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Abstract. The F-Onion-tree is a robust access method that slices the metric space into disjoint subspaces to provide
quick indexing of complex data in the main memory. However, the F-Onion-tree only performs element-by-element
insertions into its structure, i.e. it does not introduce a technique to build the index considering all elements of the
dataset at once. In this article, we fill this gap. We propose the HeightBL algorithm for bulk-loading F-Onion-trees.
Performance tests with real-world data with different volumes and dimensionalities showed that the index produced
by the HeightBL algorithm is very compact. Compared with the element-by-element insertion, the size of the index
reduced from 53.42% to 71.25%. The experiments also showed that the HeightBL algorithm significantly improved
range and k-NN query processing performance. It required from 13.38% up to 99.94% less distance calculations and
was from 8.57% up to 99.04% faster than the element-by-element insertion.

Categories and Subject Descriptors: Core Database Foundations and Technology [Access methods and indexing]:
Databases

Keywords: metric access method, similarity search, bulk-loading, Onion-tree, F-Onion-tree

1. INTRODUCTION

A metric access method (MAM) aims to provide efficient access to a large number of applications that
require comparison between complex data, such as images, audio and video. To improve the access to
complex data, MAMs reduce the search space, leading the search to portions of the dataset where the
stored elements probably have higher similarity with the searched element. The similarity measure
between two elements can be expressed by a metric that becomes smaller as the elements become more
similar [Hjaltason and Samet 2003]. As MAMs partition the metric space into subspaces, queries do
not have to access the complete dataset.

Formally, a metric space is an ordered pair < S, d >, such that S is the domain of data elements and
d: S × S → R+ is the metric. For any s1, s2, s3 ∈ S, the metric must have the following properties:
(i) identity: d(s1, s1) = 0; (ii) symmetry: d(s1, s2) = d(s2, s1); (iii) non-negativity: d(s1, s2) ≥ 0; and
(iv) triangular inequality: d(s1, s2) ≤ d(s1, s3) + d(s3, s2) [Chávez et al. 2001]. Providing a metric to
enable handling complex data as a metric space helps reducing the problems derived from the curse
of dimensionality, because MAMs tend to follow the dimensionality of the element represented by
the data (the so-called intrinsic dimensionality) instead of the dimensionality of the space where the
element is embedded (the embedded dimensionality) [Traina-Jr. et al. 2010; Pola et al. 2009]. In
addition to the fact that the intrinsic dimensionality is usually lower than the embedded one [Korn
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et al. 2001], many complex data do not have a defined dimensionality. Thus, handling datasets of low
intrinsic-dimensionalities using MAMs is an interesting way to speed up similarity queries.

The two most useful types of similarity queries using MAMs are the range query and the k-NN
query. Consider a query element sq ∈ S. Given a query radius rq, the range query returns each
element si ∈ S that satisfies the condition d(si, sq) ≤ rq. On the other hand, given a value k ≥ 1, the
k-NN query returns the k elements in S that are the nearest from the query element sq.

The work on MAMs is quite extensive. An important research challenge involved is the development
of main-memory MAMs, which is motivated by several factors. Due to hardware advances, the storage
capacity of the main memory is increasingly growing, at the same time that its costs are lowering.
Another motivation is related to the fact that main-memory MAMs are able to process similarity
queries very fast, as they do not need to minimize disk accesses as disk-based MAMs do and, therefore,
can provide a better partitioning of the metric space. Furthermore, main-memory MAMs are very
useful to optimize subqueries when processing complex queries. In this scenario, the query optimizer
of database management systems can generate a main-memory MAM on runtime to process more
efficiently parts of a query or the whole query. In this article, we address main-memory MAMs.

There are few main-memory MAMs that have been proposed in the literature, such as the GH-
tree [Uhlmann 1991], the GNAT [Brin 1995], the VP-tree [Yianilos 1993] and its extensions [Bozkaya
and Ozsoyoglu 1997; 1999; Fu et al. 2000], the MM-tree [Pola et al. 2007] and the Onion-tree [Carélo
et al. 2011]. To the best of our knowledge, the Onion-tree is the most efficient main-memory MAM
to date [Carélo et al. 2011]. Thus, we focus our work on the Onion-tree.

The main characteristics of the Onion-tree are summarized as follows. It has a partitioning method
that indexes complex data by dividing the metric space into several disjoint subspaces by using two
pivots per node. It replaces the pivots of a leaf node during insertion operations by using a replace-
ment policy that ensures good partitioning of the metric space. Also, its algorithms for processing
similarity queries can efficiently use its partitioning method. The Onion-tree has two versions: (i) the
F-Onion-tree, which divides each node of the structure into the same number of subspaces; and (ii) the
V-Onion-tree, which applies different numbers of subspaces to the nodes. Here, we are interested in
the F-Onion-tree, which according to Carélo et al. [2011], invariably outperformed the V-Onion-tree.

However, the F-Onion-tree only performs element-by-element insertion into its structure. Another
important issue is the mass loading technique, called bulk-loading, which builds the index considering
all elements of the dataset at once. This technique is useful in the case of reconstructing the index
or inserting a large number of elements simultaneously. It is also very useful for the query optimizer
of database management systems due to the following factors. As the entire input dataset is already
known, it is expected that the bulk-loading generate more compact structures, thus decreasing the
memory space required to store the index. It is also expected that the index generated by the bulk-
loading provide better performance in the processing of range and k-NN queries, which can be repeated
several times after the index is created. Despite the importance of the bulk-loading technique, to the
best of our knowledge, there are not in the literature bulk-loading algorithms for the F-Onion-tree.

In this article, we fill this gap. We propose the HeightBL algorithm for bulk-loading F-Onion-trees.
The proposed algorithm calculates a priori the estimated height of the index, according to the number
of elements to be inserted into the structure and the quantity of subspaces of the F-Onion-tree.
It selects, for each node, the pair of elements of the dataset that will generate a structure with
approximately the estimated height. Also, to avoid the need to verify each pair of elements, the
algorithm chooses samples to be tested. By combining these characteristics, the proposed HeightBL
algorithm fulfills the requirements of the bulk-loading technique: compared with the element-by-
element insertion, performance tests showed that the HeightBL algorithm produced more compact
indices and guaranteed expressive performance gain in range and k-NN query processing.

This article is organized as follows. Section 2 reviews related work, Section 3 details the main
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characteristics of the F-Onion-tree, Section 4 introduces the proposed bulk-loading algorithm, Section
5 validates the algorithm through performance tests, and Section 6 concludes the article.

2. RELATED WORK

The first dynamic disk-based MAM is the M-tree [Ciaccia et al. 1997]. Its leaf nodes store all the
elements of the dataset, while its internal nodes store selected elements called representatives, each
having a covering radius. The bulk-loading algorithm for the M-tree described in [Ciaccia and Patella
1998] randomly chooses k elements from the dataset as samples and assigns the remaining elements to
the nearest sample, thus producing k groups. The algorithm is recursively applied to each group until
the subset is small enough to fit in one node. The bulk-loading algorithm for the M-tree introduced
in [Sexton and Swinbank 2004] clusters the input data so that the generated M-tree reflects the
performance requirements of the structure. Further, the Slim-tree [Traina-Jr et al. 2002] was the first
disk-based MAM explicitly designed to reduce the overlap degree between nodes in a metric tree. Its
bulk-loading algorithm [Vespa et al. 2007; 2010] builds the structure in a top-down fashion, based
on sampling techniques, and creates balanced trees with little overlap in each node, using the metric
domain’s distance function and a bound limit to group and determine the number of elements in each
partition of the dataset at each step of the algorithm. As the M-tree and the Slim-tree are disk-based
MAMs, their bulk-loading algorithms are designed to reduce the overlap between the nodes, which is
a problem that is not faced by the main-memory F-Onion-tree.

Bercken and Seeger [2001] introduce two generic bulk-loading algorithms, in the sense that they can
be applied to access methods based on trees, including MAMs. The basic idea behind these algorithms
is to recursively partition the dataset by using a main-memory index of the same type as the target
index to be built. In these algorithms, elements (i.e., samples) of the dataset are inserted into the
index maintained in the main memory until the available memory is filled up. Then, a bucket on disk
is associated with each leaf node, and the remaining elements of the dataset are inserted into the index
guided to the buckets of the corresponding leaf node. When all the elements have been processed, the
nodes in the main memory are written to disk. These algorithms can not be applied to bulk-loading
F-Onion-trees because they are based on the premise that the amount of data to be inserted in the
index does not fit entirely in the main memory and therefore the index should be stored on disk. Also,
these algorithms do not explore the characteristics of the Onion-tree, such as its partitioning method.

In addition to the aforementioned related work, it is also important to survey proposals for bulk-
loading multidimensional access methods, especially the R-tree. The TGS algorithm [García et al.
1998] partitions the input data into subtrees in a top-down fashion, and at each level of the tree,
it rearranges the input data that should be positioned under a node in construction according to a
cost function. The OMT algorithm [Lee and Lee 2003] first determines the topology of the resulting
R-tree and then groups the input data to create the entries of the root node, aiming to minimize
the overlapped area. The remaining nodes are constructed by recursively partitioning each entry
to create lower level nodes. The algorithm described in [Arge et al. 1999] is based on a buffering
technique that attaches buffers to the nodes of the R-tree. An operation is first guided to the buffers
of each node and, when any buffer is full, the operation is performed in the index. Finally, Bercken
et al. [1997] describe an algorithm based on the buffering technique to perform the bulk-loading of
multidimensional structures, which is based on the use of the split and the merge operations of the
index to which the bulk-loading is being applied. Although these related work are used as a basis
for the proposal of several bulk-loading techniques, they can not be directly applied to bulk-loading
F-Onion-trees as they are based on the characteristics of multidimensional access methods, such as the
use of specific partitioning methods, the use of approximations such as the minimum bound rectangle
(MBR) and the sort of MBRs to reduce their size and area of overlap.

To generate more compact indices and to provide better query performance than the element-by-
element insertion, bulk-loading algorithms should take advantage of the particular characteristics of
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Fig. 1. Generation of a F-Onion-tree’s node with 2 expansions, adapted from Carélo et al. [2011]

the index structure. In this article, we use the well-known concept of sampling as a basis of our bulk-
loading algorithm, but we apply new ideas to it, which respect the characteristics of the F-Onion-tree.
First, the proposed HeightBL algorithm chooses samples in a subspace of the metric space by avoiding
pair of pivots whose distance is too far or too close. Second, it selects two pivots per node according
to their distribution in the metric space, differently from the algorithms described in [Ciaccia and
Patella 1998; Vespa et al. 2010], which randomly select only one pivot per node after clustering the
remaining elements. Third, the HeightBL algorithm defines a strategy to estimate the ideal height
that a F-Onion-tree should have in order to generate a better index structure.

3. THE F-ONION-TREE

The F-Onion-tree [Carélo et al. 2011] is a main-memory MAM that divides the metric space into
disjoint subspaces (i.e. regions) by selecting two pivots per node. Its partitioning method is based
on the concept of expansion, which determines the number of disjoint regions that the nodes of a
F-Onion-tree should have. In detail, the number of expansions is equal to F , the number R of disjoint
regions is determined by R = F ∗ 3 + 4, and all nodes of a given F-Onion-tree have the same number
of disjoint regions.

Figure 1c depicts a node of a F-Onion-tree (F = 2) indexing the set S = s1, s2, ..., sn, using s1, s2
as pivots. It is composed of ten disjoint regions, which are generated by the partitioning method as
detailed as follows: (i) expansion 0 (Figure 1a) represents the initial structure of a node with four
regions I, II, III and IV; (ii) expansion 1 (Figure 1b) generates the node with seven regions I, II, III,
IV’, V’, VI’ and VII’; and (iii) expansion 2 (Figure 1c) generates the node with ten regions I, II, III,
IV’, V’, VI’, VII”, VIII”, IX” and X”. The distance r = d(s1, s2) between the pivots defines the initial
radius of the ball centered at each pivot. The other radii are determined using the multiplicity of
r, i.e. 2r for expansion 1 and 3r for expansion 2. Each expansion adds three regions to the node,
since the previous external region becomes the first region of the expansion.

Let si be an element of S to be inserted into the index. The element-by-element insertion performs
as follows. During the insertion of si, the index is traversed to search for an appropriate node to hold
the element. At each node, the insertion calculates two distances: d1, which is the distance between
si and the first pivot of the node, and d2, which is the distance between si and the second pivot of the
node. The region to hold si is determined according to the following rules: (i) if d1 < r and d2 < r,
then si is associated with region I; (ii) if d1 < r and d2 > r, then si is associated with region II;
(iii) if d1 > r and d2 < r, then si is associated with region III; and (iv) if d1 > r and d2 > r, then
si is associated with the external region of the F-Onion-tree, which can be region IV or any other
region generated by the expansions. If si is associated with an external region of a current expansion
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Fig. 2. Visualization of the level 4 of a F-Onion-tree with 1 expansion.

E (0 ≤ E < F ), the previous rules are applied considering the multiplicity of the initial radius r
according to the value of the next expansion E + 1. Also, if si should be inserted into a region that
already has two pivots, the element-by-element insertion is called recursively to insert this element as
a child of the region pivots.

The new element si is assigned to a leaf node when an empty leaf node is reached or when a leaf
node with only one element is reached. Also, the F-Onion-tree may replace one of the pivots of a full
leaf node just before inserting si into this node. This is based on a replacement policy that performs
a combinatorial analysis between the distances of si and the two pivots, and changes any of the pivots
with si if needed. It also updates the radius of the node with the distance between si and the non-
chosen pivot. The Onion-tree may use three different replacement policies: (i) the keep-small, which
states that the distance between the pivots should be the closest to half of the parent node’s radius;
(ii) the maximize-expansions, which chooses as pivots the elements that are the closest; and (iii) the
minimize-expansions policy, which chooses as pivots the elements that are the most distant. Here, we
are interested in the keep-small replacement policy, which according to Carélo et al. [2011], invariably
outperformed the other replacement policies.

Figure 2 graphically illustrates a F-Onion-tree for a real-world dataset that contains the geographical
coordinates of Brazilian cities (www.ibge.gov.br). We used the tool introduced by Traina-Jr et al.
[2002] to show a visualization of the level 4 of the structure using the keep-small replacement policy.
We applied only one expansion to the F-Onion-tree’s nodes. Thus, it is possible to easily see regions
I, II, III, IV’, V’, VI’ and VII’ of some nodes.

Regarding the range query algorithm, for each pivot of a node, it first analyses if the distance
between the query element sq and the pivot is smaller than the query radius rq. If this comparison
returns true, then the pivot is added to the output set. Next, for each region of the node, the algorithm
is called recursively if this region is covered by rq. On the other hand, the k-NN query algorithm
starts calculating the distances between sq and the pivots of the node. An active radius is maintained
with its value equals to the distance of the farthest element of the result set from the moment that
the algorithm finds k elements. If the distance between sq and any of the pivots is smaller than the
active radius, the corresponding pivot is added to the result set, keeping it sorted by the distances.
Next, the algorithm is called recursively for each region that intersects the active radius. The k-NN
query algorithm visits expansions and regions as follows. First, it visits the expansion E in which sq
is assigned. The first region of E to be visited is where sq lies. The remaining regions are visited
according to their proximity to sq, such that the closest regions to sq are visited before the farthest
regions. Then, the k-NN query algorithm visits expansions E - 1 and E + 1, and for each expansion,
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Fig. 3. General view of the HeightBL algorithm.

applies the same visit order for their regions. The algorithm performs recursively for the remaining
expansions until k elements be recovered.

4. THE PROPOSED HEIGHTBL ALGORITHM

In this section, we detail the HeightBL (Height Bulk-Loading) algorithm, which performs a top-down
bulk-loading of F-Onion-trees. It organizes the elements to be inserted into the index in advance to
define the best insertion order of these elements. Also, it builds the index structure by using samples
to choose the pivots of the nodes. Furthermore, it defines a strategy to estimate the ideal height that
a F-Onion-tree should have, so that the final index structure has approximately this estimated height.

In a glance, the HeightBL algorithm works as follows (Figure 3). In the sampling task, the algorithm
selects elements from the dataset, which are used as samples. Then it starts an iterative process to
analyze the samples in order to identify pivots. It generates pairs of samples and evaluates them to
investigate which one is the best pair to be chosen, according to the estimated height. The chosen pair
of samples is inserted into the index, creating a new node whose pivots are these samples. The tasks
of selecting pivots, evaluating pivots and node creation are repeated recursively to obtain subtrees.
Section 4.1 details the sampling task, and Section 4.2 describes the proposed HeightBL algorithm.

4.1 The Sampling Task

To avoid the need to verify each pair of elements of the dataset to identify the best pair of pivots
to create a new node, the sampling task chooses elements to be tested, which are used as samples.
Therefore, it only investigates these samples to identify the best pair of pivots, pruning a large amount
of data to be analyzed and reducing the time spent to build the F-Onion-tree.

The notion used by the sampling task to generate samples is described as follows. It discards pairs
of elements from the dataset that would generate highly unbalanced structures, i.e. structures that
would provide a poor query performance. Consider a pair of elements. There are two situations in
which this occurs. The first one occurs when the distance between the elements is too far so that the
elements are located in extreme portions of the dataset. If this pair of elements were chosen, then
most of the remaining elements would be associated with the region I of the F-Onion-tree. The second
situation occurs when the distance between the elements is too close, generating a F-Onion-tree with
most of the remaining elements associated with its region IV (or another external region).

Consider the dataset S = s1, s2, ..., sn. To choose samples, the sampling task performs four sequen-
tial subtasks: (1) finding an approximated medoid; (2) calculating the median of the approximated
medoid; (3) building a ring of samples; and (4) filtering the samples. They are described as follows.

Subtask 1. Finding an approximated medoid

Subtask 1 is aimed to find an approximated medoid. First, it randomly chooses an element sx ∈
S (1 ≤ x ≤ n). It also chooses two other elements, sv ∈ S and sw ∈ S, such that sv is the farthest
element from sx and sw is the farthest element from sv. Then, it calculates mv, which is the median
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of the distances between sv and each remaining element of S, and mw, which is the median of the
distances between sw and each remaining element of S.

The generation of the approximated medoid is an iterative process that analyzes the intersection
region determined by the balls centered at sv and sw, using mv and mw as radii, respectively (Fig-
ure 4a). Two different situations can occur. In the first one, the intersection region contains elements,
which are selected as candidates. In the second situation, there are no elements in the intersection
region. In this case, both radii mv and mw are incremented by a value determined by Equation 1 to
increase the intersection region. These radii may be incremented several times, until an intersection
region that contains elements be generated and the candidates be selected. The subtask selects the
approximated medoid from the candidates by choosing the element whose sum of distances to the
remaining elements of S is the smallest.

Equation 1 represents the distance policy, which is used by the subtasks of the sampling task to select
near elements and to increase and decrease values. Intuitively, for datasets with high dimensionality
and a large number of elements, there is a high probability to find close elements, even if we consider
short distances. Thus, this equation uses the number of elements of the dataset and the dimensionality
of the dataset to select near elements. These elements should be discarded, as we discuss in subtask 4.
This equation also determines a value that is used as an increment and a decrement in situations where
it is necessary to build a ring of samples, as we discuss in subtask 3. The motivation of Equation 1 is
to generate values between 0 and 1 using the characteristics of the dataset, such as data volume and
data dimensionality. For non-dimensional datasets, the dimensionality can be defined as the value of
its intrinsic dimensionality.

DistancePolicy =
NumberOfElements

Dimensionality +NumberOfElements
(1)

Subtask 2. Calculating the median of the approximated medoid

To calculate the median of the approximated medoid, subtask 2 determines the median med of the
distances between the approximated medoid and the remaining elements of S.

Subtask 3. Building a ring of samples

Subtask 3 builds a ring of samples as described as follows. First, it builds a ball centered at the
approximated medoid using med as radius (i.e. the ball drawn with dashed line in Figure 4b). Lets
consider m_sup and m_inf two other balls that are copies of the first ball, i.e. their radii are initially
med and their centers are the approximated medoid. Then, the subtask decrements the radius m_inf
by the value determined by Equation 1, and increments the radius m_sup by the value determined
by Equation 1. The two new balls are those drawn with continuous line in Figure 4b. The ring is the
area delimited by these balls.

In the following, subtask 3 counts the number of elements l contained in the ring. If 2 ≤ l ≤
dimensionality of S, these elements are selected as samples. Otherwise, two different situations
can occur. When l < 2, m_sup and m_inf are respectively incremented and decremented again by
the value determined by Equation 1, until generating a ring that contains an appropriate number of
elements. When l > dimensionality of S, the subtask selects as samples the l nearest elements to
the approximated medoid that are inside the ring, such that l = dimensionality of S.

Subtask 4. Filtering the samples

Subtask 4 reduces the number of samples selected in the previous subtask by filtering the samples.
To this end, it removes samples that are too close, i.e. the samples whose distance between them is
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Fig. 4. (a) Example of an intersection region. (b) Example of a ring of samples.

less than the result provided by Equation 1. Otherwise, the number of samples to be tested could be
very large.

4.2 Detailing the Algorithm

Before performing the tasks described in Figure 3, the HeightBL algorithm determines the estimated
height that a F-Onion-tree should have, i.e. the height that a balanced F-Onion-tree should have.
Equation 2 defines this estimated height, using the notion that the total number of elements n that
can be stored in a completely full F-Onion-tree is given by the sum of the number of elements that can
be stored at each level h of the index, i.e. n =

∑h=H
h=0 2×Rh, where R is the number of regions, and

2 represents that there are two pivots per node. Equation 2 is obtained from this sum, considering
that it can be seen as a sum of the H + 1 first terms of a geometric progression with ratio R and the
first term 2, and isolating h.

EstimatedHeight = dlog(
n×(R−1)

2 +1)

R −1e (2)

Algorithm 1 details the HeightBL algorithm. Its inputs are the elements of the dataset, the estimated
height of the F-Onion-tree calculated using Equation 2, the number F of expansions to be applied to
the nodes of the index and a reference to the parent node. In the first execution of the algorithm, the
reference to the parent node is null.

Initially, the algorithm selects the samples to be analyzed as pairs of pivots (line 2). To this end, it
performs the four subtasks of the sampling task detailed in Section 4.1. Then, the algorithm starts a
loop to determine the pair of pivots that should be chosen to create a new node in the index (lines 4 to
15). In detail, in line 6 it selects a pair of pivots from the sample, in line 7 it associates the remaining
elements of the dataset with the regions of the node, in line 8 it calculates for each region of the node
the height of its subtree, and selects the highest height as the calculatedHeight, and in line 9 it updates
the value of calculatedHeight so that this value also consider the current level of the index. Next, if the
calculated height is less or equal than estimated height, then the algorithm chooses the pair of pivots
of the current node and ends the loop (lines 11 to 14). The notions of selecting the highest height and
increasing it by the current level aim to guarantee that the height of each subtree does not exceed
the estimated height of the final F-Onion-tree. For instance, suppose that EstimatedHeight = 3. In
the first execution of the algorithm, the current level is equal to 0, and the highest height should be
at most 3; in the second execution of the algorithm, the current level is equal to 1, and the highest
height should be at most 2; and so on.

In the following, the algorithm creates the new node using the selected pivots (line 17). Furthermore,
for each region of the created node, it verifies the number of elements to be associated with this region
(line 19). If this number is greater than 2, the algorithm is called recursively to that region using
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as input the elements to be associated with the region, the estimated height calculated before the
execution of the algorithm, the number F of expansions and the new node (lines 20 to 22). Otherwise
the elements of that region are inserted into a new node that is a child of the current node (line 24).

Algorithm 1: HeightBL
Input : Elements {elements of the dataset}

EstimatedHeight {height estimated to the F-Onion-tree}
Expansions {number of expansions of the F-Onion-tree, i.e. F}
ParentNode {reference to the parent node}

Output: F-Onion-tree {the final F-Onion-tree}
1 // the sampling task
2 sample ← sampling(Elements, sizeSample);
3 findP ivots ← false;
4 while existsPivots(sample) and findP ivots = false do
5 // the selecting pivots task
6 pivots ← selectPivots(sample);
7 elementsRegions ← verifyRegions(pivots, Elements - pivots, Expansions);
8 calculatedHeight ← estimatesHeight(elementsRegions, Expansions);
9 calculatedHeight ← calculatedHeight + getCurrentLevel();

10 // the evaluating pivots task
11 if calculatedHeight ≤ EstimatedHeight then
12 findP ivots ← true;
13 selectedP ivots ← pivots;
14 end
15 end
16 // the node creation task
17 newNode ← insertNode(selectedP ivots,ParentNode);
18 for each region in NumberOfRegions(Expansions) do
19 input ← elementsByRegion(elementsRegions,region);
20 if sizeOf(input) > 2 then
21 HeightBL(input, EstimatedHeight, Expansions, newNode);
22 end
23 else
24 insertChildNode(input, newNode, region);
25 end
26 end

The complexity of the HeightBL algorithm is determined as follows. Consider n the number of ele-
ments of the dataset, and m the number of samples generated from the sampling task. The complexity
of the sampling task is O(n ∗ log(n)), since the distances between the elements are sorted to generate
the median, and the complexity of the loop between the tasks of selecting pivots and evaluating pivots
is m2. Also, the complexity of the node creation task is O(1). As m is much smaller than n, the
complexity of the HeightBL algorithm is O(n ∗ log(n)).

5. EXPERIMENTS AND RESULTS

In this section, we detail the experiments carried out to validate the proposed HeightBL algorithm.
In the experiments, we used three datasets, with different dimensionalities (i.e. from 32 to 117)
and number of elements (i.e. from 2,536 to 102,240). Table I describes each dataset, indicating its
name, number of elements, dimensionality and description. Note that these datasets are the most
representative ones used in the original article of the Onion-tree [Carélo et al. 2011].
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Table I. Characteristics of the datasets
Dataset #Elements Dimensionality Description

Color Histograms 68,025 32 Images histograms from the KDD repository of the Uni-
versity of California at Irvine (kdd.ics.uci.edu)

Ozone 2,536 73 Time-series from 1998 to 2004 for ozone level detec-
tion (archive.ics.uci.edu/ml/datasets/Ozone+Level+
Detection)

KDD Cup 102,240 117 Dataset containing cancer images (www.kddcup2008.com)

We compared the HeightBL algorithm with the element-by-element insertion of the F-Onion-tree
because, to the best of our knowledge, there are no algorithms for bulk-loading F-Onion-trees in the
literature. We implemented the proposed algorithm using the C++ language, and used the original
implementation in C++ of the insertion-by-insertion algorithm. The source code of the HeightBL
algorithm and the Onion-tree can be downloaded from gbd.dc.ufscar.br/download/HeightBL and
gbd.dc.ufscar.br/download/Onion-tree, respectively.

In the tests, we considered the following values of expansions: 7 for the Color Histograms dataset,
7 for the Ozone dataset, and 11 for the KDD Cup dataset. These values guarantee the best index
performance for each dataset [Carélo et al. 2011]. We applied the metric L2 [Wilson and Martinez
1997] to index the Color Histograms and the KDD Cup datasets, and the costly dynamic time warp-
ing [Berndt and Clifford 1994] to index the Ozone dataset. Also, we applied the keep small technique
as the replacement policy (Section 3).

The experiments were performed on a computer with an Intel Core i7 2.67 GHz processor and 12
GB of main memory. We analyzed the cost to build the index and the cost to process similarity
queries. We collected the average number of distance calculations and the average elapsed time in
seconds, which were recorded building the index 10 times and issuing 500 queries centered at elements
randomly chosen from the datasets. We also collected the size of the indices in kilobytes. The range
queries were performed varying the radii to recover nearly from 1% to 10% of the elements of each
dataset, and the k-NN queries were performed varying the value of k from 2 to 20, encompassing the
most common values of k used when performing similarity queries.

5.1 Building the Index

Figure 5 depicts the performance results to build the indices, and also shows the performance dif-
ferences regarding these results. As expected, the element-by-element insertion outperformed the
HeightBL algorithm with regard to the number of distance calculations (Figures 5a to 5c) and the
elapsed time (Figures 5d to 5e). The HeightBL algorithm required more distance calculations as it
calculates the distance between all elements of a level during the construction of the index. Also, the
HeightBL algorithm was slower because it analyzes more elements during the bulk-loading. Consid-
ering the number of distance calculations, as the data volume and the data dimensionality increased,
the performance losses of the HeightBL algorithm also increased, ranging from 33.33% to 42.86%. As
for the elapsed time, the use of a costly metric for the Ozone impaired the proposed algorithm. For
this dataset, the HeightBL algorithm was 53.33% slower.

On the other hand, the HeightBL algorithm generated much more compact structures, as depicted
in Figure 6. This is due to the fact that the HeightBL algorithm is aimed to find pivots that guarantee
a better division of the metric space, while the element-by-element insertion may generate unbalanced
structures that require the storage of several pointers to empty regions. According to the perfor-
mance differences shown in this figure, as the data volume and the data dimensionality increased, the
performance gain of the HeightBL algorithm also increased, ranging from 53.42% up to 71.25%.

Not only the impressive reduced size of the indices but also the great improvement in query process-
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Fig. 5. Number of distance calculations and elapsed time to build the indices.

Fig. 6. Size in kilobytes of the indices.

ing (Section 5.2) provided by the HeightBL algorithm over the element-by-element insertion overcome
the performance losses of our proposal for building the index. These positive aspects demonstrate the
applicability of our algorithm to index real-world data.

5.2 Processing Range and k-NN Queries

The HeightBL algorithm greatly outperformed the element-by-element insertion for all the datasets,
with regard to the number of distance calculations and the elapsed time in query processing. This
is due to the fact that the proposed algorithm provides a better organization of the elements among
the regions of the F-Onion-tree, guaranteeing a better division of the metric space and generating
more efficient index structures. In detail, calculating a priori the estimated height of the index
and generating a structure with approximately the estimated height provides a better distribution
of the elements in the metric space. Thus, range and k-NN queries usually require fewer distance
calculations and spend less time to be processed over index structures generated by the HeightBL
algorithm, improving query performance. On the other hand, the index structures produced by the
element-by-element insertion require that range and k-NN queries perform more recursive calls to
reach a leaf node or to find elements that answer these queries, impairing query performance.

Table II shows that the performance gains of the HeightBL algorithm in range query processing
varied from 18.75% up to 99.94% in the number of distance calculations and from 10.00% up to 99.04%
in the elapsed time. Also, as the data volume and the data dimensionality increased, the performance
gain of the HeightBL algorithm also increased. These results are detailed in Figure 7, which depicts
the measures average number of distance calculations and average elapsed time for range queries
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Table II. The HeightBL algorithm’s performance gains (range queries)

Dataset Distance calculations Elapsed time
minimum maximum minimum maximum

Color Histograms 28.25% 38.73% 10.00% 20.00%
Ozone 27.75% 96.43% 11.43% 76.92%
KDD Cup 18.75% 99.94% 16.43% 99.04%

Fig. 7. Range queries results.

Table III. The HeightBL algorithm’s performance gains (k-NN queries)

Dataset Distance calculations Elapsed time
minimum maximum minimum maximum

Color Histograms 13.38% 30.38% 8.57% 16.67%
Ozone 16.88% 51.66% 13.33% 30.00%
KDD Cup 37.45% 39.53% 11.67% 15.44%

recovering from 1% to 10% of the elements of the datasets.

Table III shows that the performance gains of the HeightBL algorithm in k-NN query processing
ranged from 13.38% to 51.66% in the number of distance calculations and from 8.57% to 30% in
the elapsed time. The best case referred to the Ozone dataset, which was indexed using the costly
dynamic time warping. These results are detailed in Figure 8, which depicts the measures average
number of distance calculations and average elapsed time for the value of k ranging from 2 to 20.

6. CONCLUSIONS AND FUTURE WORK

In this article, we proposed the HeightBL, an algorithm for bulk-loading F-Onion-trees. The proposed
HeightBL algorithm introduces the following distinctive properties. It is top-down, and organizes the
elements to be inserted into the index in advance to define the best insertion order of these elements.
It also builds the structure by using samples to choose the pivots of the nodes. Furthermore, it defines
a strategy to estimate the ideal height that a F-Onion-tree should have, so that the final structure
has approximately this estimated height.

The HeightBL algorithm was validated through performance testes using real-world data with dif-
ferent volumes and dimensionalities. The results showed that the HeightBL algorithm generated very
compact indices. Compared with the element-by-element insertion of the F-Onion-tree, the size of the
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Fig. 8. k-NN queries results.

index reduced from 53.42% to 71.25%. The results also demonstrated that the HeightBL algorithm
greatly improved the similarity query processing in comparison to the element-by-element insertion.
It was from 10.00% to 99.04% faster to process range queries and was from to 8.57% to 30.00% faster
to process k-NN queries. It also reduced the number of distance calculations from 18.75% to 99.94% to
process range queries and from 13.38% to 51.66% to process k-NN queries. We can conclude that the
HeightBL algorithm fulfills the requirements of the bulk-loading technique: it produces more compact
indices and guarantees expressive performance gain in range and k-NN query processing.

We are currently developing a bottom-up algorithm for bulk-loading F-Onion-trees. We also plan to
run experiments using new real-world datasets with different metrics and characteristics, as well as to
investigate experiments with synthetic data. Furthermore, we plan to propose an algorithm that per-
forms deletions of elements from the F-Onion-tree. Another future work is to apply the F-Onion-tree
and its HeightBL algorithm to execute condition-extended similarity queries over complex data, such
as those queries described by Soares and Kaster [2013].
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