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Abstract. One of the main activities of a Database Administrator (DBA) is to maintain an appropriate index
configuration. However, adjustments in index configuration have become a very complex decision problem for DBAs.
Making decisions concerning index maintenance often strains human cognitive capabilities. The DBA is faced with an
intractable amount of factors that can impact the result of his/her decision. In order to address this issue a Decision
Support System (DSS) can be used to support DBA decisions based on rational and systematic procedures. A DSS
can model the chances of success of each DBA’s adjustment and the risk acceptance level of each decision maker using
a probabilistic framework. This article presents a Decision Support Mechanism for Index Maintenance (DSIM), whose
main feature is to provide a DSS to the problem of choosing the best point in time to maintain indexes for quasi-periodic
time-consuming SQL queries. DSIM provides a risk acceptance configuration feature using a probabilistic framework.
Experiments show that DSIM can be effectively deployed to support DBA’s decisions.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous; H.3 [Information Storage and
Retrieval]: Miscellaneous; I.7 [Document and Text Processing]: Miscellaneous

Keywords: index maintenance, decision analysis, prediction models, decision under uncertainty

1. INTRODUCTION

Nowadays, database applications may be very complex, dealing with a huge volume of data and a
high demand concerning availability, query response time and transaction throughput. In this context,
index structures play a fundamental role in improving database performance [Medeiros et al. 2012].
This is because the existence of suitable indexes speeds up the execution of queries submitted to
DBMS (Database Management System) [Morelli et al. 2009]. Thus, one of the main activities of a
Database Sdministrator (DBA) is to maintain an appropriate index configuration in order to minimize
the workload (set of queries and updates submitted to the DBMS) response time. However, manual
adjustments in index configuration (creation, drop and reindex) have become very complex activity
for current database applications. They require a thorough knowledge of DBMSs implementation
aspects, hardware capacity, physical database design strategies, characteristics of the stored data and
complex workload [Chaudhuri and Narasayya 2007].

Several tools (e.g., wizards and advisers) and approaches have been proposed aiming at solving the
problem of automatic index selection. Examples of such tools include DB2 Advisor [Valentin et al.
2000], Database Tuning Advisor (MS SQL Server) [Agrawal et al. 2004] and SQL Adjust Advisor
(Oracle) [Dageville et al. 2004]. Over the last years, some prototypes for automatic and continuous
(online) index tuning have been proposed [Bruno and Chaudhuri 2007a; 2007b; Schnaitter et al. 2006;
2007; Luhring et al. 2007; Sattler et al. 2003; 2003; Sattler et al. 2004]. However, most of them are
reactive, since they analyze a previously executed workload and infer the best index configuration after
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that workload has been executed. Therefore, reactive approaches react after performance problems are
detected. For that reason, more recently, proactive solutions have being investigated. Medeiros et al.
[2012] present a mechanism, denoted PIM (Proactive Index Maintenance), which is able to predict
when a time-consuming query q will be executed, in order to proactively create index structures which
reduce its response time. In other words, indexes are automatically created and dropped by PIM in
a proactive manner.

However, making decisions concerning index maintenance often strains human cognitive capabilities.
The decision maker, DBA, is faced with an intractable amount of factors that can impact the result of
his decision. Besides, creating indexes too early (w.r.t. the moment the queries which may use those
indexes are executed) increases index maintanance cost, for the index is created with an unnecessary
anticipation. On the other hand, planning to create indexes belatedly incurs on the risk of performing
the query without the appropriate indexes. In this scenario, it is important to note that the risk
acceptance level of the decision maker is an import variable on this problem. The risk acceptance
level (RAL) is defined as the probability of executing a query without the corresponding index on a
given date. In order to address this issue a Decision Support System (DSS) can be used to uphold DBA
decisions based on rational and systematic procedures. A DSS can model the chances of success of each
DBA’s adjustment and the risk acceptance of each decision maker using a probabilistic framework.

This article presents a Decision Support Mechanism for Index Maintenance (denoted DSIM, for
short). The main objective of DSIM is to provide a DSS to the problem of choosing the best point in
time to create indexes for quasi-periodic time-consuming SQL queries. Quasiperiodicity is defined as
a periodic behavior with a component of uncertainty. Furthermore, DSIM provides a risk acceptance
configuration feature using a probabilistic framework and uses different prediction models. The pro-
posed approach relies on the premise that a workload submitted to the DBMS in the future is similar
to an already captured one. It is important to note that previous works do not encompass the decision
maker (DBA) risk acceptance level.

In order to achieve its goal, DSIM implements the following five steps:

(1) Capture of workload. The database workload is captured and stored in the DSIM metabase,
denoted local metabase.

(2) Identification of time-consuming queries and appropriate index structures to execute such queries.
DSIM uses the strategy presented by Medeiros et al. [2012], which analyzes the previous captured
workload to identify time-consuming queries and the most adequate index structures to each query.

(3) Selection of the most appropriate prediction model (for example, Linear Regression, Multi-Layer
Perceptron - MLP, Radial Basis Function - RBF, etc) and the best configuration (values of required
parameters for the chosen model), for each time-consuming query.

(4) Uncertainty estimation. The uncertainty is quantified using a probabilistic framework. DSIM
does not forecast the moment when a specific time-consuming query will run again, but a full
probability distribution (PD), represented by a prediction histogram, for the day that this query
will be submitted next time. For this, the bootstrap method is used.

(5) Decision support. Based on the prediction histogram, provided on the previous step, and the risk
acceptance level (RAL) of the decision maker, gives as input parameter, DSIM will indicates the
ideal instant to create the necessary indexes for a specific query.

The proposed approach has been implemented and its efficiency has been evaluated in a real environ-
ment. The experimental results show the feasibility of predicting the moment in which time-consuming
queries are executed according to a given risk acceptance level. Furthermore, the results also indicate
that the proactive index creation under uncertainty for time-consuming queries provides significant
performance gains, even if the created indexes are dropped shortly after queries execution. In DSIM,
two prediction models have been implemented. One model is based on linear regression and the other
one implements in fact two different types of neural networks: multilayer perceptron (MLP) and
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radial basis function (RBF). Those models were chosen because they are widely used in time series
forecasting. Nonetheless, others models can be added to the proposed mechanism.

The remainder of this article is organized as follows. Section 2 describes approaches related to the
index maintenance problem. Section 3 discusses the key concepts utilized to describe the proposed
approach. In turn, Section 4 presents the proposed approach to support decision-making activities
about index maintenance. Section 5 describes the experimental results. Finally, Section 6 concludes
this article and points out directions for future research.

2. RELATED WORK
In this section we present and discuss some relevant approaches for index tuning.

Bruno and Chaudhuri [2007a] and Bruno and Chaudhuri [2007b] present an intrusive index tuning
tool implemented as a component of Microsoft SQL Server 2005. This tool runs continuously and,
either reacting to variations in the workload or considering data characteristics, it modifies the data-
base physical design. The tool proposed by Bruno and Chaudhuri [2007a] and Bruno and Chaudhuri
[2007b] works as follows: during the optimization process for a given query q, the optimizer call is
diverted to an Index Analysis (IA) module, which identifies a set of candidate indexes CI that could
potentially reduce the execution time for q. For this purpose, IA uses AND/OR request trees and local
transformations. Thereafter the query q is optimized and processed as usual. During the execution of
q, IA estimates the potential benefits if candidate indexes were used to process q. Moreover, it evalu-
ates the benefits of real indexes, which were used during query execution. These steps are performed
by the Cost/Benefit Adjustment (CBA) module. After a query q is executed, IA is triggered once
more to analyze the cost/benefit of using candidate indexes belonging to CI. Based on this analysis,
the IA module sends requests for creating or dropping indexes to the Asynchronous Task Manager
module (ATM). It is important to note that this approach adds some new tasks that are executed
before and during query optimization. Consequently, such a feature may negatively impact the query
processing performance.

Schnaitter et al. [2006] and Schnaitter et al. [2007] present a prototype of a self-tuning framework
called COLT (Continuous On-Line Tuning). This tool continuously monitors queries submitted to
the DBMS and autonomously adjusts the index configuration, considering space restrictions for these
structures. COLT was implemented in an intrusive manner into PostgreSQL, since it replaces the
PostgreSQL’s query optimizer by a module, denoted Extended Query Optimizer (EQO), and adds a
Self-Tuning Module (STM) to PostgreSQL’s query engine. COLT implements the classic self-tuning
steps composed by Observation, Prediction and Reaction phases. In order to achieve its goal, for each
submitted query q the STM selects a set of candidate indexes (CI), which includes hypothetical and
real indexes, and sends CI to EQO. For each index i ∈ CI, EQO generates a new query plan for
q that uses the index i and computes the corresponding gain. Thus, if CI has n indexes, EQO has
n query plans for q. In COLT, the duration of the observation phase is defined by the notion of an
epoch. More specifically, an epoch represents the time for executing ten queries. During an epoch the
STM gathers statistics about the workload and computes the gains of using candidate indexes. At the
end of an epoch, the set of candidate indexes (materialized or hypothetical) is analyzed to verify the
need for changes in the index configuration. In this case, hypothetical indexes may be materialized
and materialized indexes may be removed (in this case, they become hypothetical indexes). The main
drawback in this COLT approach stems from the notion of epoch. By assigning to an epoch a fixed
number of 10 queries, COLT may take too much time to react. Actually, any fixed number may not
be consistent with the database system needs.

Luhring et al. [2007] propose extensions to PostgreSQL for supporting index self-tuning functions.
That approach is intrusive and uses the classic self-tuning strategy composed of the Observation,
Prediction and Reaction phases. These steps are performed sequentially and continuously. During
the observation phase, each submitted query q is analyzed in order to discover candidate indexes and
the heuristic described by Valentin et al. [2000] is used. Thereafter, q is optimized twice, once without
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considering any index and another considering all candidate indexes. This approach also applies the
notion of an epoch [Sattler et al. 2004] to define the duration of the observation phase. However,
Luhring et al. [2007] defines an epoch in terms of the maximum number of recommendations for the
same index.

Sattler et al. [2003] and Sattler et al. [2004] propose a middleware for IBM DB2 that automatically
suggests the creation of indexes. That solution is based on DB2 proprietary commands (e.g SET
CURRENT EXPLAIN MODE RECOMMEND INDEXES), which are not available for other DBMSs.
Furthermore, it requires all SQL clauses to be forwarded to the middleware, and not to the DBMS.
Their approach presents two critical drawbacks: (i) code rewriting becomes mandatory for previously
existing applications and (ii) workloads directly submitted to the DBMS cannot be managed since
the workload is forwarded to the middleware.

The work proposed by Morelli et al [Salles and Lifschitz 2005; de Carvalho Costa et al. 2005; Morelli
et al. 2009] presents a self-tuning component implemented within the PostgreSQL code, allowing
autonomous index creation, dropping and rebuilding. The optimizer takes into account hypothetical
indexes for the construction of alternative query plans. The developed prototype does not consider
important restrictions such as those regarding the physical space available for the materialization of
the suggested (hypothetical) indexes.

Maier et al. [2010] and Alagiannis et al. [2010] presents an intrusive solution, called PARINDA
(PARtition and INDex Advisor). It is an interactive physical designer for PostgreSQL that works
as follows: given a workload containing a set of queries, PARINDA allows the DBA to manually
suggest a set of candidate indexes and the tool shows the benefits of the suggested index set and
index interactions visually. Besides, the tool can find the optimal index partition for a given query
workload. It also suggests a schedule to implement the suggested indexes. Finally, the tool can
continuously monitors the performance of the DBMS under incoming queries, and it suggests new
indexes when they offer sufficient workload speedup. Bruno and Chaudhuri [2010] propose an intrusive
and interactive tool for Microsoft’s SQL Server, which is similar to PARINDA since it makes tuning
sessions interactive, allowing DBAs to try different tuning options and interactively obtain a feedback.

Medeiros et al. [2012] present a mechanism, denoted Proactive Index Maintenance (PIM, for short),
for proactive index management based on the use of prediction models. The main objective of the
proposed mechanism is to predict when a time-consuming query q will be executed, in order to pro-
actively create index structures that reduce q′s response time. Thus, indexes are automatically created
and dropped by PIM in a proactive manner. Experiments show that PIM presents low overhead, can be
effectively deployed to predict time-consuming query execution and provides significant performance
gain during time-consuming query execution. Different prediction models have been evaluated: neural
networks (Multi-Layer Perceptron - MLP and Radial Basis Function - RBF) and Linear Regression.
The results indicate that the prediction model is query-specific, i.e., it should be defined according to
the statistical distribution (normal, poisson, binomial) of the query execution history.

This article proposes a Decision Support Mechanism to help DBAs to solve the problem of choosing
the best instant to maintain indexes for quasi-periodic time-consuming SQL queries. For each time-
consuming query q, DSIM retrieves from the Local Metabase the execution history of q, denoted Hq.
Based on Hq DSIM infers the most appropriate prediction model and the best prediction instance
piij for q. However, differently from the approach of Medeiros et al. [2012], the selected prediction
instance piij is not used to forecast the moment when q will run again. DSIM delivers a full probability
distribution, represented by a prediction histogram, for the day that q will be submitted next time.
Based on the prediction histogram and the RAL, DSIM indicates the optimal instant to create the
necessary indexes for q. It is important to note that previous works do not encompass the decision
maker RAL. For that reason, DSIM is an interactive Decision Support System for Index Maintenance,
since it allows DBAs to try different risk acceptance levels and interactively obtain a feedback. Similar
to PIM [Medeiros et al. 2012], DSIM is a non-intrusive solution.
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It is important to emphasize that DSIM can not be classified as a reactive or proactive solution.
However, if the DBA sets a risk acceptance level, DSIM can be configured to operate in a semi-
automatic manner, generating alerts, but leaving the decisions for DBAs, or in a automatic manner,
together with PIM, sending to PIM the ideal instant to create the necessary indexes for q according
to the defined RAL.

3. BASIC CONCEPTS

This section presents the key concepts on which the proposed approach is based.

3.1 Decision under uncertainty

Making decisions for solving complex problems often strains human cognitive capabilities. In many
real world problems, decision makers face an intractable amount of factors that can impact the result
of their decisions. In order to address this issue, the interest in Decision Support Systems (DSS)
is growing rapidly [Drudzdel and Flynn 2002]. DSS can be defined as methods or tools to support
decisions based on rational and systematic procedures. Applications of this concept can be found in
many areas such as engineering [Dahala et al. 2014], medicine [Bourouisa et al. 2014] and business
[Kima et al. 2014]. The great amount impacting factors present in these real applications can be
grouped by the concept of uncertainty.

Decision under uncertain environments is a challenging task that is addressed in the specialized
literature mainly by the usage of statistics and probability theory. The influence of many different
factors may be well represented by probabilities and probability distributions. For example, a mar-
keting manager may decide among a variety of marketing strategies for a new product knowing that
the success of the chosen strategy depends strongly of many factors, and some of them are unknown.
Based on previous experiences, a DSS designer can model the chances of success of each strategy,
using a probabilistic framework. This model can then be used to support the marketing strategy
choice [Bertsimas and Freund 2004].

One important feature of using this probabilistic framework is the possibility of modeling the risk
acceptance of each decision maker. It is well known that different persons have different risk acceptance
levels and this can have a great impact on the success of a DSS. It is desirable that the decision maker
feel comfortable with the DSS recommended strategy. Work related to this topic can be found in
[Kima et al. 2014], [Bertsimas and Freund 2004] and [Dahala et al. 2014].

The present work proposes a DSS to the problem of choosing the best instant to design indexes
for quasi-periodic database queries. The use of these indexes can reduce significantly the time spent
for each query. The proposed framework provides a risk acceptance configuration feature using a
probabilistic framework.

3.2 Time-consuming queries

Intuitively, a time-consuming query has high response time whenever it is executed and it is not
executed in regular time intervals, but it is executed very often.The solution proposed to identify the
time-consuming queries is based on the concept of benefit, initially proposed by Salles and Lifschitz
[2005]. Intuitively, the notion of benefit quantifies the gain in using of a specific index structure i to
process a query q.

Definition 3.1 Benefit. Let Bi,q be the benefit provided by the index structure i for processing a
query q. The benefit of using i to run q is computed as follows:

Bi,q = max{0, cost(q)− cost(q, i)},
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where, cost(q) represents the cost of running the query q without the use of index i and cost(q, i)
represents the cost of running the query q using the index i.

Now we can formally define the concept of time-consuming queries.

Definition 3.2 Time-Consuming Query. A query q is considered “time-consuming” if and only if:
(i) RTq > t, where RTq is the response time of q and t is a constant (parameter), (ii) Fq < k, where
Fq is the number of executions of q divided by the size of the observation period, given in months, and
k is a constant (parameter), and (iii) there is at least one index structure i such that Bi,q > ECCi

,
where ECCi

is the estimated cost of creating the index structure i.

4. PROPOSED METHOD

In this section we describe the proposed approach to support decision-making activities about index
maintenance, denoted DSIM (Decision Support Mechanism for Index Maintenance). The approach
proposed in this work to support index maintenance consists of five steps, detailed next.

4.1 Step 1: Capturing the workload

This step consists of extracting from the target DBMS’s log the workload submitted to the DBMS.
For this, the DBA may check the DBMS’s log and provide a file containing the database workload.
For that, the DBA may use the tool presented by Medeiros et al. [2012], denoted PIM. This tool
access the DBMS catalog in order to get the tasks executed by the DBMS.

Of course, the way to obtain database worloads varies from one DBMS to another, since each DBMS
has its own catalog format. Thus, to encapsulate such differences PIM implements the mechanism of
drivers. In this sense, there is a specific driver for each DBMS.

Note that, by employing the notion of drivers, PIM implementation becomes independent of par-
ticular aspects of each DBMS catalog. A database workload is a set of tasks submitted to DBMS
in a given period of time. A task is a triple containing <SQL Expression, execution plan, estimated
cost>. The database workload is stored in a structure, called Local Metabase. Therefore, not only
queries but their corresponding execution plans and execution costs are stored and become available
to support index tuning activity.

4.2 Step 2: Identifying time-consuming queries and efficient index structures

In order to identify time-consuming queries and the most appropriate indexes for each one of these
queries, two strategies are possible: (i) the DBA may provide to DSIM the set of time-consuming
queries and the most appropriate indexes for each query and (ii) the DBA can use the mechanism
presented by Medeiros et al. [2012], denoted PIM. The mechanism proposed by Medeiros et al. [2012]
uses the concept of Hypothetical Execution Plan (for short, HP).

The key idea behind the concept of HP is to identify indexes which could bring benefits to a given
query. Thus, after obtaining the real execution plan of query q (i.e., the execution plan generated by
the DBMS native query optimizer), the captured real plan is traversed for searching for operations,
which do not use indexes, such as full scans on tables. The goal is to replace such operations in
hypothetical execution plans by equivalent physical operations that make use of indexes, such as
index scans. Hypothetical execution plans may have real or hypothetical indexes.

A real index structure physically exists in disk, while a hypothetical index structure does only
exist in the metabase. Indexes identified during the execution of this step are considered the most
appropriate to accelerate the execution of the analyzed query. PIM selects hypothetical indexes whose
benefit to the analyzed query q (Bi,q) is greater than its creation cost (ECCi

). The set of indexes
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Algorithm 1 DSIM_S Heuristic: Instance Prediction Selection
1: for each captured query q ∈ LM do
2: Hq ← the execution history of q
3: bestpredictioninstanceq ← ∅
4: smallerRMSEq ← 1
5: for each prediction model pmi ∈ pm do
6: for each prediction instance piij ∈ pmi do
7: build piij using Hq

8: RMSE ← the RMSE for piij
9: if RMSE < smallerRMSEq then
10: smallerRMSEq ← RMSE
11: bestpredictioninstanceq ← piij
12: end if
13: end for
14: end for
15: end for

Fig. 1. DSIM_S Heuristic: Prediction Instance Selection

selected for a query q is called Iq. The set of time-consuming queries is automatically built by PIM as
follows. For each SQL query q stored in the metabase, PIM retrieves q′s real execution plan (generated
by the native query optimizer), which is stored in the metabase as well. Thus, PIM is able to construct
a hypothetical plan of q. By using Definition 3.2, PIM classifies q as a time-consuming or not. Next,
using the information provided by DBA or PIM, for each time-consuming query q, DSIM stores in
the Local Metabase: (i) the information that q is a time-consuming query and (ii) the set of most
appropriate indexes for q, denoted Iq.

4.3 Step 3: Selecting appropriate prediction models for time-consuming queries

In this step, initially, for each time-consuming query q, DSIM retrieves from the Local Metabase the
execution history of q, denoted Hq. The execution history consists on a vector containing the last n
executions of the query q. Next, based on Hq DSIM will select the most appropriate prediction model
(for example, Linear Regression, Multi-Layer Perceptron - MLP, Radial Basis Function - RBF, etc) and
the best prediction instance for q. For this, the following strategy is used. Be pm = pm1, pm2, · · · , pmk

a set of prediction models and pii = pii1 , pii2 , · · · , piil a set of prediction instance for the prediction
model pmi, where 1 ≤ i ≤ k, given as input. A prediction instance piij is a valid configuration (values
of required parameters) for the prediction model pmi. DSIM will evaluate each prediction instance
to find out which one gives the best results, regarding the metric root mean squared error (RMSE).
The prediction instance with smaller RMSE is associated to q. However, different from the work
of Medeiros et al. [2012], the selected prediction instance piij will not be used to predict the next
executions of q. The prediction instance piij will be used as input in the next step in order to build
a prediction histogram.

Figure 1 shows the algorithm used to select the most appropriate prediction model and the best
prediction instance for each time-consuming query.

4.4 Step 4: Uncertainty estimation

In DSIM, the uncertainty is quantified using a probabilistic framework. In this framework, not only a
time instant but a full distribution is predicted. For instance, given a vector containing the last days
that a query q was executed, the proposed method provides, as an output, a probability distribution
(PD) for the day that q will happen next time.

As the prediction methods presented in Section 4.3 are only capable of predicting a single point,
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given an input vector vq, it is necessary to apply one strategy to estimate a probability distribu-
tion (PD) given single point estimation methods. For choosing a distribution estimation method for
decision-making support about index maintenance, the method should be able to work with different
prediction models (e.g., Linear Regression, RBF, MLP, etc). This constraint can be satisfied by using
the bootstrap uncertainty estimation technique [Efron 1979]. The bootstrap technique allows the
approximation of the probability distribution by an histogram using a simple resample scheme.

The procedure to run the bootstrap technique is described in the following steps:

(1) From the original dataset (Hq), obtain B resamples of units based on a sampling with replacement
scheme.

(2) From each B resamples, build a new prediction instance using the prediction model (Linear Re-
gression, RBF, MLP, etc) and the configuration selected in the previous step. This will result on
B new prediction instances.

(3) For a given query historical data (Hq), predict the next execution of query q using all the B
prediction instances.

(4) Build an histogram from the results.

In order to illustrate the aforementioned procedure, consider a dataset containing seven executions
of a given query q. The executions happened on days 50, 61, 69, 80, 93, 101 and 110. The prediction
task is defined by predicting the future query execution instant based on the last k execution points in
time. Now, let us build the dataset using the last three query execution instants, i.e., 93, 101 and 110.
In order to predict this instants DSIM has as input the last k = 4 points in time in which the query
q has been executed before each of the three dates (93, 101 and 110). Thus, the following inputs are
provided for each instant: 69, 80, 93, 101 for 110; 61, 69, 80, 93 for 101, and; 50, 61, 69, 80 for 93).

The dataset is modeled by matrices L and P (see Equation 1), where L contains the last execution
moments for q query and P contains the dates to be predicted. In other words, Each element of P
presents the date that the query was executed and each row of L presents the last 4 query executions
before that date.

L =

50 61 69 80
61 69 80 93
69 80 93 101

P =

 93
101
110

 (1)

According to step 1, B datasets are constructed by a resampling scheme on the original data.Taking
B = 4, the procedure could result on the following datasets.

L1 =

50 61 69 80
61 69 80 93
50 61 69 80

P1 =

 93
101
93

 (2)

L2 =

69 80 93 101
69 80 93 101
50 61 69 80

P2 =

110
110
93

 (3)

L3 =

61 69 80 93
61 69 80 93
69 80 93 101

P3 =

101
101
110

 (4)

L4 =

69 80 93 101
69 80 93 101
69 80 93 101

P4 =

110
110
110

 (5)
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Fig. 2. Decision Support System Example

It is important to observe that the bootstrap is a stochastic procedure and may result in different
resample sets. The resample sets previously presented are just illustrative examples.

In step 2, using each dataset, one can obtain 4 different prediction instances. During the execution
of step 3, DSIM predicts the next execution of q using all prediction instances and than obtaining 4
predicted dates. Using those dates, a histogram can be built by counting the number of predictions
for each date. This is done in step 4. Although, in this example 4 predictions have been used, a real
case may employ several instances and several predictions in order to build an informative histogram.

4.5 Step 5: Decision support

During the execution of the decision support step, the predicted histogram provided by the previous
step for q is made available to help the decision maker to choose the ideal instant to create efficient
indexes to speed up q′s execution. Note that creating a index too early increases cost as the index
is created with an unnecessary anticipation. On the other hand, planning to create indexes belatedly
incurs on the risk of performing the query without the appropriate indexes. In this scenario, the risk
acceptance level of the decision maker is an import variable to this problem.

In this work, the risk acceptance level (RAL) is quantified as the probability of executing a query
without the corresponding indexes on a given date. The RAL can be calculated as the area under
the probability distribution until a given date. Thus RAL is provided as an input parameter. As
the decision maker sets the RAL, the system outputs the day corresponding to the RAL configured.
Figure 3 provides an illustrative example of this procedure.

In order to compute the most appropriate date to create indexes for a given query, the algorithm
depicted in Figure 3 is used. Note that the recommended date for index creation is given by the
variable DAY. Taking the predicted probability distribution shown in Figure 3 and a RAL of 0.1 the
decision support system calculates the area of the probability distribution before day 1. The result of
0.01 indicates that the risk is below the acceptance level. In this case, the system may move forward
and check the next day. On day 2, the probability is 0.05, which is still below the configured RAL.
At day 3, the area calculation result in a probability of 0.1. This result is equal to the configured
threshold and so the system recommends to create the index on day 3. It is important to notice that
in a situation of threshold exceeding at a day n, the system recommends the index creation at day
n− 1.

5. EVALUATION

In order to evaluate the proposed approach we present next a real execution scenario. The idea is to
describe and analyze how each step implemented by DSIM works.
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Algorithm 2 Decision Support
1: DAY ← 0

2: repeat
3: DAY++
4: AREA ← Area under the histogram from 0 to DAY
5: until AREA > Risk Acceptance Level (RAL)
6: return DAY

Fig. 3. Decision Support Procedure

Table I. The Most Appropriate Index for each Time Consuming Query
Query Table Column
Query 1 Warning warning_type
Query 2 Payment customer_id
Query 3 Bill bill_type
Query 4 Customer fl_active
Query 5 Parcel parcel_type

5.1 Step 1: Capturing the workload

The workload has been captured from log files of a real database used in a multinational corporation,
whose identity may not be revealed for confidentiality reasons. Records of the transactions executed
between 2008 and 2010 have been analyzed. The database consists of 1531 tables, occupying 1.5 TB,
and it is used by an OLTP application.

5.2 Step 2: Identifying time-consuming queries

We used the same set of time-consuming queries Q and the same set of index structures that were
investigated by Medeiros et al. [2012]. This way, Q contains five queries and each query is associated
with just one index structure. Each index structure is defined in a certain column of a specific table
(see Table I).

5.3 Step 3: Selecting appropriate prediction models for time-consuming queries

In this work we have evaluated three different prediction models: linear regression, multilayer per-
ceptron (MLP) and radial basis function (RBF). For each prediction model we have evaluated just
one prediction instance, which was defined using the best configuration (parameter values) showed by
Medeiros et al. [2012]. In order to create those instances each date is represented by an integer value
that represents a day in the observation period, i.e., a day between the years 2008 and 2010. Thus,
the network input and output values range from 1 to 1095 (365 x 3). Besides, we have used a time
window of size 4. In other words, the last k = 4 query execution days were chosen to compose the
input vector for the prediction instances. MLP instances are 1-hidden layer neural network with 10
neuron on the hidden layer. The RBF instances have 5 centroids and a Gaussian kernel.

For each prediction instance created for a query q, we have performed five predictions and the
instance with smaller RMSE was linked to q. The model selection for each query q resulted on a
linear model for query 1, MLP for queries 2 and 4 and a RBF for queries 3 and 5.

5.4 Step 4: Uncertainty estimation

For each query q we have used the prediction instance selected in the previous step and the boostrap
technique. Thereafter, 50 new prediction instances were created and, for each instance, one prediction
has been computed. The results of those 50 predictions have been employed to build the prediction
histogram for q.
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Table II. Confidence Interval and Ratio of Queries Inside Confidence Interval
Confidence Interval RQI

0.99 1
0.9 0.95
0.8 0.8
0.7 0.75
0.6 0.6
0.5 0.6

Fig. 4. Sample Predictions for Queries 1, 2, 3 and 4

5.5 Step 5: Decision support

The quantitative evaluation of these predictions can not be done on straightforward way, since the
real query execution date is frequently inside the prediction histogram. However, a confidence interval
analysis can be done to evaluate how well the uncertainty is fitted by the constructed histograms.

For the confidence interval analysis, a confidence interval ci is set. For a well designed predicted
histogram, it is expected that the rate of real query instants per total of queries is close to ci. Consi-
dering a 99% confidence interval, all 20 real query execution dates fall inside the histograms predicted.
This number reduces as the confidence interval is reduced. Table II shows the confidence interval and
the ratio of real query execution dates falling inside this interval (RQI).

Observing Table II one can see that the RQI is always higher than the confidence interval. This
result indicates that the confidence intervals are not underestimated and can be used as efficient
measures of uncertainty.

Figure 4 presents examples of predictions for queries 1 to 4, respectively. The query 5 was not
used because Hq5 had only 13 executions and this set is short to be used with neural networks. The
presented instances were not used during the prediction model learning step.
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In Figure 4, one can observe that real query dates are always inside the predicted histogram.
Another important fact that should be noticed it that the predicted histogram is sharper for queries
whose behavior is closest to periodic. This fact can be seen on query 1. Due to its well behaved
occurrences, query 1 could be modeled with a linear model.

For the examples presented in Figure 4 it is possible to demonstrate how the decision support
system should work. As a first step, the decision maker should choose a RAL. The RAL determines
how much risk the decision maker can take. This risk is defined as the chance that a given query is
executed and the index is not created. For instance, taking a RAL of 5%, the system calculates the
area under the predicted histograms for a sequence of days. The recommended day is determined
when the area surpasses 5%. Thus, DSIM recommends days 1064, 561, 1014 and 975 for queries 1 to
4 respectively. The real dates for each query were 1066, 563, 1032 and 982.

Taking a RAL of 50% incurs in accepting a much higher risk. Although this situation may not be
reasonable, it is suitable to illustrate the proposed method. This RAL will lead to the recommended
days 1067, 564, 1022 and 985. In this case, we can see that the risk was too high and queries 1, 2 and
4 occurred before an index was created.

It is important to note that it is not possible to compare performance evaluation results between
DSIM and the approach proposed by Medeiros et al. [2012]. Although DSIM is based on the work
of Medeiros et al. [2012], the main objectives of both approaches are quite different. Medeiros et al.
[2012] propose a method to predict the point in time when a given query q will be executed. On
the other hand, DSIM delivers a full probability distribution, represented by a prediction histogram,
for the day that q will be submitted next time. Based on the prediction histogram and the RAL
(specified by the DBA), DSIM indicates the optimal instant to create the necessary indexes for q.
Thus, choosing the date to create the index is a DBAs task that could be assisted by DISM results.|

6. CONCLUSION AND FUTURE WORK

In this work, we have presented DSIM (Decision Support Mechanism for Index Maintenance) a mecha-
nism to uphold decision-making activities about index maintenance. The main objective of DSIM is to
provide a DSS (Decision Support System) to the problem of choosing the best instant to maintain in-
dexes for quasi-periodic time-consuming SQL queries. DSIM provides a risk acceptance configuration
feature using a probabilistic framework.

Future works shall explore the possibility of choosing the RAL in an automated way. This choice
may be based on the compromise involving the cost of maintaining the index for a given time and the
cost of executing a query without having the index. Another direction to be explored addresses the
prediction of queries that are not periodic or quasi-periodic. The possible occurrence of light queries
before a time-consuming query may be a pattern that could help the prediction. Experiments using
association rules and other data mining techniques will de performed.

We want to conclude this article by highlighting that the results of the experiments show the
feasibility and effectiveness of DSIM. Besides, the developed mechanism can also be configured to
operate in a automatic manner, similar to the approach presented by Medeiros et al. [2012], if the
DBA defines the risk acceptance level that will be used.
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