Reducing Fragmentation in Incremental Author Name
Disambiguation

Luciano Vilas Boas Esperidido’'2, Anderson A. Ferreira!, Alberto H. F. Laender?®, Marcos André
Goncalves?, David Menotti Gomes®, Andrea labrudi Tavares!, Guilherme Tavares de Assis!

! Departamento de Computacio - Universidade Federal de Ouro Preto, Brazil
2 Departamento de Computac3o - Instituto Federal de Minas Gerais, Brazil
luciano.espiridiao@ifmg.edu.br,{ferreira,menotti,andrea.iabrudi,gtassis}@iceb.ufop.br
3 Departamento de Ciéncia da Computacio - Universidade Federal de Minas Gerais, Brazil
{mgoncalv,laender}@dcc.ufmg.br

Abstract. Author name ambiguity is a hard problem that occurs when several authors publish articles with the same
name or when a same author publishes their articles under different names. Traditionally, automatic disambiguation
methods process the author names of all citation records in a repository. Aiming efficiency, incremental methods
disambiguate author names only when new citation records are inserted into the repository. As a side effect, several
citation records of a same author may be associated with different authors, aka, the fragmentation problem. To diminish
this problem, we propose a new merge-oriented incremental method capable of reducing such side effect, without the
need to apply a traditional disambiguation method on the whole repository. Our experimental evaluation shows that
our method produces significant improvements when compared to an incremental baseline and is very competitive with
batch-mode methods.

Categories and Subject Descriptors: H.3.3 [Information Search and Retrieval]: Information Search and Retrieval;
H.3.7 [Information Storage and Retrieval]: Digital Libraries

Keywords: author name ambiguity, bibliographic citation, incremental disambiguation

1. INTRODUCTION

Author name ambiguity is a hard problem that occurs when several authors publish articles with the
same name (homonyms) or when the same author publishes articles under different names (synonyms).
The reasons for name ambiguity include name changes, multiple non-roman name transliterations,
typographic errors, lack of standards and common practices, and decentralized content generation.

Name ambiguity deeply affects the quality of scholarly digital libraries (DLs), such as DBLP?,
MEDLINE? and BDBComp?®. These DLs contain millions of bibliographic citation records. Each
record represents one publication and has many attributes like authors names, work and publication
venue titles, and publication year. Authorship identification aims to assign citation records to authors,
based on their names. Due to name ambiguity, automatic authorship identification methods may
assign to an author publications of other people, resulting in impure DL repositories. It may also
split publications of a same author under slightly different names, thus fragmenting her publications

Thttp://dblp.uni-trier.de
2http://www.ncbi.nlm.nih.gov/pubmed
3http://www.lbd.dcc.ufmg.br/bdbcomp

This research is partially funded by InWeb - The Brazilian National Institute of Science and Technology for the Web
(MCT/CNPq/FAPEMIG grant number 573871/2008-6), and by the authors’s individual grants from CAPES, CNPq,
and FAPEMIG.

Copyright(©2014 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computagao.

Journal of Information and Data Management, Vol. 5, No. 3, October 2014, Pages 293-307.

294 . L. V. B. Esperidido et al.

across the DL repository. One direct effect of this problem is wrong citation analysis due to incorrect
calculation of citations counts received by the publications of a specific author.

Traditional automatic disambiguators aim to reduce wrong assignments in a repository [Ferreira
et al. 2012b] by disambiguating all author names at the same time. More formally, let C' = {c1, ¢a, ..., cx }
be a collection of citation records. Each citation record ¢; has a list of attributes which includes at least
author names, work title, publication venue title and publication year. Each attribute has a specific
value composed of a list of elements. An element of the attribute “author names” is the name of a
single author. Each author name element is a reference r; to an author. The disambiguator partitions
the set of author references {ri,ra,...,r,} into a set of reference clusters A = {aj,as,...,a,}. A
reference cluster a; should contain all and only references to a given author.

More recently, incremental methods [Carvalho et al. 2011] have been proposed to disambiguate
author names only for new citation records inserted into a DL repository, being potentially more
efficient and practical than traditional methods that disambiguate a whole DL in a single pass [Ferreira
et al. 2012b]. On the other hand, an incremental disambiguator assigns a newly inserted reference r;
to either an existing cluster a; € A or a new cluster ay, which is added to A. This latter case happens
when the reference belongs to an author with no previous publication in the repository.

An important question regarding incremental methods is: How can we keep the purity of the clusters
while reducing fragmentation? A cluster is pure if it contains references to a unique author and it is
fragmented when author references are split in several clusters. Incremental disambiguation focuses
on the purity of the clusters, since an erroneous assignment of a reference to a given cluster may
mistakenly assign other references to this same cluster. An undesired side effect of forcing cluster
purity is an increase of cluster fragmentation.

Sporadic disambiguation of the full repository may alleviate cluster fragmentation. This solution
has a high computational cost as DL repositories may contain millions of records. Moreover, all
eventual manual disambiguation performed by a DL administrator may be lost, as they are usually
not considered by these methods when disambiguating the whole repository. Alternatively, from time
to time, we may check for compatible clusters in the repository in order to merge them. This solution
is also very expensive since we must check all clusters to perform the merges.

This work addresses the fragmentation problem that occurs when applying incremental disam-
biguators. To do so, we propose a new merge-oriented incremental method that uses the newly record
inserted into the DL repository to identify potential fragmented clusters and merge them. However,
if the clusters to be merged include references to different authors, the resulting cluster will be even
more impure. Therefore, we should not use all references in the clusters to estimate cluster similarity
as this may increase the similarity of clusters of different authors. Thus, comparing the new record
with a small set of representative references from the clusters will avoid the undesired merge of clusters
of different authors and keep purity. Accordingly, we also propose different strategies to select few
representative references from each cluster aiming to further improve final purity. We evaluate our
method using real and synthetic collections, and identify the strategies that, when compared to our
baselines, significantly reduce fragmentation while maintaining the purity in the clusters.

In sum, the main contributions of this paper are: (1) a new incremental author name disambiguator
that uses a newly inserted record to reduce fragmentation; (2) the proposal of reference selection
strategies for improving cluster purity; and (3) an experimental evaluation of our method, using real
and synthetic collections, that compares the proposed strategies for selecting representative reference
considering several representative state-of-the-art baselines.

The rest of this article is organized as follows. Section 2 discusses related work. Section 3 describes
our method and the proposed strategies for selecting representative reference. Section 4 presents our
experimental evaluation. Finally, Section 5 presents our conclusions and discusses possible directions
for future work.

Journal of Information and Data Management, Vol. 5, No. 3, October 2014.

Reducing Fragmentation in Incremental Author Name Disambiguation . 295
2. RELATED WORK

In the literature, we distinguish between methods that disambiguate all references in the DL reposi-
tory and those that handle only the references of newly inserted citation records, called incremental
methods. The first group can be further divided in author grouping and author assignment meth-
ods [Ferreira et al. 2012b]. Author grouping methods rely on the similarity between reference attributes
to guide their grouping into clusters that belong to same author [Bhattacharya and Getoor 2007; Cota
et al. 2010; Fan et al. 2011; Han et al. 2005; Huang et al. 2006; Kang et al. 2009; Soler 2007; Song et al.
2007; Torvik and Smalheiser 2009; Treeratpituk and Giles 2009; On et al. 2006]. Author assignment
methods [Ferreira et al. 2012¢; Ferreira et al. 2014; Han et al. 2004; Han et al. 2005; Tang et al. 2012;
Veloso et al. 2012] aim at directly assigning the references to their respective authors.

Author grouping methods comprise clustering techniques where the critical component is the simi-
larity function applied to the attributes of two references. They group all references of a same author
by maximizing intra and minimizing inter-cluster similarities. The similarity function may be prede-
fined [Bhattacharya and Getoor 2007; Cota et al. 2010; Han et al. 2005; Soler 2007; Wu et al. 2014],
learned using a supervised machine learning technique [Huang et al. 2006; Peng et al. 2012; Torvik and
Smalheiser 2009; Treeratpituk and Giles 2009; Wang et al. 2011], or extracted from the relationships
among authors, usually represented as a graph [Fan et al. 2011; Levin and Heuser 2010; Shin et al.
2014; On et al. 2006].

Author assignment methods directly assign each reference to a given author by building a model that
represents the authorship likelihood given the citation attributes (author names, publication venue,
terms in the work title). They use either a supervised classification technique [Ferreira et al. 2012c;
Ferreira et al. 2014; Han et al. 2004; Veloso et al. 2012] or a model-based clustering technique [Han
et al. 2005; Tang et al. 2012].

INDi [Carvalho et al. 2011] is the only known incremental disambiguation method proposed in the
literature. Unlike traditional disambiguation methods, it disambiguates references only at insertion
time. INDi compares each reference in the newly inserted record with representative clusters already
identified in the DL repository to check whether the reference belongs to a known cluster. If the
reference is compatible with a pre-existing cluster, it is assigned to such a cluster. Otherwise, the
reference is considered to point to a previously unreferenced author in the DL and a new cluster is
created for it. INDi applies a few heuristics on coauthor names, work title and publication venue title
to decide whether a reference and a cluster are compatible.

Since INDi adopts the strategy of assigning a reference to a single cluster, it may split author
references into several clusters, causing fragmentation of the repository. Our work proposes strategies
that tackle both incremental disambiguation and the fragmentation problem in an innovative way. Our
method incrementally disambiguates the new references inserted into a DL repository while trying, at
the same time, to reduce fragmentation. To reach such an objective, our method uses only the new
references (citations) inserted into a DL repository as evidence to identify fragmented (split) clusters
and merge them, when it judges this is appropriate.

3. INCREMENTAL AUTHOR NAME DISAMBIGUATION

In this section, we present our method for incremental author name disambiguation which aims at
reducing fragmentation in DL repositories. First, we describe the basic incremental method that
assigns each reference in a new inserted record to an existing reference cluster of a compatible author.
Next, we show how our new method improves the basic one by selecting the reference clusters most
compatible with the newly inserted record in order reduce fragmentation. Finally, we describe our
proposed strategies for selecting representative references to avoid reducing purity.

Journal of Information and Data Management, Vol. 5, No. 3, October 2014.

296 . L. V. B. Esperidido et al.

Algorithm 1 Basic Incremental Disambiguation

Input: Set of reference clusters A; Citation record c;
Output: Set of reference clusters A;
1: ¢’ + PreprocessCitationRecord(c);
2: for each reference r € ¢’ do
a <+ selectCluster(A,r);
if a =0 then
a < newCluster();
A« AU{a};
end if
add(a, r);
end for

© P> W

3.1 Basic Incremental Author Name Disambiguation

Let C = {e1,ca,...,ci} be a collection of citation records in a DL repository, R = {ry,ra,...,rn} be
a set of references from C and A = {ay,as,...,a,} be a set of reference clusters in the repository,
where each cluster is considered as belonging to an author and has a representative name obtained
from the author name attribute of its references. Algorithm 1 describes the basic incremental author
name disambiguation method. When a citation record c¢ is inserted into a DL repository, for each
reference r (an author name occurrence) from ¢, an incremental disambiguator selects a compatible
cluster a and inserts r in a. Ideally, a contains references to the same author. If none of the clusters
are selected (i.e., none of them is similar enough to r), the disambiguator considers it as belonging to
a new author, creates a new cluster with r and adds this cluster to A. As already mentioned, this basic
method may assign references to a same author to distinct clusters, thus increasing fragmentation and
reducing the quality of the whole DL repository.

3.2 Merge-oriented Incremental Author Name Disambiguation

Our work focuses on reducing fragmentation during the insertion of a new record by merging clusters
compatible to the references in such a record. The main idea of our method can be summarized as
follows: if a reference from a newly inserted record has high probability of belonging to some existing
clusters, there is also a high likelihood that these clusters belong to a same author. So these clusters
should be merged to decrease the fragmentation of the repository. Algorithm 2 describes our method.
This algorithm receives as input a set of reference clusters A from the repository and a newly inserted
citation record c. After a preprocessing (line 1), i.e., after removing stop-words and applying stemming
in the elements of the work and publication venue titles, the algorithm generates, for each r from c,
a list of candidate clusters A’ (line 3), i.e., clusters whose representative author name is similar to
r’s author name. The selection of candidate clusters avoids the comparison of all attributes among
dissimilar author names. Next, the algorithm selects a set of clusters S from A’ that likely contains
references to the same author of r (line 4) using all attributes. If S is empty, the algorithm considers
r as belonging to a new author (lines 5-7), otherwise it merges all clusters from S into a (lines 8-14).
Finally, it inserts the reference r in a (line 16).

We use the function proposed by Carvalho et al. [2011] for comparing the newly inserted references
with existing clusters. This function is described by Algorithm 3. A cluster a is compatible to a
reference r if a includes references with common coauthors and similar work or publication venue
titles. Algorithm 3 uses arjse and @y enye to check the similarity of titles. If r or a has no coauthors,
the function only checks similarity between work titles or publication venue titles. In this case,
it increases the similarity thresholds, ariye and avenue, by a factor § (lines 5-9) to strength the
similarity requirements for inserting r into a. The similarity between author names is evaluated by
a function derived from the Fragment Comparison algorithm, an edit-distance matching algorithm
specially designed for persons’ names [Cota et al. 2010]. For work or publication venue titles, we use
the cosine similarity function.

Journal of Information and Data Management, Vol. 5, No. 3, October 2014.

Reducing Fragmentation in Incremental Author Name Disambiguation . 297

Algorithm 2 Merge-oriented Incremental Disambiguation
Input: Set of reference clusters A; Citation record c;
Output: Set of reference clusters A;

1: ¢/ < preprocessCitationRecord(c);

2: for each reference r € ¢’ do

3: A’ «+ getCandidateClusters(A, r);
4: S + selectClusters(A’,r);
5: if S=0 then
6: a + newCluster();
7 A« AlU{a};
8: else
9: A+—A-S;
10: a <+ 0;
11: for each cluster s € S do
12: a+alJs;
13: end for
14: A+ AU{a};
15: end if
16: add(a, r);
17: end for

Algorithm 3 Comparison Function

Input: Cluster a of references; Reference r; Similarity thresholds ayenye and ariiie; Incremental value §;
1: if similarAuthorName(a,) then

2: if similarCoauthors(a, r) and (similarTitle(a, r, aT;te) or similarVenue(a, r, ayenye)) then
3: return TRUE;
4: else
5: if r.coauthorList is empty or a.coauthorList is empty then
6: aurThresVenue <+ ayenye + 9;
7 auxThresTitle < arite + 0;
8: if (similarTitle(a, r, auzThresTitle) or similarVenue(a, v, auzThresVenue)) then
9: return TRUE;
10: else
11: return FALSE;
12: end if
13: else
14: return FALSE;
15: end if
16: end if
17: else
18: return FALSE;
19: end if

Our goal is to identify fragmented clusters using only the references from the new inserted record.
If these clusters are merged, we decrease fragmentation and avoid disambiguating the full repository.
As cluster purity is a concern, first our selectClusters function selects a cluster a similar to a reference
r using the given thresholds to compare work and publication venue titles. To select other clusters, we
increase these thresholds by a § factor. As discussed before, the more references from the clusters we
use to compare with the new inserted reference, the higher the chance of merging clusters of different
authors, decreasing the repository purity. We envision several strategies to select representative refer-
ences from each cluster to use in the comparison process. In Subsection 4.4 we describe the strategies
used in our experimental evaluation.

3.3 Complexity Analysis

Since the similarity functions are applied on small strings and they are not affected by the size of
the collection, we analyse the complexity of our method by estimating the number of comparisons

Journal of Information and Data Management, Vol. 5, No. 3, October 2014.

298 . L. V. B. Esperidido et al.

performed by it.

For each reference r from the new citation record ¢, our method selects a set of candidate clusters
A with cost O(n,), where n, is the number of authors (i.e., clusters) in the DL. Next, our method
selects from A the most likely clusters to contain references to the same author of r, performing O(n;)
comparisons, where ng is the number of clusters in A’, which is usually much smaller than n,. To avoid
comparisons with each reference in a cluster, all clusters are represented similarly to a citation record,
with attributes derived by grouping the values of the attributes of all references within the cluster.
Thus, in the comparison process, we compare the attribute values from r with the cluster attributes.
In our experimental evaluation, we call the function selectClusters to return all compatible clusters
or only the two most similar compatible clusters. In the last case, the most expensive one, we compare
reference r with each reference from each compatible cluster in A" with cost O(n. x n,), where n. is
the number of compatible clusters and n, is the maximum number of references in a cluster.

To merge the compatible clusters in S, we add all references from each compatible cluster to a
unique cluster with cost O(n. x n,). The selection of representative references from each cluster is
performed only when we insert r in a cluster and each strategy has a cost that we will refer as z. Thus,
for each reference we have the cost O(ng + ns + ne X np + ne X np + 2). As ng is very smaller than
ng, the number of compatible clusters n. is very small and a citation has a few author names (i.e., we
may consider the number of author names as a constant), the cost of Algorithm 2 is O(n, + np + 2)

4. EXPERIMENTAL EVALUATION

In this section, we discuss the results of a set of experiments we conducted to evaluate our method
and the proposed strategies for selecting representative references. We first describe the collections,
evaluation metrics and baselines used. Then, we discuss the effectiveness of our method in comparison
with the baselines.

4.1 Collections

We use both real and synthetic collections to evaluate the strategies for reducing fragmentation in
incremental author name disambiguation. Two collections of references were gathered from the BD-
BComp and DBLP digital libraries. Other ones were generated by SyGAR, [Ferreira et al. 2012al, a
synthetic data generator that simulates an evolving digital library.

KISTI. This collection? was built by the Korean Institute of Science and Technology Informa-
tion [Kang et al. 2011] for English homonyms author name disambiguation. It comprises the citation
records from the top 1000 most frequent author names from late-2007 DBLP. A reference was built for
each author name in each citation record. The manual disambiguation relied on Google to retrieval
authors’ personal publication pages. For each reference, a query composed of the author surname and
the work title was submitted to Google. Manual inspection of the first retrieved web pages identi-
fied the correct personal publication page. This collection has 37,613 citation records, 881 groups of
same-name persons and 6,921 authors.

BDBComp. This collection® was created by us based on the Brazilian Digital Library of Computing.
It comprises 363 records associated with 184 distinct authors: about 2 records by author. Despite
its small size, this collection is difficult to disambiguate, with many authors having only one or two
citation records. It contains the 10 largest ambiguous groups in this repositoy considering the period
between 1987-2007.

4 Available at http://www.kisti.re.kr.
5 Available at http://www.lbd.dcc.ufmg.br/Ibd/collections/disambiguation.

Journal of Information and Data Management, Vol. 5, No. 3, October 2014.

Reducing Fragmentation in Incremental Author Name Disambiguation . 299

Table I. Distribution of average number of publications per year per author (DBLP: 1984 - 2008).

Average Number of Publications per Year
One Two Three Four
New Authors 55% 30% 10% 5%
Existing Authors 14% 42% 28% 16%

SyGAR. In order to evaluate our method in scenarios in which references to new authors are
continously inserted into a DL and new inserted records reflect changes in the authors’ profiles,
simulating changes in their research interests over time, we used four collections generated by SyGARS.
The main input of SyGAR is a collection of previously disambiguated citation records, referred to as
the input collection. Each record in such a collection comprises the three attributes most commonly
exploited by disambiguation methods, namely, a list of author names, a list of unique terms present in
the work title, and the publication venue title [Ferreira et al. 2012b]. Authors with the same ambiguous
name, and their corresponding records, are organized into ambiguous groups (e.g., all authors with
name “C. Chen"). There are also configuration parameters, such as number of loads, number of records
per load, probability of selecting a new coauthor, that must be set. As output, SyGAR produces a
representative list of synthetically generated citation records, in which each created record consists of
the three aforementioned attributes.

As input collection for SyGAR, we used a previous collection of citation records from DBLP [Cota
et al. 2010; Ferreira et al. 2014|, which sums up 4,272 records associated with 220 distinct authors,
corresponding to an average of approximately 20 records per author. The original version of this
collection was created by Han et al. [Han et al. 2004], who manually labeled its records. Ten data
loads, representing data inserted into the collection in each year, were generated. The number of
records generated for each author was based on the distribution presented in Table I, extracted from
the DBLP input collection. The first state, before the ten loads, was generated with the same number
of references in the input collection.

We want to evaluate two scenarios with the SyGAR collections: (1) addition of references to new
authors, i.e., authors without any previous publication in the DL repository, and (2) changes in
the authors’ publication profile, i.e., changes in the topics in which the authors publish. For the
first scenario, we generated two collections, SyntheticNew5 and SyntheticNew10, in which each load
added a set of references to new authors corresponding to, respectively, 5% and 10% of the total
number of current authors in the DL. For the second scenario, we also generated two collections,
SyntheticChangel0 and SyntheticChange50, in which, for each load, respectively 10% and 50% of the
authors changed their profiles.

4.2 Metrics

The K metric determines the trade-off between the average cluster purity (ACP) and the average
author purity (AAP). ACP evaluates the purity of the empirical clusters with respect to the theoretical

clusters. Thus, if the empirical clusters are pure, the corresponding ACP value will be 1. ACP is
2

defined as: ACP = 4 Y7 | Z;Zl nnJ , where NV is the total number of references, ¢ is the number of
theoretical clusters, e is the number of empirical clusters, n; is the total number of references in the
empirical cluster 4, and n;; is the total number of references in the empirical cluster ¢ which are also

in the theoretical cluster j.

AAP evaluates the fragmentation of the empirical clusters with respect to the theoretical clusters.
If the empirical clusters are not fragmented, the corresponding AAP value will be 1. AAP is defined

2
as: AAP = % Z;:l)y 7:;? , where n; is the number of references in the theoretical cluster j.
J

6 Available at http://www.lbd.dcc.ufmg.br/Ibd/collections/sygar.

Journal of Information and Data Management, Vol. 5, No. 3, October 2014.

300 . L. V. B. Esperidido et al.

Thus, the K metric consists of the geometric mean between ACP and AAP values. It evaluates
the purity and cohesion of the empirical clusters extracted by each method, being defined as: K =

VACP x AAP.

4.3 Baselines

In this work, we used INDi (Incremental author Name Disambiguation) [Carvalho et al. 2011] as
our incremental baseline in addition to two traditional author grouping (batch-mode) representative
methods and two state-of-the-art supervised author assignment methods. For the best of our knowl-
edge, INDI is the unique method proposed for incrementally disambiguating author names. It follows
the basic incremental author name disambiguation (Subsection 3.1). INDi works in an incremental
way prioritizing the purity of the clusters, i.e., in case of doubts INDi assigns the reference to a new
author (i.e., new cluster) instead of assigning to a pre-existing author. To assign references, INDi
tries to find a cluster with similar author name, at least one similar coauthor name and similar work
or publication venue titles. It uses the fragment comparison algorithm [Cota et al. 2010] to measure
the similarity among author and coauthor names and cosine distance among work and publication
venue titles. The INDi complexity is O(n, X n,) [Carvalho et al. 2011], where n,. is the total number
of references in the new load and n, is the total number of authors (clusters) in the DL repository.

The two traditional author grouping methods are HHC (Heuristic Hierarchical Clustering) [Cota
et al. 2010] and LASVM-DBSCAN [Huang et al. 2006]. HHC is a two-step based method. Its first
step creates clusters of references with similar author names that share at least a similar coauthor
name. This step produces very pure but fragmented clusters. Then, in the second step, it successively
merges clusters of references with similar author names according to the similarity between the other
citation attributes (i.e., work title and publication venue). In each round of merging, the information
of merged clusters is aggregated providing more information for the next round. This process is
successively repeated until no more merges are possible according to a similarity threshold. LASVM-
DBSCAN uses DBSCAN |[Ester et al. 1996] for clustering references by author. First, the distance
metric between pairs of citations (similarity vectors) used by DBSCAN is calculated by a trained
online active support vector machine algorithm (LASVM). The authors use different functions for
each different attribute to make the similarity vectors. In our work, we use cosine for work and
publication venue title and soft-TFIDF for author and coauthor names. We also used the LaSVM
package [Bordes et al. 2005] and DBSCAN available from Weka'.

The two traditional author assignment methods are SVM (method based on Support Vector Ma-
chines) [Han et al. 2004] and SLAND (Self-training Lazy Associative Name Disambiguator) [Veloso
et al. 2012]. SVM associates each author name (individual person) with an author class and train the
classifier for that class. Each reference is represented by a feature vector with the elements of their
attributes (author and coauthor names, and terms of work and publication venue titles) and their
TFIDF (Term Frequency - Inverse Document Frequency) as the feature weight. The authors used
the “one class versus all others” approach to multi-class classification. SLAND infers the author of a
reference by using a supervised rule-based associative classifier. The method uses author names, work
title and publication venue title attributes as features and infers the most probable author of a given
reference r; using the confidence of the association rules X — a; where X only contains features of r;.
The method also works on demand, i.e., association rules to infer the correct author of a reference are
generated in the moment of disambiguation. The method is also capable of inserting new examples
into the training data during the disambiguation process, using reliable predictions, and detecting
authors not present in the training data®.

" http:/ /www. cs.waikato.ac.nz/ml/weka,/
8 Although this baseline was proposed by our group, it is currently the most effective state-of-the-art method found in
the literature for the author name disambiguation problem.

Journal of Information and Data Management, Vol. 5, No. 3, October 2014.

Reducing Fragmentation in Incremental Author Name Disambiguation . 301
4.4 Strategies for Selecting Representative References

In this subsection, we describe the proposed strategies to select the representative references of each
cluster. These strategies discard noisy references, reducing their impact in the merge process while
preserving cluster purity. This potentially avoids the effect that wrongly assigned references might
have when merging clusters.

We represent each reference as a feature vector and each feature corresponds to an author name or
a term from a work or publication venue title. We use TF-IDF to calculate the feature values and
measure the distance between references by means of the cosine distance.

The five proposed strategies are:

—Using all references in the cluster (ALL) - This strategy does not discard any reference from the
cluster. As we show in the experiments, this technique is useful when the clusters are very pure.

—Using a time window (TIW) - This strategy uses a time window to select the references in each
cluster that will take part of the comparison with the references of a new citation record. Our
hypothesis is that the most recent references are more likely to better reflect the current interests
of the author, also reflected in the newly inserted record. To use this strategy, we need to define
the value of a parameter w: the size of the window. Thus, we select references whose publication
years are at most w years apart from the new record’s publication year.

—TUsing DBSCAN to filter noise (DBS) - We use the DBSCAN [Ester et al. 1996] to identify noisy
references in a cluster and discard them from similarity evaluation of the new reference . We need
to specify two parameters: the minimum number of points and the radius.

—Using K-means to filter noise (KMS) - This strategy applies the K-means clustering technique to
each cluster producing subgroups (i.e., clusters of a cluster). We discard the outliers, i.e., the
references whose distance to their subgroup centroid exceeds a threshold. To use this strategy we
need to specify the number of groups produced by K-means and the threshold distance.

—Using references closest to the centroid (CEN) - This strategy selects a percentage p of the references
in each cluster. These selected references are the p% closer to the centroid of the cluster, calculated
as the average of the feature vector of all references in the clusters. To use this strategy, we need
to specify the parameter p.

To decide whether a cluster and a reference are similar, we use the same function proposed Carvalho
et al. [2011] (Algorithm 3). Finally, we evaluate two merging strategies: to merge the two clusters
most compatible to the new reference r (TMC) or to merge all compatible clusters (ALL). To select
the two most compatible clusters, we calculate the distance from the new reference r to each cluster.
The distance between reference r and a cluster is the smallest distance between r and each reference
in the cluster.

4.5 Experimental Setup

We performed ten rounds of experiments in each collection for each proposed strategy. In the case of
KISTI and BDBComp, each load corresponds to all publications of a given year. In each round, we
generated a random permutation of the references in a load, i.e., we changed the order of insertion of
each reference in a given year. The disambiguation performance is defined as the average performance
over ten rounds with a 99% Student’s t-distribution confidence interval. The parameters a;ie, Ovenue
and 0 were experimentally tuned for each collection and kept fixed for all strategies. Table II shows
these parameter values for each collection.

We adopt the notation <clusters to merge>-<selection strategy> to specify the evaluated strategy.
<clusters to merge> corresponds to the number of clusters to merge, i.e., the two most compatible
clusters (TMC) or all compatible clusters (ALL). <selection strategy> identifies the strategy applied

Journal of Information and Data Management, Vol. 5, No. 3, October 2014.

302 . L. V. B. Esperidido et al.

Table II. The parameter values used for each collection.

Collection ATitle QVenue 1
BDBComp 0.0 0.2 0.2
KISTI 0.0 0.0 0.2
SyntheticNew5 0.1 1.0 0.2
SyntheticNew10 0.1 0.9 0.2
SyntheticChangel0 0.1 0.9 0.2
SyntheticChange50 0.0 0.2 0.2

Table III. Results in KISTI. Best results, including statistical ties, are highlighted in bold.

Strategy # of merges | wrong merges | % of wrong merges ACP AAP K

INDi 0 0 - 0.980 + 0.000 0.384 4 0.001 0.614 £ 0.001
ALL-ALL 2416 114 4.7 0.976 £ 0.000 0.542 + 0.002 0.727 £+ 0.002
ALL-DBS 2581 94 3.6 0.978 =+ 0.000 0.492 =+ 0.002 0.694 + 0.001
ALL-KMS 2419 109 4.5 0.977 £ 0.000 0.509 £ 0.003 0.705 £ 0.002
ALL-TIW 3193 150 4.7 0.978 £ 0.000 0.509 £ 0.002 0.705 £ 0.001
ALL-CEN 3303 149 4.5 0.977 £+ 0.000 0.522 £ 0.002 0.714 £ 0.001
TMC-ALL 2162 106 4.9 0.977 £+ 0.000 0.526 £+ 0.002 0.717 £+ 0.002
TMC-DBS 2185 86 3.9 0.979 £ 0.000 0.473 £ 0.002 0.681 £ 0.001
TMC-KMS 2162 98 4.5 0.978 £ 0.000 0.495 £ 0.002 0.696 £ 0.002
TMC-TIW 2097 85 4.1 0.980 + 0.000 0.454 4 0.002 0.667 £ 0.001
TMC-CEN 2086 86 4.1 0.980 + 0.000 0.459 £ 0.001 0.670 £ 0.001

to select the representative references from the clusters to compare with the new reference. The
selection strategies considered are: ALL (based on all references), DBS (based on DBSCAN), KMS
(based on K-means), TIW (based on a time window) and CEN (based on the centroid). The strategies
based on DBSCAN (DBS) use minpts = 2 (minimum number of points) and € = 0.4 (radius). The
strategies based on K-means (KMS) use £ = 6 and the distance from the centroid equals to 0.4.
The strategies based on time window (TIW) use size of the window equals to 3. These values were
empirically defined.

4.6 Results

Table IIT shows the final ACP, AAP, and K results for each evaluated strategy applied on KISTT after
the last load in the repository. The total number of merges and incorrect merges, and the percentage
of incorrect merges performed by each strategy are also presented. In this collection, we notice that
merging all clusters similar to a given reference produces slightly better results than merging the
two most similar clusters. Using all references from the potential clusters to evaluate their similarity
also produces good results (strategies ALL-ALL and TMC-ALL). In this collection, the purity of the
clusters (ACP) produced by INDi and all proposed strategies is similar and high. This motivates the
use of all information from the clusters and the merge of all clusters similar to the new reference to
obtain the best results. Among the tested strategies, ALL-ALL, i.e., merging all similar clusters and
using all information of the clusters, statistically outperforms INDi and all other strategies. Compared
with INDi, the gain provided by the ALL-ALL strategy is around 16.6% for the K metric, while the
worst strategy (TMC-TIW) outperforms INDi by 8.6%. Notice that, in KISTI the ACP confidence
interval is too small (less than 0.0001), and, therefore is shown as 0.000.

Table IV shows the results for BDBComp. INDi and all proposed strategies produce very pure
clusters (ACP above 0.993). Thus, using all references in the clusters (strategies ALL-ALL and TMC-
ALL) also produces the best results for this collection. Strategies ALL-ALL and TMC-ALL outperform
INDi around 1.8% and 1.4%, respectively. The small number of references in the BDBComp collection
leads to fewer merges and, consequently, to small gains. In this collection, the strategies based on
time window (strategies ALL-TIW and TMC-TIW) performed worst than INDi. In this collection, the
strategies based on time window greatly limit the number of references in the clusters to be compared
with the new reference.

In the SyntheticNew5 collection, we added references to new authors in a rate of 5% per load. As

Journal of Information and Data Management, Vol. 5, No. 3, October 2014.

Reducing Fragmentation in Incremental Author Name Disambiguation . 303

Table IV. Results in BDBComp. Best results, including statistical ties, are highlighted in bold.

Strategy # of merges | wrong merges | % of wrong merges ACP AAP K

INDi 0 0 - 0.994 + 0.005 0.765 + 0.013 0.872 £ 0.005
ALL-ALL 5 1 20.0 0.995 + 0.003 | 0.793 + 0.003 | 0.888 + 0.002
ALL-DBS 6 1 16.7 0.995 + 0.003 0.766 £+ 0.004 0.873 £ 0.003
ALL-KMS 4 1 25.0 0.995 + 0.003 | 0.790 + 0.002 | 0.886 + 0.002
ALL-TIW 11 1 09.1 0.995 + 0.003 0.723 £+ 0.005 0.848 £ 0.003
ALL-CEN 7 1 14.3 0.993 + 0.005 0.766 + 0.014 0.872 £ 0.006
TMC-ALL 4 1 25.0 0.995 + 0.003 0.785 & 0.004 0.884 £ 0.002
TMC-DBS 4 1 25.0 0.995 + 0.003 0.759 + 0.008 0.869 £ 0.005
TMC-KMS 4 1 25.0 0.995 + 0.003 0.788 + 0.002 0.885 4 0.002
TMC-TIW 11 1 09.1 0.995 + 0.003 0.723 £ 0.005 0.848 4 0.003
TMC-CEN 4 1 25.0 0.993 + 0.005 0.756 + 0.019 0.866 4 0.009

Table V. Results in SyntheticNew5. Best results, including statistical ties, are highlighted in bold.
K

Strategy # of merges | wrong merges | % of wrong merges ACP AAP

INDi 0 0 - 0.927 + 0.007 0.741 £+ 0.007 0.829 £ 0.006
ALL-ALL 325 135 41.5 0.861 + 0.017 0.819 + 0.005 0.840 £ 0.009
ALL-DBS 364 157 43.1 0.858 + 0.022 0.817 + 0.002 0.837 £ 0.012
ALL-KMS 215 41 19.1 0.934 + 0.005 0.802 & 0.007 0.865 & 0.003
ALL-TIW 897 388 43.3 0.783 + 0.029 0.800 £ 0.004 0.791 £ 0.014
ALL-CEN 884 414 46.8 0.747 + 0.034 0.850 + 0.002 0.796 £ 0.018
TMC-ALL 321 131 40.8 0.860 + 0.017 0.819 + 0.005 0.839 £ 0.009
TMC-DBS 247 58 23.5 0.921 + 0.005 0.822 £ 0.007 0.870 £+ 0.002
TMC-KMS 212 40 18.9 0.934 + 0.005 0.801 £ 0.007 0.865 £ 0.003
TMC-TIW 380 131 34.5 0.883 £ 0.015 0.755 £ 0.005 0.816 £ 0.007
TMC-CEN 228 54 23.7 0.924 + 0.004 0.814 £ 0.009 0.868 + 0.003

Table VI. Results in SyntheticNew10. Best results, including statistical ties, are highlighted in bold.

Strategy # of merges | wrong merges | % of wrong merges ACP AAP K

INDi 0 0 - 0.836 + 0.009 0.715 £+ 0.008 0.773 £+ 0.007

ALL-ALL 466 251 53.9 0.706 £+ 0.018 0.814 £+ 0.010 0.758 £+ 0.014

ALL-DBS 503 264 52.5 0.705 £ 0.015 0.807 £ 0.013 0.754 £+ 0.013

ALL-KMS 350 105 30.0 0.850 £+ 0.012 0.806 £ 0.008 0.827 + 0.008
ALL-TIW 1225 651 53.1 0.568 =+ 0.018 0.821 =+ 0.004 0.683 £ 0.010

ALL-CEN 1239 701 56.6 0.558 £ 0.018 0.854 + 0.003 0.690 £ 0.011

TMC-ALL 459 248 54.0 0.706 £ 0.016 0.812 £ 0.011 0.757 £ 0.013

TMC-DBS 350 116 33.1 0.826 £ 0.008 0.822 £ 0.006 0.824 + 0.006
TMC-KMS 338 98 29.0 0.851 + 0.012 0.805 £ 0.008 0.828 + 0.009
TMC-TIW 490 225 45.9 0.733 £ 0.008 0.754 £+ 0.014 0.743 £ 0.009

TMC-CEN 325 89 27.4 0.839 + 0.010 0.814 £ 0.006 0.826 + 0.007

we can see from Table V, the clusters produced by INDi and all proposed strategies are not as pure
as those produced in KISTI or BDBComp, which makes more promising the use of techniques to
select the information from the clusters and merging the two most compatible clusters. Thus, except
for TMC-ALL and TMC-TIW, merging only the two most compatible clusters keeps the purity of
the clusters (ACP) compared with INDi. All strategies reduce fragmentation (AAP) with gains from
14.7% (ALL-CEN) to 7.9% (ALL-TIW). It is worth to notice that the strategies based on K-means
(TMC-KMS and ALL-KMS) improve purity while reducing fragmentation. Considering the K metric,
TMC-DBS and TMC-CEN outperform INDi and all other strategies, with a gain around 4.9% when
compared with INDi.

Table VI shows the disambiguation performance in the SyntheticNew10 collection. Notice that,
by increasing the rate of new authors from 5% (SyntheticNew5-Table V) to 10% (SyntheticNew10-
Table VI), we reduce the purity of the clusters even further because of the increasing ambiguity.
Overall, strategies ALL-KMS, TMC-DBS, TMC- KMS and TMC-CEN outperform INDi (around
7%) and all other strategies under the K metric. The strategies ALL- KMS and TMC-KMS also
improve purity around 1.7%.

With SyntheticChangel0 and SyntheticChangeb0 we analyzed the impact of changing the authors’
publication profile at each load (year) in 10% and 50%, respectively. In SyntheticChangelO (Ta-
ble VII), INDi and the strategy TMC-CEN obtained the best results in terms of purity (ACP), with
the strategies based on K-means (ALL-KMS and TMC-KMS) and DBSCAN (TMC-DBS) achieving
a performance close to the that obtained by INDi and TMC-CEN. Regarding fragmentation (AAP)
and the metric K, ALL-CEN outperforms INDi and all other strategies, but its clusters are the most

Journal of Information and Data Management, Vol. 5, No. 3, October 2014.

304 . L. V. B. Esperidido et al.
Table VII. Results in SyntheticChangel0. Best results, including statistical ties, are hlghhghted in bold.

Strategy # of merges | wrong merges | % of wrong merges ACP AAP

INDi 0 0 - 0.977 £+ 0.002 0.608 + 0.002 0.771 i 0.002
ALL-ALL 173 29 16.8 0.964 £ 0.001 0.654 £ 0.003 0.794 £ 0.002
ALL-DBS 172 29 16.9 0.964 £ 0.001 0.654 £ 0.002 0.794 £ 0.001
ALL-KMS 152 16 10.5 0.976 + 0.003 0.631 £ 0.003 0.784 £ 0.003
ALL-TIW 722 141 19.5 0.914 + 0.006 0.671 £ 0.003 0.783 £ 0.003
ALL-CEN 709 128 18.1 0.904 + 0.005 0.716 + 0.003 | 0.805 + 0.004
TMC-ALL 171 29 17.0 0.964 + 0.001 0.654 + 0.003 0.794 £+ 0.002
TMC-DBS 145 15 10.3 0,976 + 0,001 0,647 & 0,003 0,795 £ 0,002
TMC-KMS 145 15 10.3 0.975 + 0.005 0.628 £ 0.002 0.783 £ 0.003
TMC-TIW 196 37 18.9 0.963 + 0.003 0.587 £ 0.002 0.752 4 0.001
TMC-CEN 152 15 09.9 0.977 + 0.001 0.637 & 0.003 0.789 4 0.001

Table VIII. Results in SyntheticChange50. Best results, including statistical ties, are highlighted in bold.

Strategy # of merges | wrong merges | % of wrong merges ACP AAP K

INDi 0 0 - 0.885 + 0.002 0.565 £ 0.002 0.707 £ 0.001
ALL-ALL 439 247 56.3 0.793 £ 0.004 0.619 £ 0.006 0.701 £ 0.003
ALL-DBS 394 197 50.0 0.827 £ 0.007 0.592 £ 0.004 0.699 £ 0.004
ALL-KMS 1087 641 59.0 0.884 £ 0.003 0.540 £ 0.005 0.691 £ 0.004
ALL-TIW 352 151 42.9 0.698 £ 0.007 0.583 £ 0.004 0.638 £ 0.003
ALL-CEN 1162 766 65.9 0.602 £ 0.007 0.680 + 0.004 0.640 £ 0.003
TMC-ALL 424 235 55.4 0.799 £ 0.003 0.618 £ 0.004 0.703 £ 0.002
TMC-DBS 297 130 43.8 0.882 =+ 0.005 0.595 £ 0.009 0.724 + 0.007
TMC-KMS 333 145 43.5 0.890 £ 0.002 0.539 £ 0.004 0.693 £ 0.003
TMC-TIW 350 157 44.9 0.870 £ 0.002 0.485 + 0.003 0.649 + 0.002
TMC-CEN 302 117 38.7 0.890 + 0.003 0.561 £+ 0.006 0.707 £+ 0.003

impure (ACP). TMC-DBS keeps the purity of the clusters similar to INDi and reduces the fragmenta-
tion with a gain around 3% under the K metric. In SyntheticChange50 (Table VIII), only TMC-DBS
outperforms INDi under the K metric with a gain around 2.4%. TMC-CEN is statistically tied with
INDi under all metrics.

Overall we can conclude that, if we have collections whose clusters are impure, an option to at-
tenuate this problem is to merge only the two clusters most similar to the new reference and select
the information in each cluster using the strategies based on K-means, centroid or DBSCAN. ALL-
KMS, TMC-KMS and TMC-CEN outperformed INDi and all other strategies under the K metric in
all collections, but SyntheticChangel0. Under the K metric, TMC-CEN outperformed INDi in all
collections, but BDBComp and SyntheticChangel0 in which there was a statistical tie.

In Table IX, we compare the TMC-CEN strategy, the one with the best overall performance in
our experiments, with two traditional (batch-mode) representative methods, HHC and LASVM-
DBSCAN?Y. The traditional methods use all references from the first year to last year altogether,
meaning that they use much more information than the incremental methods, but also incurring in
much higher costs and in the loss of eventual manual corrections that were made in the repositories.
In the BDBComp and KISTI collections, HHC outperforms TMC-CEN and LASVM-DBSCAN under
the K metric. However, notice that under ACP metric (purity), our proposed strategy TMC-CEN
outperforms all baselines, i.e., the strategy TMC-CEN produces the most pure clusters, with gains up
to 90% when it is compared with LASVM-DBSCAN in the KISTT collection. As mentioned before,
this is important for future merges of the incremental method as new references are included in the
repositories. Notice that once clusters of different authors are wrongly merged (decreased purity), it
is very hard to identify and fix this mistake later.

In the SyntheticNew5 and SyntheticNew10 collections, strategy TMC-CEN outperforms all baselines
under all metrics. Unlike in the BDBComp and KISTI collections that have, respectively, around 3%
and 1% of the references with author name in short format (i.e., author name includes only the initial
of the first name followed by the last name), SyntheticNew5 and SyntheticNew10 have, respectively,
around 50% and 58% of the references with author name in short format!?. This higher number of
author names in short format leads these collections to have more homonyms, hardening the problem.

9Remiding that in case of BDBComp and KISTI, the ALL-ALL strategy produced even better results than TMC-CEN
due to the initial purity of the clusters. TMC-DBS is also slightly better than TMC-CEN in SyntheticChange50.
10All new author names generated by SyGAR are in short format.

Journal of Information and Data Management, Vol. 5, No. 3, October 2014.

Reducing Fragmentation in Incremental Author Name Disambiguation . 305

Table IX. Comparison of Strategy TMC-CEN with traditional methods.
highlighted in bold.

Best results, including statistical ties, are

Methods / TMC-CEN HHC LASVM-DBSCAN

Collections ACP AAP K ACP AAP K ACP AAP K
BDBComp 0.993+0.005 0.756+0.019 0.8660.009 0.853+£0.003 0.983+0.003 0.916+0.003 | 0.6944+0.000 0.79440.000 0.743+0.000
KISTI 0.980+0.000 0.45940.001 0.670+£0.001 0.955+£0.001 0.770+0.003 0.858+0.001 | 0.514£0.000 0.569+0.000 0.54140.000
SyntheticNew5 0.924+0.004 0.814+0.009 0.868+0.003 | 0.647+0.005 0.756+0.011 0.699+0.006 0.588+0.000 0.089+0.000 0.22940.000
SyntheticNew10 0.839+0.010 0.814+0.006 0.826+0.007 | 0.512+0.007 0.739+0.020 0.615+0.011 0.764+0.000 0.054+0.000 0.20240.000
SyntheticChangel0 | 0.977+0.001 0.637+0.003 0.789+0.001 | 0.8224+0.012 0.745+0.006 0.783+0.008 | 0.5204+0.000 0.149+0.000 0.27840.000
SyntheticChange50 | 0.890+0.003 0.561+0.006 0.707+0.003 0.758+0.011 0.675+0.006 0.7154+0.007 | 0.5654+0.000 0.12440.000 0.265+0.000

Table X. Comparison of TMP-CEN with supervised author assignment methods.

Methods / TMP-CEN SVM SLAND

Collections ACP AAP K ACP AAP K ACP AAP K
KISTI 0.980+£0.000 0.45940.001 0.67040.001 0.777 £ 0.003 0.905 + 0.004 0.839 & 0.003 | 0.923 & 0.002 0.954+0.002 0.938+0.002
BDBComp 0.993+0.005 0.756+0.019 0.8664+0.009 | 0.540 4 0.043 0.900 £ 0.021 0.697 £ 0.035 | 0.830 + 0.024 0.933+0.030 0.880+0.024
SyntheticNew5 0.924+0.004 0.81440.009 0.868+0.003 | 0.511 £0.089 0.763 £ 0.028 0.624 £ 0.048 | 0.696 + 0.027 0.909 + 0.012 0.79510.016
SyntheticNew10 0.839+0.010 0.8144+0.006 0.826+0.007 | 0.424 £0.017 0.778 £ 0.012 0.574 £ 0.012 | 0.697 + 0.023 0.912+0.008 0.797 £ 0.011
SyntheticChangel0 | 0.977+0.001 0.63740.003 0.78940.001 0.541 £0.029 0.693 £ 0.016 0.612 £ 0.022 | 0.774 + 0.030 0.855 + 0.017 0.813 + 0.023
SyntheticChange50 | 0.8904+0.003 0.561+0.006 0.70740.003 | 0.407 +0.012 0.644 & 0.007 0.512 £ 0.008 | 0.531 £ 0.044 0.675 + 0.027 0.599 + 0.036

Table XI. Running time of the TMC-CEN and ALL-CEN strategies and INDi disambiguating each collection.
Method /Strategy
Collections INDi TMP-CEN ALL-CEN
KISTI 455.106 £ 23.008 569.477 + 83.417 661.690 + 85.896
BDBComp 0.103 + 0.046 0.170 4+ 0.087 0.229 £ 0.097

SyntheticNew5
SyntheticNew10
SyntheticChangel0
SyntheticChange50

17.438 + 1.060
36.761 £+ 1.137
12.153 + 0.237
12.738 + 0.977

21.840 £ 2.066
39.794 £ 2.833
18.928 + 2.090
20.533 £+ 1.952

33.140 £ 1.946
49.576 & 1.453
22.483 £ 0.548
30.391 + 1.266

In this case, our strategy TMC-CEN, that compares the new reference with only the references closer
to the centroid of each cluster, produces clusters purer than the ones produced by the traditional
methods, that use all references. In the SyntheticChangelO and SyntheticChange50 collections, the
results of TMC-CEN and HHC, under K metric, are very close, with TMC-CEN again, producing
purer clusters. These collections have around 40% of the references with author names in short
format. In sum, in cases in which the ambiguity is higher, our merge-oriented method produced
superior effectiveness than most of the tested baselines.

The poor performance of LASVM-DBSCAN is mainly due to the small number of attributes used
when compared with the original proposed method described by [Huang et al. 2006]. In that work,
several other attributes such as affiliation and e-mail were used. Our collections have only the three
most common attributes, i.e., author names, work title and publication venue title and, with only these
attributes, the similarity functions learned by the LASVM-DBSCAN are not suitably generalizable.
Notice that, as the LASVM-DBSCAN results are the same in each round, their confidence interval is
equal to 0.000.

Finally, for comparative purposes only, we include in Table X the effectiveness of two representative
supervised methods applied to the same collections. For the KISTI and BDBComp collections, we
randomly selected 50% of the records as training data and the other ones as test set. For the synthetic
collections, the first state was used as training data and the rest as test set. As before, results
correspond to the average effectiveness over ten runs with 99% Student’s t-distribution confidence
interval. Although a direct comparison is not fair, as we use no training and the supervised methods
cannot be applied incrementally as originally proposed (which, by the way, is a huge drawback of this
type of method), our results are very competitive.

As we can see, TMP-CEN produces the best results in terms of purity in all cases, and in four
out of six cases in terms of the K metric. In case of SyntheticChangel0, results in terms of K are
also very close to the best method in this collection (SLAND) and very superior to SVM. Finally, for
KISTI, although TMP-CEN looses in terms of K for SVM and SLAND, purity is much higher for this
method, meaning that there is room for further improvements.

To conclude, Table XI shows the running time (seconds) spent by incremental methods, i.e., INDi

Journal of Information and Data Management, Vol. 5, No. 3, October 2014.

306 . L. V. B. Esperidido et al.

and our method using the TMP-CEN and ALL-CEN strategies in each collection. As always, each
running time is defined as the average running time over ten runs with 99% Student’s t-distribution
confidence interval. The experiments were executed on an Intel core i7-2640M machine with a clock
of 2.80GHz and 8 GBytes of RAM memory. We notice that both methods were implemented in Java.
We can see that in most cases the runtimes are comparable, with a slight advantage for INDi, as
expected. In any case, no method took more than a few seconds or minutes to execute.

5. CONCLUSION

In this work, we propose a new merge-oriented incremental author name disambiguator. In this
method, we propose to use a newly inserted publication of an author as evidence to merge fragmented
clusters of its previous publications, i.e., we merge publications of an author that were previously
considered belonging to different authors. The new citation record inserted into the DL repository is
the link to merge fragmented clusters.

In our experimental evaluation, we evaluated several strategies to merge such fragmented clusters
while trying to preserve their purity. We want to merge fragmented clusters, but with a reduced chance
of a mistaken authorship assignment, since merging clusters belonging to different authors is very hard
to identify and fix. In general, we noticed that, if there are few publications wrongly assigned to the
authors in the repository, we may merge all clusters similar to the newly inserted record preserving
the clusters purity and decreasing fragmentation. The situation is different if ambiguity causes errors
in authorship definition. In this case, the strategy that merges only the two most compatible clusters
and uses similarity measurements based only on references closer to the cluster centroid is the best
one. In our experiments, our merge-oriented method outperformed the only incremental author name
disambiguation method known in the literature in basically all cases. When compared to more ex-
pensive batch-mode methods that disambiguate a whole digital library at once, our proposed method
outperformed one method by large margins in all cases and outperformed the other in three out of
six cases (with higher purity in all cases), mainly when the levels of ambiguity were higher. Finally,
when compared to state-of-the-art supervised methods for the same problem, our solutions showed
competitive results without the incurred costs of supervision and with the aforementioned advantages
of incrementally disambiguating a DL repository.

As future work, we intend to check the impact of our proposed representative selection strategies
in non-incremental author name disambiguation methods. As the strategy performance is sensitive to
author ambiguity, it is worthy to investigate other representative reference selection techniques. We
also intend to test our strategies in other collections and envision and evaluate other scenarios beyond
insertion of new authors or changes in the authors publication profile.

REFERENCES

BHATTACHARYA, I. AND GETOOR, L. Collective Entity Resolution in Relational Data. ACM Transactions on Knowledge
Discovery from Data 1 (1), 2007.

BorbEs, A., ErRTEKIN, S., WESTON, J., AND BorToUu, L. Fast Kernel Classifiers with Online and Active Learning.
Journal of Machine Learning Research 6 (1): 1579-1619, 2005.

CarvaLHO, A. P., FERREIRA, A. A., LAENDER, A. H. F., AND GongaLvESs, M. A. Incremental Unsupervised Name
Disambiguation in Cleaned Digital Libraries. Journal of Information and Data Management 2 (3): 289-304, 2011.
Cota, R. G., FERREIRA, A. A., GongAaLVvEs, M. A., LAENDER, A. H. F., aAND NasciMEnTO, C. An Unsupervised
Heuristic-Based Hierarchical Method for Name Disambiguation in Bibliographic Citations. Journal of the American

Society for Information Science and Technology 61 (9): 1853-1870, 2010.

EsTER, M., KrRIEGEL, H.-P., SANDER, J., AND XU, X. A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise. In Proceedings of the International Conference on Knowledge Discovery and Data
Mining. Portland, Oregon, pp. 226—231, 1996.

Fan, X., Wang, J., Pu, X., Zuou, L., anDp Lv, B. On Graph-based Name Disambiguation. ACM Journal of Data
and Information Quality 2 (2): 10:1-10:23, 2011.

Journal of Information and Data Management, Vol. 5, No. 3, October 2014.

Reducing Fragmentation in Incremental Author Name Disambiguation . 307

FERREIRA, A. A., GoNGALVES, M. A., ALMEIDA, J. M., LAENDER, A. H. F., AND VELOsO, A. A Tool for Generating
Synthetic Authorship Records for Evaluating Author Name Disambiguation Methods. Information Sciences 206 (1):
42-62, 2012a.

FERREIRA, A. A., GoNgaLvES, M. A.) AND LAENDER, A. H. F. A Brief Survey of Automatic Methods for Author
Name Disambiguation. SIGMOD Record 41 (2): 15-26, 2012b.

FERREIRA, A. A., MacHaDO, T. M., AND GoNgALVES, M. A. Improving Author Name Disambiguation with User
Relevance Feedback. Journal of Information and Data Management 3 (3): 332—-347, 2012c.

FERREIRA, A. A., VELOSO, A., GONGALVES, M. A., AND LAENDER, A. H. F. Self-training Author Name Disambigua-
tion for Information Scarce Scenarios. Journal of the Association for Information Science and Technology 65 (6):
1257-1278, 2014.

Han, H., GiLes, C. L., Zua, H., L1, C., anD TsiouTsiouLIKLIS, K. Two Supervised Learning Approaches for Name
Disambiguation in Author Citations. In Proceedings of the ACM/IEEE-CS Joint Conference on Digital Libraries.
Tucson, USA, pp. 296-305, 2004.

Han, H., Xu, W., Zua, H., aANp GiLEs, C. L. A Hierarchical Naive Bayes Mixture Model for Name Disambiguation
in Author Citations. In Proceedings of the ACM Symposium on Applied Computing. Santa Fe, USA, pp. 1065-1069,
2005.

Han, H., Zua, H., anD GiLEs, C. L. Name Disambiguation in Author Citations using a K-way Spectral Clustering
Method. In Proceedings of the ACM/IEEE Joint Conference on Digital Libraries. Denver, CO, USA, pp. 334-343,
2005.

Huang, J., ErTEKIN, S., AND GILEs, C. L. Efficient Name Disambiguation for Large-Scale Databases. In Proceedings
of the European Conference on Principles and Practice of Knowledge Discovery in Databases. Berlin, Germany, pp.
536-544, 2006.

Kang, I.-S., Kim, P., LeEg, S., Jung, H., anD You, B.-J. Construction of a Large-scale Test Set for Author
Disambiguation. Information Processing and Management 47 (3): 452-465, 2011.

Kang, I.-S., Na, S.-H., Leg, S., Jung, H., Kim, P., Sung, W.-K., aNnD Lig, J.-H. On Co-authorship for Author
Disambiguation. Information Processing & Management 45 (1): 84-97, 2009.

Levin, F. H. anp Heusger, C. A. Evaluating the Use of Social Networks in Author Name Disambiguation in Digital
Libraries. Journal of Information and Data Management 1 (2): 183-197, 2010.

OnN, B.-W., ELmacioGcru, E., Leg, D., Kana, J., anD PE1, J. Improving Grouped-entity Resolution using Quasi-
Cliques. In Proceedings of the IEEE International Conference on Data Mining. Hong Kong, China, pp. 1008-015,
2006.

Peng, H.-T., Lu, C.-Y., Hsu, W., anDp Ho, J.-M. Disambiguating Authors in Citations on the Web and Authorship
Correlations. Ezpert Systems with Applications 39 (12): 10521 — 10532, 2012.

SHiN, D., Kim, T., Cuoi, J., anD Kim, J. Author Name Disambiguation using a Graph Model with Node Splitting
and Merging based on Bibliographic Information. Scientometrics 100 (1): 15-50, 2014.

SOLER, J. M. Separating the Articles of Authors with the same Name. Scientometrics 72 (2): 281-290, 2007.

Song, Y., Huang, J., CounciLr, I. G., L1, J., anp GiLes, C. L. Efficient Topic-based Unsupervised Name Disam-
biguation. In Proceedings of the ACM/IEEE Joint Conference on Digital Libraries. Vancouver, BC, Canada, pp.
342-351, 2007.

Tang, J., Fong, A. C. M., WaNg, B., AND ZuaNg, J. A Unified Probabilistic Framework for Name Disambiguation
in Digital Library. IEEE Transactions on Knowledge and Data Engineering 24 (6): 975-987, 2012.

Torvik, V. I. AND SMALHEISER, N. R. Author Name Disambiguation in MEDLINE. ACM Transactions on Knowledge
Discovery from Data 3 (3): 1-29, 2009.

TREERATPITUK, P. AND GiLEs, C. L. Disambiguating Authors in Academic Publications using Random Forests. In
Proceedings of the ACM/IEEE Joint Conference on Digital Libraries. Austin, TX, USA, pp. 3948, 2009.

VELOSO, A., FERREIRA, A. A., GOoNGALVES, M. A., LAENDER, A. H., AND MEIRA JRrR., W. Cost-effective On-demand
Associative Author Name Disambiguation. Information Processing € Management 48 (4): 680 — 697, 2012.

Wang, X., Tang, J., CueEng, H., anp Yu, P. ADANA: Active Name Disambiguation. In Proceedings of the
International Conference on Data Mining. Vancouver,Canada, pp. 794-803, 2011.

Wu, H., L1, B, PE1, Y., aAND HE, J. Unsupervised Author Disambiguation using Dempster—Shafer Theory. Sciento-
metrics, 2014.

Journal of Information and Data Management, Vol. 5, No. 3, October 2014.

