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Abstract. The motivation behind generating multivalued encrypted values by multivalued encrypted techniques
(METs) is the minimization of encrypted data redundancy. In the literature, there are METs that enable the processing
of sum aggregations, selection constraints and sorting operations over multivalued encrypted values. However, we
found a lack of METs for processing data groupings over multivalued encrypted values. In this article, we propose two
novel METs that allow the execution of data groupings over multivalued encrypted values and we specify two novel
data schemas for encrypted DWs (MV-HOM and MVSE-HOM) that allow analytical queries with data groupings be
performed over multivalued encrypted values. Also, we conducted a performance evaluation of encrypted DWs stored
in a cloud and results showed that MV-HOM’s overhead was decreased up to 10.41% (with 16 nodes) when compared
to a non-encrypted dimensional data schema, while the overhead imposed by MVSE-HOM was high (89.91% with 16
nodes).

Categories and Subject Descriptors: H.2.7 [Database Management]: Database Administration—Security, integrity
and protection, Data warehouse and repository; H.3.4 [Information Storage and Retrieval]: Systems and Software—
Performance evaluation; E.3 [Data]: Data Encryption

Keywords: Data Warehouse, Analytical Queries, Multivalued Encrypted Values

1. INTRODUCTION

Traditional security mechanisms of currently database management systems (DBMS), which are
mainly based on authentication and authorization, have become insufficient to protect sensitive data,
especially if the database is hosted in an untrusted server, such as a Database as a Service (DaaS)
provider [Suciu 2012]. In this case, data confidentiality may be not achieved when data are stored in
their original format, which can be read and interpreted. A solution to improve data confidentiality
is to encrypt sensitive data in a trusted environment before sending them to be stored in the unsafe
server. Thus, even if an adversary obtains access to the data, he will be unable to interpret them
because they are encrypted [Vimercati et al. 2010].

Several studies propose the use of encryption techniques to encipher sensitive data, which allow
operations (comparisons and calculations) be performed over encrypted data, enabling the execution
of queries over them without requiring decryption [Popa et al. 2012; Chen et al. 2011; Shi et al. 2007;
Hore et al. 2012; Tu et al. 2013]. Among these techniques are those that encipher unencrypted equal
values into distinct encrypted values with high a probability [Liu 2014; Kadhem et al. 2013]. We
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designate these techniques as multivalued encryption techniques (METs), and the encrypted values
generated by METs are called multivalued encrypted values.

The motivation behind generating multivalued encrypted values by METs is the minimization of
encrypted data redundancy, and consequently, the enhancement in protection against statistical attacks
[Kadhem et al. 2010]. A statistical attack occurs when an adversary uses some statistical function,
such as the repetition frequency of encrypted data, in order to try to infer the unencrypted values.
The protection against statistical attacks is an important issue for the encryption of high-redundant
databases, such as data warehouses (DWs). This is essential because if the DW’s data are encrypted
based on fixed encrypted values, then a high degree of encrypted data redundancy is found in this
DW, implying in a vulnerability that can be exploited by statistical attacks. Thus, the use of METs
in the encryption of a DW helps to minimize the redundancy of the DW’s encrypted data.

Currently, there are some METs that enable the processing of sum aggregation functions [Boneh
et al. 2013; Ge and Zdonik 2007] and the execution of selection constraints and sorting operations
[Kadhem et al. 2010; Liu and Wang 2012] over multivalued encrypted values. However, we found a
lack of METs for allowing the processing of data groupings over multivalued encrypted values. A data
grouping means that equal values belonging to a same attribute, and retrieved by an analytical query,
are grouped into a single value (i.e. eliminating their recurrence). Since multivalued encrypted values
produced by current METs are different from each other with a high probability, then they do not
enable the creation of data groupings because groups of multivalued encrypted values are probable
groups of individual values. Therefore, the proposal of data encryption schemas for DW by using
METs and the performance evaluation of analytical queries that include data groupings over these
schemas constitute the focus of this article.

Contributions of our work are enumerated as follows.

(1) We propose two novel METs that enable the execution of data groupings over multivalued en-
crypted values.

(2) Based on our MET proposals, we specify two novel dimensional data schemas for encrypted DWs,
called MV-HOM and MVSE-HOM, which allow analytical queries based on data groupings be
performed over multivalued encrypted values.

(3) By using the Star Schema Benchmark (SSB) [O‘Neil et al. 2009], we conducted a performance eval-
uation of encrypted DWs stored in a cloud and modeled according to MV-HOM and MVSE-HOM,
in terms of analytical query processing. Results showed that MV-HOM produced performance
gains w.r.t. MVSE-HOM in the execution of data groupings over multivalued encrypted values.
Also, MVSE-HOM presented a high overhead when compared to a non-encrypted DW, while the
greater was the parallelization of the processing of analytical queries, smaller was the overhead
imposed by MV-HOM w.r.t. a non-encrypted dimensional data schema.

This article is organized as follows. Section 2 discusses related work. Section 3 explains the problem
to be solved. Section 4 describes the novel MET proposals that enable data groupings over multivalued
encrypted values. Section 5 details the novel encrypted dimensional data schemas MV-HOM and
MVSE-HOM, while Section 6 reports the performance results of analytical queries processing over the
proposed data schemas. Finally, Section 7 concludes the article and addresses future work.

2. RELATED WORK

The literature reports the use of several METs that allow operations be performed over multivalued
encrypted values. Homomorphic Encryption (HOM) [Boneh et al. 2013] allows some operator op be
computed over multivalued encrypted values. Thus, when ENC(x) op ENC(y) = ENC(x op y) and
DEC(ENC(x) op ENC(y)) = x op y, then ENC and DEC are considered as homomorphic encryption
and decryption functions, respectively [Castelluccia et al. 2009]. The HOM encryption has been used
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in the processing of aggregation functions, such as sum and avg [Ge and Zdonik 2007], and calculation
of statistical functions, such as standard deviation and logistical regression [Lauter et al. 2011], over
multivalued encrypted values. Also, we found a proposal of a fully homomorphic encryption (FHE)
[Gentry 2010], which is able to compute any arbitrary operator (such as addition, multiplication,
AND, OR and XOR), and hence, any function, over multivalued encrypted data. However, researchers
have reported that FHE encryption have impractical performance, preventing its applicability in real
applications [Wang et al. 2012; Gahi et al. 2011].

In the Multivalued Order Preserving Encryption (MV-OPE) [Kadhem et al. 2010], the encryption
is performed so that the generated multivalued encrypted values preserve the same order as their
corresponding unencrypted values. Thus, given an MV-OPE encryption function ENC, when x < y,
then ENC(x) < ENC(y) and ENC(x) 6= ENC(y). The MV-OPE encryption has been used to enable
the computation of the following operations over multivalued encrypted values: sorting operations,
comparisons using relational operators, such as =, >, <, ≥, ≤ and 6=, and the aggregation functions
max and min [Liu 2014; Kadhem et al. 2013; Liu and Wang 2012]. However, current MV-OPE
proposals do not enable the processing of data groupings over multivalued encrypted values.

In the Searchable Encryption (SE) [Shi et al. 2007; Boneh et al. 2004; De Caro et al. 2010], an
encryption function ENC is performed over pairs (point, record), so that ENC(point, record) = m,
where: point corresponds to the values of some attributes of a data record, elected to be the search-
able attributes; record is a data record itself; and m is a resulting multivalued encrypted value. SE
encryption enables the execution of conjunctive, subset and range conditions over multivalued en-
crypted values [Boneh and Waters 2007]. For this, SE encryption defines a function QUERY for
searching multivalued encrypted values that fall in a given n-dimensional space. That is, QUERY(m,
S) = record, where: m is a multivalued encrypted value to be queried; S is a given n-dimensional
space, and record is a resulting data record whose point belongs to S. However, the aforementioned
conditions is performed over searchable attributes altogether, impeding the execution of conditions
specified over some searchable attributes or even over attributes that were not elected as searchable
attributes. Also, SE encryption is unable to process data groupings over multivalued encrypted data.

3. PROBLEM DEFINITION

We are interested in solving the following problem: how analytical queries can be executed over a DW
of multivalued encrypted values? The motivation for addressing this problem is illustrated as follows.

Consider a DW application concerned to sales orders whose star schema is depicted in Figure 1,
where Date, Customer and Product are dimension tables, and Order is a fact table. In the dimension
tables, the attributes with suffix Key are primary keys, while the remaining ones are descriptive
attributes. In the fact table, OrderKey is the primary key, and OrderDate, OrderCustomer and
OrderProduct are foreign keys to the dimension tables Date, Customer and Product, respectively;

Fig. 1. An example of a star schema
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while ShipMode is a descriptive attribute of a fact, and Quantity and Revenue are measures. Also, a
fragment of a corresponding DW encrypted by METs is shown in Figure 2. We consider that in this
encrypted DW, all attribute values are multivalued encrypted values.

Consider an analytical query that lists the sum of the sales orders’ revenue grouped and sorted by
product category and by month. Selection constraints are used to filter sales orders made between
January 2014 and March 2014, and whose number of items sold is greater than 25 units. When this
query is executed over the encrypted DW of Figure 2, the sum of revenue values, the filter constraints
applied over the values of the attributes month and quantity, the sorting and grouping of category
values and of month values, and joins between the fact table Order and the dimension tables Date
and Product should be performed directly over the multivalued encrypted values stored in the DW.
However, the application of existing METs for encrypting a DW does not enable the DBMS’s query
processor to create groups of encrypted data. This occurs because all encrypted values are distinct
from each other, and the current METs do not define how data groupings are processed by considering
the indistinguishability of encrypted values.

Thus, our work focuses on the definition of METs for processing data groupings over multivalued
encrypted values, and on the design of encrypted dimensional data schemas that enable DBMS’s
query processors to perform analytical queries over a DW encrypted by METs (i.e. the processing of
aggregation, selection, join, sorting and data grouping).

4. NOVEL MET PROPOSALS FOR SUPPORTING DATA GROUPINGS

Our MET proposals allow the processing of data groupings over multivalued encrypted values by re-
encrypting them at query runtime, so as to transform multivalued encrypted values into new encrypted
values that can be grouped by a query processor. As the re-encryption is done at runtime, only the
encrypted values selected by a query processor and stored in main memory are re-encrypted, whereas
those that were not selected remain multivalued in the encrypted database. Regarding data confiden-
tiality, the execution of queries is still performed over encrypted data and does not reveal unencrypted
values because the multivalued encrypted values are not decrypted during query processing.

We define two novel METs based on existing encryption techniques: the MV-OPE encryption was
used as a basis for our first MET definition that is detailed in Section 4.1, while the SE encryption
was used as a basis for specifying our second MET proposal defined in Section 4.2.

Fig. 2. A fragment of a DW of multivalued encrypted values
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4.1 A Novel MV-OPE-based MET

Our first MET proposal defines a function ENCRYPT that generates a list of ordered integer values
for an unencrypted value, so as to obtain a multivalued encrypted value chosen randomly from this
this list. For the sake of simplicity, we adopt the notation list to refer to a list of ordered integer
values. Further, we assume that the list size is defined properly so that a good randomness is achieved
for selecting an integer value (i.e. a multivalued encrypted value) from this list.

A list is delimited by [S . . . L], where S and L are computed by ENCRYPT, and represent the
smallest and the largest values of the list, respectively. Figure 3 illustrates these lists for the values
of the attribute Month, which depicts months of years. For example, the application of ENCRYPT
over the value ‘2014/01’ results in a multivalued encrypted value that is picked randomly from the list
[10 . . . 40]. Inversely, our first MET defines a function DECRYPT that transforms any multivalued
encrypted value from a list into the respective unencrypted value. For instance, in Figure 3, when
DECRYPT is applied over any value from the list [10 . . . 40], the value ‘2014/01’ is calculated and
returned by DECRYPT.

Moreover, each list is labeled. Thus, there is an association between unencrypted values, lists and
labels, such that: each unencrypted value is associated with a list; each list is associated with a label;
and each label is associated with an unencrypted value. For example, in Figure 3, the value ‘2014/01’
is associated with the list [10 . . . 40] whose label is Label1 ; and the Label1 is associated with the
unencrypted value ‘2014/01’.

For multivalued encrypted values preserving the same order as their respective unencrypted values,
our first MET guarantees two properties: (i) given any unencrypted values ti and tj , if ti precedes tj ,
then Li precedes Sj , where Li is the largest value of the list for ti, and Sj is the smallest value of the
list for tj ; and (ii) given any unencrypted values ti and tj , if ti < tj , then Lai < Laj , where Lai and
Laj are the labels associated with ti and tj , respectively.

Multivalued encrypted values produced by our first MET allow the computation of selection con-
straints, data groupings and sorting operations directly over these values by the DBMS’s query pro-
cessor. The values S and L are used in selection constraints. For example, a selection constraint
Month between ‘2014/01’ and ‘2014/03’ specified in a query is mapped to EncMonth between 10 and
120, where EncMonth is equivalent to the attribute Month, so that its values are encrypted by our
first MET; and the values 10 and 120 are the smallest and the largest values of the lists defined for
the values ‘2014/01’ and ‘2014/03’, respectively, as shown in Figure 3.

Regarding the labels used in data groupings and sorting operations, our first MET defines a func-
tion GROUP that re-encrypts multivalued encrypted values by transforming them into labels that
are associated with their respective unencrypted values. For example, in Figure 3, any multivalued
encrypted value generated from the list [10 . . . 40] is transformed by GROUP into Label1 (which is
associated with the value ‘2014/01’). As Label1 is the same for each multivalued encrypted value cho-
sen from the list [10 . . . 40], this allows the computation of data groupings over labels (i.e. encrypted
values) by the query processor. Also, because labels preserve the same order as their corresponding
unencrypted values, the groups of labels can be sorted by the query processor.

The function GROUP must be deployed as a stored procedure in an encrypted database, and must
be invoked at query runtime. When a query is issued by a user, it must be mapped into another

Fig. 3. An example of lists
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query that calls GROUP. For example, the projection, group by and order by clauses specified in a
SQL query as select Month . . . group by Month order by Month are mapped to select GR(EncMonth)
as Mon . . . group by Mon order by Mon, where: GR is a name given to the stored procedure that
implements GROUP; EncMonth is equivalent to the attribute Month, so that its values are encrypted
by our first MET; and Mon is an alias for GR(EncMonth). Thus, at runtime, the query processor
computes the stored procedure GR for each multivalued encrypted value selected by the query, in
order to create sorted groups of labels.

The labels resulting from the application of GROUP can be decrypted into unencrypted values
since there is an association between them. For this, our first MET provides a function DECRYPT-
LABEL that maps a label into the respective unencrypted value. For instance, in Figure 3, when
DECRYPTLABEL is applied over the label Label1, the value ‘2014/01’ is computed and returned
by DECRYPTLABEL. In summary, our first MET proposal comprises the list of functions listed as
follows.

—SETUP(δ) → sk: takes a security parameter δ, and outputs a secret key sk. A secret key sk is
used to encrypt unencrypted values; decrypt multivalued encrypted values; and decrypt labels into
unencrypted values.

—ENCRYPT(sk, ti) → ci: takes a secret key sk and an unencrypted value ti, and returns a multi-
valued encrypted value ci. This function is used to encipher unencrypted values.

—DECRYPT(sk, ci) → ti: takes a secret key sk and a multivalued encrypted value ci, and returns
an unencrypted value ti. This function is used to decipher multivalued encrypted values.

—GROUP(pk, ci) → Lai: takes a public key pk (generated by a secret key sk), and a multivalued
encrypted value ci, and outputs a label Lai. GROUP is deployed as a stored procedure in an
encrypted database, and is called at query runtime by the query processor for computing sorted
groups of labels from multivalued encrypted values selected by queries.

—DECRYPTLABEL(sk, Lai)→ ti: takes a secret key sk and a label Lai, and returns an unencrypted
value ti. This function is used to decrypt the final results of data groupings specified in queries.

4.2 A Novel SE-based MET

Our second MET proposal defines a function ENCRYPT that associates a label with each unencrypted
value, and applies a SE encryption function over a pair (unencrypted value, label) to generate a
multivalued encrypted value. ENCRYPT guarantees that, given any unencrypted values ti and tj , if
ti < tj , then Lai < Laj , where Lai and Laj are the labels associated with ti and tj , respectively.
Also, the SE encryption used by ENCRYPT can be any SE technique found in the literature.

Figure 4 depicts labels assigned by ENCRYPT to the values of the attribute Month. Thus, when
ENCRYPT is applied over the value ‘2014/01’, it returns a multivalued encrypted value yielded by
the SE encryption used by ENCRYPT, taking as input the pair (‘2014/01’, Label1). Inversely, our
second MET defines a function DECRYPT that transforms any label into the respective unencrypted
value. For instance, in Figure 4, when DECRYPT is applied over the label Label1, the value ‘2014/01’
is computed and returned by DECRYPT.

Our second MET also defines a function GROUP that applies a SE decryption function to transform
multivalued encrypted values into labels associated with their respective unencrypted values. Since the
same labels refer to the same unencrypted values, the query processor is able to compute sorted groups

Fig. 4. An example of labels
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of labels (i.e. encrypted values). GROUP is deployed as a stored procedure in an encrypted database,
and is invoked at runtime to be applied over multivalued encrypted values selected by queries. Thus,
when a query is issued, it is transformed into another query that invokes GROUP. For example, the
projection, group by and order by clauses specified in a SQL query as select Month . . . group by Month
order by Month are transformed into select GR(EncMonth) as Mon . . . group by Mon order by Mon,
where: GR is a name given to the stored procedure that implements GROUP; EncMonth is equivalent
to the attribute Month, so that their values are encrypted by our second MET; and Mon is an alias
for GR(EncMonth). Then, the labels resulting from the application of GROUP can be decrypted into
unencrypted values by the function DECRYPT. In summary, our second MET proposal comprises
the set of functions listed as follows.

—SETUP(δ) → sk: takes a security parameter δ, and outputs a secret key sk. A secret key sk is
used to encipher unencrypted values; and decrypt labels into unencrypted values.

—ENCRYPT(sk, (ti, Lai))→ ci: takes a secret key sk and a pair composed by an unencrypted value
ti and a label Lai, and returns a multivalued encrypted value ci. This function is used to encipher
unencrypted values.

—DECRYPT(sk, Lai) → ti: takes a secret key sk and a label Lai, and returns an unencrypted value
ti. This function is used to decrypt the final results of data groupings specified in queries.

—GROUP(pk, ci) → Lai: takes a public key pk (generated by a secret key sk), and a multivalued
encrypted value ci, and outputs a label Lai. GROUP is deployed as a stored procedure in an
encrypted database, and is called at query runtime by the query processor to compute sorted
groups of labels from multivalued encrypted values selected by queries.

5. DIMENSIONAL DATA SCHEMAS FOR ENCRYPTED DWs BASED ON METs

The proposed METs of Section 4 are used in this section to define data encryption schemas for DWs.

5.1 The Encrypted Dimensional Data Schema MV-HOM

Our first dimensional data schema proposal for encrypted DWs is called MV-HOM, is depicted in
Figure 5, and uses our first MET proposal defined in Section 4.1 together with a HOM encryption.
According to this data ecryption schema: primary and foreign keys are not encrypted; descriptive
attributes are encrypted by our first MET; and measures are encrypted by our first MET and by a
HOM encryption.

In this encryption schema, primary and foreign keys are kept unencrypted due to four main reasons.
First, if the unencrypted values of primary and foreign keys are enciphered by METs, then the resulting
multivalued encrypted values impair the processing of joins because the equality of values required by
joins is not correctly evaluated by the DBMS’s query processor. Second, the encryption of primary and
foreign keys does not prevent the exposure of associations between data items of dimension tables and

Fig. 5. The encrypted dimensional data schema MV-HOM
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of fact tables being processed by joins, no mattering if these data items are encrypted or not. Third,
keeping primary and foreign keys unencrypted does not reveal any semantics about them because in a
DW, primary and foreign keys are often surrogate keys [Kimball and Ross 2013] composed by artificial
values that do not display any business information. Fourth, the encryption of primary and foreign
keys degrades the performance of join operations [Lopes et al. 2014].

Regarding the other attributes of this encryption schema (i.e. descriptive attributes and measures),
the selection of their respective encryption methods was performed as follows. Analytical queries spec-
ified over a DW commonly involve the processing of selection constraints over descriptive attributes
and measures; the computation of data groupings and sorting operations over descriptive attributes;
and the calculation of aggregation functions (frequently based on the sum computation) over mea-
sures. Thus, encrypting descriptive attributes and measures by our first MET enables the processing
of selection constraints, data groupings and sorting operations over multivalued encrypted values pro-
duced by this MET, while the use of a HOM encryption to encrypt measures generates multivalued
encrypted values that can be useful in the calculation of sum aggregation functions.

According to this data encryption schema, each descriptive attribute in a DW yields a descriptive
attribute in the encrypted DW. However, each measure in a DW yields two measures in the encrypted
DW, where one is encrypted by our first MET and used in the computation of selection constraints,
while the other one is coded by a HOM encryption and used in the calculation of sum aggregation
functions.

Figure 6 presents the results derived from the application of the encryption schema MV-HOM to
the star schema of Figure 1. In Figure 6, the attributes suffixed with MV represent the attributes en-
crypted by our first MET, and attributes with suffix HOM are those encrypted by a HOM encryption.
Thus, using this schema, the analytical query illustrated in Section 3, and expressed in SQL syntax as
select Category, Month, SUM(Revenue) from Order, Date, Product where Month between ‘2014/01’
and ‘2014/03’ and Quantity < 25 and OrderProduct = ProductKey and OrderDate = DateKey group
by Category, Month order by Category, Month is mapped to select GR(pk1, CategoryMV) as Cat,
GR(pk2, MonthMV) as Mon, SUM(RevenueHOM) from EncOrder, EncDate, EncProduct where Mon-
thMV between L‘2014/01’ and G‘2014/03’ and QuantityMV < L25 and OrderProduct = ProductKey
and OrderDate = DateKey group by Cat, Mon order by Cat, Mon, in order to be executed over the
encrypted DW of Figure 6. In this query, GR is a name given to the stored procedure that imple-
ments the function GROUP, as defined in Section 4.1; pk1 and pk2 are public keys used by GR; the
values S‘2014/01’, L‘2014/03’ and S25 represent integer values that are, respectively, the smallest
value of the list associated with the value ‘2014/01’, the largest value of the list related to the value
‘2014/03’, and the smallest value of the list referred to the value 25, which were computed by the
function ENCRYPT, as defined in Section 4.1.

Fig. 6. An example of a schema MV-HOM
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Fig. 7. The encrypted dimensional data schema MVSE-HOM

5.2 The Encrypted Dimensional Data Schema MVSE-HOM

Our second dimensional data schema proposal for encrypted DWs is called MVSE-HOM, is illustrated
in Figure 7, and uses our two MET proposals (as defined in Section 4.1 and Section 4.2) together with a
HOM encryption. According to this encryption schema, primary and foreign keys are not encrypted,
as explained in Section 5.1; descriptive attributes are encrypted by our two MET proposals; and
measures are encrypted by our first MET and by a HOM encryption (as stated in Section 5.1 as well).
Thus, each primary key and each foreign key in a DW produce the same primary key and the same
foreign key in the encrypted DW, respectively. Also, each descriptive attribute in a DW yields two
descriptive attributes in the encrypted DW, where one is encrypted by our first MET and used in
selection constraints, while the other one is enciphered by our second MET and used in projections,
data groupings and sorting operations. Finally, each measure in a DW yields two measures in the
encrypted DW, where one is encrypted by our first MET and used in selection constraints, while the
other one is coded by a HOM encryption and used in the calculation of sum aggregation functions.

Figure 8 illustrates the results derived from the application of the encryption schema MVSE-HOM
to the star schema of Figure 1. Attributes with suffix MV contain multivalued encrypted values
produced by our first MET, and are used in selection constraints, while attributes with the suffix
SE have multivalued encrypted values yielded by our second MET, and are used in projections,
data groupings and sorting operations. Finally, attributes suffixed with HOM contain multivalued
encrypted values generated by a HOM encryption and are used by sum aggregation functions.

Fig. 8. An example of a schema MVSE-HOM
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Using this schema, the analytical query presented in Section 3 is transformed into an analytical
query expressed in SQL syntax as select GR(key, CategorySE) as Cat, GR(key, MonthSE) as Mon,
SUM(RevenueHOM) from EncOrder, EncDate, EncProduct where MonthMV between L‘2014/01’ and
G‘2014/03’ and QuantityMV < L25 and OrderProduct = ProductKey and OrderDate = DateKey and
group by Cat, Mon order by Cat, Mon, to be executed over the encrypted DW of Figure 8. In this
query, GR is the stored procedure’s name that implements the function GROUP defined in Section
4.2; key is a public key used by GR; and the values S‘2014/01’, L‘2014/03’ and S25 represent integer
values that are, respectively, the smallest value of the list associated with the value ‘2014/01’, the
largest value of the list corresponding to the value ‘2014/03’, and the smallest value of the list defined
for the value 25, which were computed by the function ENCRYPT, as defined in Section 4.1.

6. PERFORMANCE EVALUATION

We conducted experiments to evaluate the proposed encrypted dimensional data schemas MV-HOM
and MVSE-HOM in terms of analytical query processing performance. In this section, we report our
main results.

6.1 Workbench

We considered a distributed client-server system architecture, where the client contains an encryption
layer that holds encryption keys, encrypts data before sending them to the encrypted DW in the
server, maps analytical queries into queries to be executed over an encrypted DW, and decrypts the
results returned by the execution of analytical queries over an encrypted DW. On the other hand, the
server is a public cloud and stores an encrypted DW partitioned horizontally among several nodes,
and provides a scalable mechanism to distribute the processing of analytical queries over these nodes.
The client is seen as a safe environment and does not reveal information to the server about data
schemas, user’s analytical queries, mapping of queries and encryption keys. The server is considered
as an unsafe environment that only has access to the encrypted DW.

We defined the test configurations as follows. MV-HOM and MVSE-HOM are the test configura-
tions for the encrypted dimensional data schemas described in Sections 5.1 and 5.2 (called MV-HOM
and MVSE-HOM), respectively. The HOM encryption proposed by Castelluccia et al. [2009] was
used in both test configurations; while De Caro et al. [2010] implemented the SE encryption used in
the MVSE-HOM, as stated in Section 4.2, since its code is available in the library proposed by De
Caro and Iovino [2011]. Also, NONENC is the test configuration related to a DW with unencrypted
values, and aimed at verifying the overhead caused by MV-HOM and MVSE-HOM in the process-
ing of analytical queries. Thus, for NONENC, the system architecture detailed previously does not
have an encryption layer. However, no other test configurations using similar encrypted dimensional
data schemas were defined, because to the best of our knowledge, the literature does not report on
encryption schemas that allow the execution of data groupings over multivalued encrypted values.

We executed performance tests based on the benchmark SSB [O‘Neil et al. 2009] that is the standard
benchmark for the performance evaluation of DW modeled according to the star schema. For each
test configuration, we created a SSB dataset with about 6M records in the fact table, where MV-HOM
and MVSE-HOM increased the storage cost in 44.12% and 73.97% w.r.t. NONENC, respectively. The
client was deployed on a laptop with 2.10 GHz Pentium T4300 processor, 4 GB RAM, 5400 RPM
SATA 500 GB HD, Linux Debian 6.0 32bits and JRE7. The scalable mechanism was deployed on the
Windows Azure Platform using computers with shared CPUs, 768 MB RAM, 20 GB HD and Windows
Server 2008 R2, while the SSB datasets were deployed on the Windows Azure SQL Database. The
network bandwidth used between the client and the server and between the scalable mechanism and
the SSB datasets were 6Mbps and 5Mbps, respectively. All encryption algorithms used in the tests
were implemented in Java, and both versions of the function GROUP (as defined in Section 4.1 and
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4.2) were implemented in Transact-SQL and deployed as a stored procedure in the Windows Azure
SQL Database.

Experiments were performed so that the SSB datasets were equally partitioned among 1, 2, 4, 8
and 16 nodes. For each test configuration, each SSB query was executed 5 times, and the averages
of the client elapsed time, server elapsed time and total elapsed time (sum of the previous ones) were
collected in seconds.

6.2 Overhead of MV-HOM and MVSE-HOM w.r.t. NONENC

We investigated the overhead caused by the encrypted dimensional data schemas MV-HOM and
MVSE-HOM w.r.t. a non-encrypted dimensional data schema, in the processing of all SSB queries.
For this, we collected the total elapsed time for the test configurations MV-HOM (i.e. a DW encrypted
according to MV-HOM), MVSE-HOM (i.e. a DW coded according to MVSE-HOM), and NONENC
(i.e. an unencrypted DW). Results indicated that the overhead of both MV-HOM and MVSE-HOM
reduced with the parallelization of the SSB queries’ processing, although only a slighter reduction
was obtained by MVSE-HOM. These reductions occurred because the query processor’s workload
for computing the SSB queries was minimized when the SSB datasets were partitioned among an
increasing number of nodes. In fact, as shown in Figure 9(a), the MV-HOM’s overhead ranged from
40.82% (with 1 node) to 10.41% (with 16 nodes) when compared to NONENC, while MVSE-HOM
produced an overhead that varied from 98.95% (with 1 node) to 89.91% (with 16 nodes).

We also evaluated the overhead imposed by the computations of operations (i.e. selection con-
straints, joins, sum aggregation functions, data groupings and sorting operations) in the server over
the data schemas MV-HOM and MVSE-HOM w.r.t. a non-encrypted DW. For this, we collected the
server elapsed time for each proposed test configuration, as shown in Figure 9(b). Results demon-
strated that the overhead caused by MV-HOM w.r.t. NONENC ranged from 43.13% (with 1 node)
to 4.34% (with 16 nodes), while the MVSE-HOM’s overhead varied from 99.11% (with 1 node) to
92.03% (with 16 nodes) with respect to NONENC. Therefore, based on the obtained results showed
in Figures 9(a) and 9(b), we can conclude that MV-HOM did not impair the processing performance
of analytical queries, since the overhead imposed by the encryption was rather reduced w.r.t. an
unencrypted DW (minimum overheads of 10.41% and 4.34%, considering the total elapsed time and
the server elapsed time for computing all SSB queries, respectively). However, the overhead imposed
by MVSE-HOM was high when compared to an unencrypted DW (minimum overhead of 89.91%,
admitting the total elapsed time, and minimum overhead of 92.03% assuming only the server elapsed
time). This high MVSE-HOM’s overhead is further investigated next section.

Fig. 9. Performance of MV-HOM and MVSE-HOM w.r.t. NONENC

Journal of Information and Data Management, Vol. 5, No. 3, October 2014.



346 · C. C. Lopes, V. C. Times and S. Matwin

Fig. 10. Performance of MV-HOM w.r.t. MVSE-HOM

6.3 MV-HOM vs MVSE-HOM

In this experiment, we compared MV-HOM with MVSE-HOM regarding the processing performance
of all SSB queries, in order to investigate the cause of the high overhead produced by MVSE-HOM
w.r.t. a non-encrypted dimensional data schema. For this, we analyzed the client elapsed time for
the test configurations MV-HOM and MVSE-HOM, and results showed similar performances. As
shown in Figure 10(a), MV-HOM generated small performance gains w.r.t. MVSE-HOM of 3.82%
and 5.87% with 1 and 4 nodes, respectively; and small performance losses of 3.54%, 6.07% and 1.31%
with 2, 8 and 16 nodes, respectively. On the other hand, when the server elapsed time was considered,
the results showed that MV-HOM obtained impressive performance gains w.r.t. MVSE-HOM that
ranged from 91.66% (with 16 nodes) to 98.44% (with 1 nodes), as depicted in Figure 10(b). Since the
selection constraints, joins, sorting operations and sum aggregation functions were executed similarly
by both MV-HOM and MVSE-HOM, these results indicated that the decryption performed by MVSE-
HOM for transforming multivalued encrypted values of SSB queries, into their corresponding labels,
was time consuming. Such a decryption is done at query runtime by the function GROUP in order
to compute data groupings, as stated in Section 4.2. Thus, this finding did not invalidate our second
MET but showed that the proposal of De Caro et al. [2010], which implemented the SE encryption
used by MVSE-HOM in this experiment and by the function GROUP, is not feasible to be applied
over multivalued encrypted values at query runtime, since it impaired the processing of data groupings
of the SSB queries.

7. CONCLUSION AND FUTURE WORK

In this article, we defined two novel METs for supporting data groupings over multivalued encrypted
values. Our first MET proposal is based on multivalued order preserving encryption, and allows the
processing of selection constraints, data groupings and sorting operations over multivalued encrypted
values; while our second MET proposal, that is based on searchable encryption, enables the compu-
tation of data groupings and sorting operations over multivalued encrypted values. Then, we defined
two novel dimensional data schemas for encrypted DWs, namely MV-HOM and MVSE-HOM, which
combined our MET proposals with homomorphic encryption for allowing the execution of operations
of analytical queries (i.e. selection constraints, joins, sum aggregation function, data groupings and
sorting operations) over multivalued encrypted values. MV-HOM and MVSE-HOM were evaluated
experimentally by enciphering DWs stored in a cloud that were partitioned among several nodes,
and that enabled the parallelization of the processing of analytical queries over these nodes. Results
showed that MV-HOM did not impair the performance of analytical queries because its overhead was
decreased up to 10.41% (with 16 nodes) when compared to a non-encrypted dimensional data schema;
while the overhead imposed by MVSE-HOM was high (89.91% with 16 nodes). This MVSE-HOM’s
high overhead was investigated, and results showed that the proposal of De Caro et al. [2010] used to
implement the SE encryption and applied by MVSE-HOM, was time consuming during the processing
of data groupings over multivalued encrypted values at query runtime.
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As future work, we intend to formalize a security analysis of our MET proposals. We also intend
to define the threat model for DWs encrypted according to MV-HOM and MVSE-HOM, in order to
determine the types of attacks that are possible over them. Also, we are planning to implement other
SE encryption techniques to be used by MVSE-HOM for computing data groupings over multivalued
encrypted values. In addition, we intend to investigate the feasibility of using MV-HOM and MVSE-
HOM in the computation of other types of operations (e.g. having operations) and aggregation
functions (e.g. average, minimum and maximum values, and standard deviation) that may be defined
in analytical queries over multivalued encrypted values. Finally, an experimental evaluation of MV-
HOM and MVSE-HOM with increasing data volumes is another future work.
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