analysis case

We also analyzed our approach over a second dataset, now storing time series as complex attributes.
It requires adding a new data type (the WEEK_SERIES) to SimbA, following the steps described in
Section 4. We created a table to store the related information, which describes the index behavior for
every week. We created the following metric to compare the elements:

(6) CREATE METRIC gapAndEuclidean USING Euclidean
FOR WEEK_SERIES (gapext (gap AS g) );

Figure 7 (a) exemplifies the query results for the 3 weeks most similar to the current one. The
graphical representation of the result set is shown in Figure 7 (b). Several query variations can be
requested in order to collect information of normalized tables. Another important question of this
particular application is how to apply the similarity concept in order to obtain the classification
of the current element based on the most similar weeks. Considering that one week is stored as a
MONOLITHIC data type and that we can add a column to represent groups of stored weeks (for instance,
a boolean column named ’class’ that stores the week as positive or negative), it is now possible to pose
a group-by command combined with the extended-SQL expression, such as:

(7) SELECT COUNT (idWeek), class FROM ibov WHERE idWeek IN (
SELECT idWeek
FROM ibov
WHERE week NEAR ’center_query.csv’ STOP AFTER 5

) GROUP BY class ORDER BY COUNT (idWeek);

1http://www.w3.org/CGI/
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Fig. 7. (a) Similarity-query result over the SimbA shell (b) Visual representation of similar weeks (c) Result of grouping
extended-SQL expression.
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The results of extended-SQL grouping commands are shown in Figure 7 (c). A last important
aspect to be considered is query execution time.The wall-clock time spent to answer the query shown
in Figure 6 took less than 1.2 secs in average, while to answer the question posed at Figure 7 (a) took
less than 250 ms. in average. All the experiments were performed over an Intel Core i5 R© with 2,67
Ghz processor and 2 GB memory under Ubuntu 12.04.

6. CONCLUSIONS AND FUTURE WORKS

There are several researches based on the similarity search paradigm, but only few of them target the
integration of the developed features into a RDBMS. This integration is required to bring the CBRS
development as a standard software project. Aimed at reducing the gap among the development of
similarity-based algorithms and its practical implementation into RDBMS, we presented an important
contribution by systematically defining the similarity authorities concept application in RDBMSs.

We developed the SimbA to illustrate its implementation into the similarity search process. We
showed how to extend the basic dictionary of a RDBMS, defining the structure for the corresponding
complex data dictionary and architecture, to allow adding new complex data types and their author-
ities through experts libraries. Moreover, by using a few reserved words we defined a powerful way
to deal with FEMs and DFs in extended-SQL, which was an open point in all the previous works.
Unlike main competitors which are dependent on proprietary RDBMS technologies, SimbA is able to
operate over almost any commercial RDBMS fulfilling the desired characteristics shown in Figure 1.
Finally, we presented example applications of similarity queries over databases that include images
and financial time-series, where the SimbA can play the backend role for CBRS systems, providing
strong support for query execution.

Future directions for the famework include to provide support to query-execution analysis and op-
timization - once it is already possible to represent the query-execution plan, SimbA should determine
which strategies can be applied to the faster query-execution. Another future direction is to provide
support for other data types, such as XML, DNA sequence among others, developing the specific
authorities’ libraries.
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