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Abstract. In many important application domains, such as text categorization, biomolecular analysis, scene or video
classi�cation and medical diagnosis, instances are naturally associated with more than one class label, giving rise to
multi-label classi�cation problems. This fact has led, in recent years, to a substantial amount of research in multi-label
classi�cation. And, more speci�cally, many feature selection methods have been developed to allow the identi�cation of
relevant and informative features for multi-label classi�cation. However, most methods proposed for this task rely on
the transformation of the multi-label data set into a single-label one. Besides, there is no single work that carries out
a comprehensive evaluation of the various multi-label classi�cation techniques coupled with feature selection methods
over data sets from di�erent domains. In this work, we perform these experimental evaluations, and also propose an
adaptation of the information gain feature selection technique to handle multi-label data directly.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications; I.2.6 [Arti�cial Intel-
ligence]: Learning

Keywords: classi�cation, data mining, feature selection, multi-label classi�cation

1. INTRODUCTION

A large body of research in supervised learning deals with the analysis of single-label data, where
instances are associated with a single label from a set of class labels. More speci�cally, the single-
label classi�cation problem can be stated as the process of predicting the class label of new instances
described by their feature values. However, in many data mining applications, the instances can be
associated with more than one class label. This characterizes the multi-label classi�cation problem, a
relevant topic of research, which has become a very common real-world task [Zhang and Zhou 2007].

Classi�cation strategies that deal with multi-label data can be divided into two groups: transforma-
tion and adaptation strategies. Transformation strategies convert the multi-label data into single-label
data and then use single-label classi�ers. Adaptation strategies adapt or extend single-label classi�ers
to cope with multi-label data directly. In the former group one can �nd popular methods like Label
Powerset and Binary Relevance transformations, and in the latter group some adaptations are: the
multi-label k-nearest neighbors (ML-KNN) [Zhang and Zhou 2007], the ML Naive Bayes classi�er
[Zhang et al. 2009], ML Decision Tree [Clare and King 2001], among others [Tsoumakas et al. 2010].

The performance of a classi�cation method is closely related to the inherent quality of the training
data. Redundant and irrelevant features may not only decrease the classi�er's accuracy but also make
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the process of building the model or running the classi�cation algorithm slower. Feature selection is
a data preprocessing step which aims at identifying relevant features for a target data mining task �
speci�cally in this paper, the multi-label classi�cation task.

There is an extensive literature regarding feature selection for single-label classi�cation, which has
been summarized in surveys such as in [Dash and Liu 1997; Guyon et al. 2006]. In the last few years,
given the increasing popularity of multi-label classi�cation and the challenge of selecting features
in this context, there has been signi�cant research speci�cally on feature selection for multi-label
classi�cation. Most methods proposed for this task rely on the transformation of the multi-label data
set into a single-label one. This can cause a loss of information from the multi-label data, like label
dependence, an important issue in multi-label learning [Spolaôr et al. 2013]. Also, there is no single
work that carries out a comprehensive evaluation of the various multi-label classi�cation techniques
coupled with feature selection methods over data sets from di�erent domains.

In this work, we perform a comprehensive evaluation of various multi-label feature selection tech-
niques, and propose an adaptation of the information gain metric to handle multi-label data directly.
Using data sets from various domains, including large data sets, the proposed algorithm is exper-
imentally compared to well-known transformation-based feature selection techniques coupled with
multi-label classi�ers. The results show that the proposed algorithm is competitive and more scalable
than the other compared techniques.

The remainder of this paper is organized as follows. In Section 2, we revisit the multi-label classi�-
cation problem. In Section 3, we describe the multi-label feature selection process and current work.
In Section 4, we describe our adaptation proposal of a novel multi-label feature selection technique and
the experiments that compare it with methods currently used in the literature. Finally, in Section 5,
we make our concluding remarks and point to directions for future research.

2. MULTI-LABEL CLASSIFICATION

In the multi-label classi�cation task, each data instance may be associated with multiple labels.
Multi-label classi�cation is suitable for many domains, such as text categorization, scene or video
classi�cation, medical diagnosis, bioinformatics and microbiology. In all these cases, the task is to
assign for each unseen instance a label set whose size is unknown a priori [Zhang and Zhou 2007].

The simplest way to apply a classi�cation algorithm to multi-label data is to transform them into
single-label data. Then a traditional classi�cation technique � like k-NN or a decision tree � can be
employed to perform the classi�cation task. The advantage of using a transformation technique is
allowing the usage of one or more single-label classi�cation algorithms for the learning task, which
have been thoroughly studied and perfected over the last decades.

Simple transformation techniques used to convert a multi-label data set into a single-label one
consist of selecting among the label subsets of each instance the most frequent label in the data set
(select-max), the least frequent label (select-min), a random label (select-random) or simply discard
every multi-label example (select-ignore, although this is not useful if all the data set is multi-label)
[Boutell et al. 2004; Chen et al. 2007]. Another type of transformation consists of copying each multi-
label instance n times, where n is the number of labels assigned to that instance. Each copied instance
is then assigned one distinct single label from the original set.

A popular transformation is the Label Powerset (LP) technique, which creates one label for each
di�erent subset of labels that exists in the multi-label training data set. Thus, the new set of labels
corresponds to the powerset of the original set of labels. After this transformation process, a single-
label classi�cation learning algorithm can handle the transformed data set and produce a classi�er.
This classi�er can then be used to assign to new instances one of these new labels, which can be
mapped back to the corresponding subset of the original labels [Tsoumakas and Vlahavas 2007].
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Label Powerset is recommended only for data sets with a small number of labels, as the number of
meta-labels produced in LP is exponential in the number of labels, which is clearly problematic from
a classi�cation point of view [Dembczy«ski et al. 2012]. With the goal of alleviating this problem,
the original LP technique has been extended and improved in subsequent work. A few variations are
the Pruned Problem Transformation (PPT), proposed in [Read 2008]; Random k-Labelsets (RAKEL)
[Tsoumakas and Vlahavas 2007]; and HOMER [Tsoumakas et al. 2008]. In general, these methods
construct more than one multi-label classi�er, each one dealing with a much smaller set of labels.

Binary Relevance (BR) is a well-known transformation technique that produces a binary classi�er
for each di�erent label of the original data set. In its simplest implementation, each resulting classi�er
is capable of predicting if a label is relevant or not for a new instance. So, each classi�er handles the
data as single-label, since it gives a relevance feedback for just one speci�c label.

Binary Relevance does not take into account label dependence [Dembczy«ski et al. 2012], so it may
fail to accurately predict label combinations or rank labels [Tsoumakas et al. 2010]. In order to reduce
this drawback, several techniques, such as the Classi�er Chains (CC) method [Read et al. 2009; Silva
et al. 2014; Gonçalves et al. 2013], have been proposed to extend and improve the BR technique.

Regarding algorithm adaptation, most traditional classi�ers employed in single-label problems have
been adapted to the multi-label paradigm [Tsoumakas et al. 2010]. C4.5 decision-tree induction
algorithm was adapted in [Clare and King 2001], by allowing multiple labels in the leaves of the
tree. An adaptation of the SVM algorithm has been proposed in [Elissee� and Weston 2001]. A
k-NN adaptation was proposed in [Zhang and Zhou 2007]. A multi-label adaptation of the Naive
Bayes algorithm was proposed in [Zhang et al. 2009]. MMAC (Multi-class, Multi-label Associative
Classi�cation) follows the paradigm of associative classi�cation which deals with the construction of
multi-label classi�cation rule sets using association rule mining [Tsoumakas et al. 2010].

3. MULTI-LABEL FEATURE SELECTION

Feature selection techniques are primarily employed to identify relevant and informative features
[Guyon et al. 2006]. Besides, there are other important motivations: the improvement of a clas-
si�er predictive accuracy, the reduction and simpli�cation of the data set, the acceleration of the
classi�cation task, the simpli�cation of the generated classi�cation model, and others.

In [Chen et al. 2007], the following common simple transformation techniques have been employed
to allow the application of traditional feature selection for the multi-label text categorization problem:
select-max, select-min, select-random, select-ignore and copy, used to convert a multi-label data set
into a single-label one.

In [Trohidis et al. 2008], several multi-label classi�cation strategies were evaluated and compared for
the task of automated decision of emotion in a music data set. The Label Powerset transformation was
used to produce a single-label data set, and then a common feature selection measure was employed
(χ2 statistic) to select the best features. The work veri�ed that, by using feature selection, the
classi�cation result achieved a better Hamming Loss measure than without feature selection, for the
evaluated data set and the ML-KNN algorithm as the classi�er.

The Label Powerset transformation is also used for feature selection in [Spolaôr et al. 2013], in
conjunction with the relief and information gain measures. With this feature selection, it was possible
to reduce the size of the data sets without compromising the classi�cation performance. In [Doquire
and Verleysen 2011], the Pruned Problem Transformation (PPT) [Read 2008], based on the Label
Powerset, was used in the data transformation step before performing the mutual information feature
selection on three real-world data sets from di�erent domains.Then the ML-KNN algorithm was em-
ployed over the original multi-label data containing only the selected features. When compared with
the χ2 statistic adopted in [Trohidis et al. 2008], in conjunction with the Label Powerset transfor-
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mation, and also with a non-feature selection scenario, the mutual information measure allowed the
classi�cation phase to achieve a better result in terms of the Hamming Loss and the accuracy of the
classi�er. In [Tsoumakas and Vlahavas 2007], feature selection was applied to a textual data set to
reduce the computational cost of training the RAKEL classi�er. The χ2 statistic was used separately
for each label in order to obtain di�erent rankings of all features.

Some text classi�cation work [Yang and Pedersen 1997; Olsson and Oard 2006; Zheng et al. 2004]
has employed the Binary Relevance technique before applying single-label feature selection measures,
like information gain and χ2 statistic. For each di�erent label in the original data set, a binary
single-label data set is created, and then feature selection is executed for each one. Binary Relevance
transformation is also used for feature selection in [Spolaôr et al. 2013], in conjunction with relief
and information gain measures. This feature selection strategy is compared with LP transformation
using the same measures, with the conclusion that both transformation methods achieved a similar
predictive performance in the experiments with data sets from various multi-label domains.

There are also recently proposed multi-label feature selection techniques that do not require trans-
formation of the data set in order to work � the feature selection is built as an adaptation of techniques
suited for the single-label paradigm, or as a wrapper-based technique. In [Zhang et al. 2009], a wrap-
per technique is used to identify the best feature set. The wrapper feature selection implements a
genetic algorithm as the search component. To evaluate this method, the Multi-label Naive Bayes
classi�er � proposed in the same work � is employed to select the best features. The classi�cation
coupled with the feature selection achieved a better result, even when compared with other classi�ers.

Common single-label feature selection techniques were adapted to the multi-label paradigm recently.
The ReliefF measure was adapted in [Pupo et al. 2013] and in [Spolaôr et al. 2013]. The Mutual
Information measure was adapted in [Lee and Kim 2013]. Correlation-based feature selection, capable
of handling subset of features, was adapted to the multi-label setting in [Jungjit et al. 2013].

4. COMPARISON BETWEEN MULTI-LABEL FEATURE SELECTION METHODS

4.1 Information Gain feature selection adaptation

In this work, we adapt the information gain measure, based on the entropy concept, to the multi-label
feature selection. The entropy is commonly used as measure of feature relevance in �lter strategies
that evaluate features individually [Yang and Pedersen 1997], and this method has the advantage of
being fast. Let D(A1, A2, ..., An, C), n ≥ 1, be a data set with n+ 1 attributes, where C is the class
attribute. Let m be the number of distinct class values, in a single-label context. The entropy of the
class distribution in D, represented by Entropy(D), is de�ned by Equation 1.

Entropy(D) = −
m∑
i=1

pi ∗ log2(pi), (1)

where pi is the probability that an arbitrary instance in D belongs to class ci.

The concept de�ned in Equation 1 is used by the single-label strategy known as Information Gain
Attribute Ranking [Yang and Pedersen 1997] to measure the ability of a feature to discriminate
between class values.

In [Clare and King 2001], the C4.5 algorithm was adapted for handling multi-label data. This
decision tree algorithm allowed multiple labels at the leaves of the tree, by using an adaptation of
entropy calculation, described by Equation 2.

Entropy.ML(D) = −
l∑

i=1

p(λi) ∗ log2p(λi) + q(λi) ∗ log2q(λi), (2)
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where p(λi) is the probability that an arbitrary instance inD belongs to class label λi, q(λi) = 1−p(λi),
and l is the number of labels in the data set. We have adopted this formula to create an information
gain feature selection capable of handling multi-label data. By using this as a �lter approach, the
feature selection can be employed with any multi-label classi�er.

The feature selection algorithm works as follows: it receives as input a multi-label data set. Then it
computes a multi-label information gain score for each feature using the Entropy.ML measure de�ned
in Equation 2. Next, all the scores are sorted in a ranking. In order to have a list of selected features
as an output, it is necessary to inform the number of selected features. This can be either a percentage
of the total number of features or a score threshold to split the ranking. In this work we have opted
for a percentage of features, in order to compare each technique with equal conditions.

4.2 Experimental Evaluation

In this work we have compared our proposed information gain adaptation (MLInfoGain) with other
multi-label feature selection techniques by executing a large number of experiments. For this purpose
we have elected commonly used multi-label data sets and classi�cation algorithms. The experiments
were executed using the Mulan framework [Tsoumakas et al. 2010]. Mulan is an open-source Java
library for learning from multi-label data sets with a variety of state-of-the-art algorithms.

We used in our experiments data sets from various domains available in the Mulan website [Tsoumakas
et al. 2010]. Most of the initiatives that compare multi-label learning algorithms experimentally adopt
a subset of these available data sets.

The feature selection techniques compared were: Binary Relevance, Copy Transformation, Label
Powerset and our proposed Multi-label Information Gain technique. All transformation methods
are coupled with the single-label information gain ranking method, in order to achieve an unbiased
comparison. The information gain measure requires discrete feature values. Therefore we adopted the
recursive entropy minimization heuristic [Fayyad and Irani 1993] to discretize continuous attributes,
and a simple unsupervised technique with 10 bins for the multi-label information gain technique.

Each feature selection technique was experimented with nine executions in which we varied the
percentage of selected features between 10% and 90%, in increments of 10%. We evaluated the
classi�ers using 10-fold cross-validation. As an example, Table I shows the results obtained with the
BR-KNN classi�er, for the Hamming Loss measure and the proposed Multi-label Information Gain
technique, compared with the results without feature selection (100%) as a baseline. In bold we mark
the results that achieved a value equal or better than the baseline. It is possible to see that most of the
feature selection options improve the predictive performance of the classi�cation algorithm, reducing
the number of features and achieving a better Hamming Loss score.

Table I. Results achieved with the BR-KNN classi�er for the Hamming Loss measure
Data Multi-label Information Gain No Sel.
Set 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
bibtex 0.0132 0.0134 0.0135 0.0137 0.0138 0.0139 0.0141 0.0142 0.0143 0.0143
birds 0.0438 0.0454 0.0468 0.0459 0.0458 0.0457 0.0459 0.0461 0.0461 0.0454
CAL500 0.1435 0.1423 0.1417 0.1412 0.1420 0.1423 0.1422 0.1419 0.1422 0.1425
Corel5k 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094 0.0094
emotions 0.2139 0.2128 0.2081 0.2022 0.1949 0.1918 0.1929 0.1890 0.1901 0.1934
enron 0.0580 0.0596 0.0604 0.0604 0.0581 0.0576 0.0565 0.0571 0.0568 0.0580
�ags-ml 0.2655 0.2540 0.2474 0.2595 0.2637 0.2630 0.2681 0.2712 0.2661 0.2749
genbase 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038
medical 0.0160 0.0169 0.0175 0.0175 0.0176 0.0177 0.0182 0.0184 0.0182 0.0180
scene 0.1559 0.1351 0.1152 0.1084 0.0999 0.0957 0.0935 0.0931 0.0928 0.0920
yeast 0.2137 0.2086 0.1971 0.1963 0.1969 0.1959 0.1953 0.1942 0.1964 0.1952

We have employed a large number of classi�cation techniques, from both the transformation paradigm
as well as the algorithm adaptation paradigm. The transformation techniques used were: Label Power-
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set, Binary Relevance, Classi�er Chains, RaKEL and HOMER, coupled with the k-NN, Decision trees
(J48) and Naive Bayes single-label classi�ers. The algorithm adaptations employed in this experiment
were the ML-kNN and the IBLR classi�er.

Mulan contains an evaluation framework that calculates a rich variety of performance measures
[Tsoumakas et al. 2010]. The following multi-label measures were chosen to evaluate the results:
Hamming Loss, Subset 0/1 Loss (counterpart of Subset Accuracy), Example-based Accuracy and
Ranking Loss. They were chosen based on their current use in the literature and their diversity, since
measures with similar equations are more likely to yield results correlated with each other. Their
formulas can be found on related work, like in [Tsoumakas et al. 2010]. Example-based Accuracy
values were inverted, so that all measures have the same pattern: the lower the value, the better.

Table II shows the overall result of each feature selection technique coupled with the BR-KNN
classi�er. Each table section presents the result for a speci�c performance measure. The �rst col-
umn indicates the data set used. �BR+InfoGain�, �Copy+InfoGain� and �LP+InfoGain� stand for
a transformation followed by the single-label information gain measure to rank and select features.
�MLInfoGain� corresponds to the multi-label information gain technique proposed in this work. �No
Sel.� is the result without feature selection, and also our baseline. Each cell shows the result of the
multi-label measure achieved in each case, varying between 0 and 1, and the lower the value, the
better. In parenthesis we show the percentage of selected features that achieved the best value for
each technique, and in case of ties we report the smaller percentage. Bold values show the results
that achieved a result equal or better than the baseline, and underlined values show the best result
achieved in each row. At the end of the table we summarize the results.

With the BR-KNN classi�er, the proposed multi-label information gain technique (MLInfoGain)
achieved a competitive result, holding the best performance in 22 cases, out of the 44 experiments.
The BR+InfoGain also achieved the best result in 22 cases. Only in 8 cases the result without feature
selection achieved the best result, indicating that in most cases feature selection is helpful. In 41
cases, the proposed multi-label information gain technique was able to yield a value equal or better
than the baseline (without feature selection).

It is worth noting the behaviour for some data sets: the genbase data set is not a�ected by feature
selection, which indicates that it can be drastically reduced without compromising its performance; on
the other hand, the scene data set achieves a better performance with most of its features, indicating
that it is less suitable for feature selection.

Table III corresponds to a summarized result of the other classi�ers performance when coupled with
feature selection, similar to the last row of the previous table. It shows the number of times that each
feature selection achieved a result better than (≤) the baseline score, considering the evaluated data
sets and the four performance measures adopted in this work. The results indicate that most of the
time the feature selection was bene�cial for the overall classi�cation. For instance, when using the
RAKEL + K-NN classi�er, the BR + InfoGain feature selection achieved a performance equivalent
or better than the result without feature selection 37 times out of 44 results (i.e. 4 measures x 11
data sets). For the Copy + InfoGain feature selection this result was achieved 32 times; for the LP +
InfoGain 31 times; and for the proposed MLInfoGain this result occurred 39 times.

4.3 Statistical evaluation

We have employed a Friedman test in order to evaluate if the di�erences in performance of the
multi-label feature selection techniques are statistically signi�cant. A non-parametric test makes no
assumption about the data distribution, unlike, for instance, a paired t-test which assumes data
normality. We have followed the same procedure described in [Madjarov et al. 2012].

The feature selection techniques were ranked according to their performance for each classi�cation
algorithm and data set. The best performing technique was ranked �rst, the second best was ranked
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Table II. Best results achieved with the BR-KNN classi�er
HAMMING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.0128 (10%) 0.0132 (10%) 0.0137 (20%) 0.0132 (10%) 0.0143
birds 0.0447 (30%) 0.0458 (90%) 0.0456 (80%) 0.0438 (10%) 0.0454
CAL500 0.1411 (80%) 0.1416 (40%) 0.1410 (30%) 0.1412 (40%) 0.1425
Corel5k 0.0094 (10%) 0.0094 (10%) 0.0094 (10%) 0.0094 (10%) 0.0094
emotions 0.1917 (90%) 0.1910 (80%) 0.1951 (90%) 0.1890 (80%) 0.1934
enron 0.0525 (10%) 0.0579 (10%) 0.0523 (10%) 0.0565 (70%) 0.0580
�agsml 0.2510 (20%) 0.2570 (20%) 0.2540 (20%) 0.2474 (30%) 0.2749
genbase 0.0038 (10%) 0.0038 (10%) 0.0038 (10%) 0.0038 (10%) 0.0038
medical 0.0139 (10%) 0.0160 (10%) 0.0162 (10%) 0.0160 (10%) 0.0180
scene 0.0958 (90%) 0.0932 (90%) 0.0947 (90%) 0.0928 (90%) 0.0920
yeast 0.1924 (70%) 0.1971 (50%) 0.1945 (90%) 0.1942 (80%) 0.1952

SUBSET 0/1 LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.8817 (10%) 0.9120 (10%) 0.9516 (30%) 0.9118 (10%) 0.9754
birds 0.4945 (50%) 0.5084 (70%) 0.5069 (70%) 0.4852 (20%) 0.5039
CAL500 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000 (10%) 1.0000
Corel5k 0.9992 (50%) 0.9994 (70%) 0.9992 (90%) 0.9994 (30%) 1.0000
emotions 0.6985 (30%) 0.6883 (70%) 0.7035 (90%) 0.6732 (80%) 0.7085
enron 0.8908 (10%) 0.8837 (40%) 0.8996 (40%) 0.8866 (40%) 0.9195
�agsml 0.8084 (20%) 0.8450 (20%) 0.8087 (20%) 0.8034 (30%) 0.8547
genbase 0.0785 (10%) 0.0785 (10%) 0.0785 (10%) 0.0785 (10%) 0.0785
medical 0.4530 (10%) 0.5471 (10%) 0.5471 (10%) 0.5359 (10%) 0.5982
scene 0.4130 (90%) 0.4088 (90%) 0.4088 (90%) 0.4005 (80%) 0.4038
yeast 0.7985 (90%) 0.8014 (90%) 0.8056 (90%) 0.7964 (80%) 0.8018

EXAMPLE-BASED ACCURACY (INVERTED)
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.7894 (10%) 0.8369 (10%) 0.8848 (30%) 0.8369 (10%) 0.9289
birds 0.4443 (30%) 0.4560 (90%) 0.4535 (80%) 0.4282 (10%) 0.4482
CAL500 0.8094 (80%) 0.8107 (70%) 0.8099 (60%) 0.8106 (40%) 0.8144
Corel5k 0.9915 (80%) 0.9928 (70%) 0.9941 (80%) 0.9925 (70%) 0.9975
emotions 0.4702 (70%) 0.4686 (80%) 0.4871 (50%) 0.4643 (80%) 0.4851
enron 0.6530 (10%) 0.7314 (20%) 0.7000 (10%) 0.7162 (70%) 0.7973
�agsml 0.3953 (20%) 0.3945 (20%) 0.3903 (20%) 0.3824 (30%) 0.4364
genbase 0.0463 (10%) 0.0463 (10%) 0.0463 (10%) 0.0463 (10%) 0.0463
medical 0.3815 (10%) 0.4799 (10%) 0.4828 (10%) 0.4718 (10%) 0.5437
scene 0.3881 (90%) 0.3831 (90%) 0.3837 (90%) 0.3750 (80%) 0.3802
yeast 0.4975 (90%) 0.5037 (90%) 0.5002 (90%) 0.4965 (80%) 0.4998

RANKING LOSS
Data Set BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain No Sel.
bibtex 0.1342 (10%) 0.1807 (10%) 0.2296 (30%) 0.1805 (10%) 0.2830
birds 0.0861 (70%) 0.0889 (90%) 0.0878 (40%) 0.0872 (60%) 0.0864
CAL500 0.2301 (70%) 0.2301 (30%) 0.2295 (40%) 0.2310 (90%) 0.2310
Corel5k 0.1887 (10%) 0.1997 (10%) 0.2254 (10%) 0.1983 (10%) 0.3243
emotions 0.1624 (70%) 0.1623 (80%) 0.1599 (90%) 0.1584 (60%) 0.1610
enron 0.1165 (10%) 0.1096 (10%) 0.1260 (10%) 0.1087 (10%) 0.1655
�agsml 0.1815 (50%) 0.1855 (20%) 0.1816 (50%) 0.1891 (40%) 0.1978
genbase 0.0052 (10%) 0.0052 (10%) 0.0052 (10%) 0.0052 (10%) 0.0052
medical 0.0350 (10%) 0.0438 (10%) 0.0445 (10%) 0.0437 (10%) 0.0475
scene 0.0925 (90%) 0.0902 (90%) 0.0927 (90%) 0.0905 (90%) 0.0889
yeast 0.1757 (90%) 0.1766 (90%) 0.1797 (90%) 0.1755 (80%) 0.1778

Best values (underlined) 22 7 10 22 8
≤ baseline score (bold) 39 33 31 41

second, and so on. In case of ties, the ranks were averaged. From the average ranks of the techniques,
the Friedman statistic was calculated, and then at a signi�cance level of 5%, the hypothesis that
techniques performed equally in mean ranking was rejected.

Then a post-hoc Nemenyi test was used to compare the feature selection techniques to each other.
The performance of two techniques is considered signi�cantly di�erent if their average ranks di�er by
more than a critical distance value. Figure 1 shows the results from the Nemenyi post-hoc test for the
four di�erent measures used in the experiments for the BRKNN classi�er. Each diagram presents an
enumerated axis with the average ranks of each technique. The best ranking ones are at the right-most
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Table III. Number of times that each feature selection achieved a result better than (≤) the baseline score
Classi�er BR+InfoGain Copy+InfoGain LP+InfoGain MLInfoGain
BR + DecisionTree 42 40 42 42
BR + NaiveBayes 37 30 31 37
BRKNN 39 33 31 41
CC + DecisionTree 43 38 40 40
CC + K-NN 38 37 35 43
CC + NaiveBayes 32 29 30 36
HOMER + K-NN 41 40 42 43
IBLR_ML 38 34 31 37
LP + DecisionTree 42 38 38 41
LP + K-NN 39 39 36 43
LP + NaiveBayes 32 27 30 30
ML-KNN 39 28 27 37
PPT + K-NN 38 33 33 38
RAKEL + K-NN 37 32 31 39
RK + DecisionTree 37 32 33 34
RK + NaiveBayes 37 28 29 34

Fig. 1. Critical diagram for each measure in the BRKNN classi�er from the Nemenyi post-hoc test at 0.05 signi�cance

side of the diagram. The lines for the average ranks of the algorithms that do not di�er signi�cantly
(at the signi�cance level of p = 0.05) are connected with a line.

The diagrams show that for most measures the MLInfoGain feature selection technique is signif-
icantly better than the Copy+InfoGain and LP+InfoGain techniques. However, when comparing
MLInfoGain and BR+InfoGain techniques, the diagrams reveal no signi�cant di�erence.

4.4 Experiments on large multi-label data sets

Most multi-label classi�cation methods either do not scale or have unsatisfactory performance [Tang
et al. 2009]. In this section, we report experiments on larger multi-label data sets. We have chosen
11 independently compiled data sets from the Yahoo! directory [Tang et al. 2009] each one with more
than 5.000 instances and 30.000 features, being suitable for our scalability experiments.

For these experiments, we employed the BR-KNN classi�er, implemented using a single search for k
nearest neighbors but at the same time making independent predictions for each label [Sorower 2010].
While BR followed by k-NN has a computational complexity of L times the cost of computing the k
nearest instances, where L is the number of labels in the data set, this adaptation runs much more
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faster, and is more scalable than the other classi�cation algorithms used in the experiments.

Table IV shows the result of the experiment with larger data sets executed in a similar fashion as
the previous one. We used BR+InfoGain and the proposed MLInfoGain techniques with the 10%
parameter of selected features. Each row shows the result on a Yahoo data set. Columns �HLoss�,
�SLoss�, �EbAcc� and �RLoss� show the result of the Hamming Loss, Subset 0/1 Loss, Example-based
Accuracy (inverted) and Ranking Loss, respectively. Column �Time(s)� shows the total execution
time of the experiment (feature selection time + classi�cation time), in seconds. The computer used
in the experiments was a AMD FX 8210 8-Core 3.1 Ghz with 8 Gb of RAM and a 64 bit OS.

Table IV. Result of experiments on large data sets with BR-KNN classi�er

Data Set
BR+InfoGain 10% MLInfoGain 10%

HLoss SLoss EbAcc RLoss Time(s) HLoss SLoss EbAcc RLoss Time(s)
Arts 0.0595 0.8991 0.8770 0.1941 53,692 0.0617 0.9280 0.9128 0.2093 0,686

Business 0.0267 0.4464 0.3000 0.0745 93,634 0.0270 0.4497 0.3026 0.0767 1,015
Computers 0.0360 0.6497 0.5900 0.1509 186,670 0.0368 0.6439 0.5812 0.1604 1,869
Education 0.0413 0.8771 0.8578 0.1658 142,035 0.0427 0.9192 0.9035 0.1854 1,487

Entertainment 0.0578 0.7621 0.7390 0.1778 125,560 0.0578 0.8113 0.7944 0.1933 1,726
Health 0.0430 0.6890 0.6141 0.1292 110,008 0.0456 0.7299 0.6295 0.1342 1,174

Recreation 0.0559 0.8262 0.8117 0.1990 122,812 0.0584 0.8757 0.8624 0.2328 1,647
Reference 0.0317 0.6342 0.6002 0.2009 133,902 0.0326 0.6839 0.6546 0.2107 1,344
Science 0.0343 0.9054 0.8940 0.2100 120,105 0.0350 0.9456 0.9379 0.2264 1,069
Social 0.0254 0.6204 0.5937 0.1277 334,846 0.0276 0.6849 0.6579 0.1341 3,080
Society 0.0537 0.7762 0.7207 0.1898 215,605 0.0547 0.8075 0.7620 0.1998 2,442

The same non-parametric statistical test used before shows no signi�cant di�erence between both
techniques for the multi-label measures. However, the computational time of BR+InfoGain is much
more larger than the MLInfoGain. It takes roughly 100 times more to execute the same experiment
with the BR approach. Higher computational time also occurs to the Copy and LP transformation,
and they are not reported in this work due to their low performance. It is worth noting that running
the same experiment without feature selection is faster than using the BR approach, but slower than
using the MLInfoGain. Even though the classi�cation task is accelerated by reducing the number of
features in both cases, the feature selection algorithm also counts for the overall time performance.

5. CONCLUSIONS

In this work we have presented an experimental evaluation of various multi-label feature selection
methods coupled with di�erent classi�cation techniques and data sets. We have also proposed an
adaptation of the information gain feature selection technique to handle multi-label data directly, and
performed experimental evaluations to compare it with transformation-based techniques.

Experimental results on a large number of multi-label classi�cation techniques indicate that the
proposed multi-label information gain feature selection adaptation achieves a competitive performance
against other techniques and outperforms the baseline on most cases. For larger data sets, the proposed
technique scales much better than the other feature selection methods.

As future work, we plan to perform a comparative analysis with other multi-label adaptations of
feature selection techniques, like multi-label ReliefF [Pupo et al. 2013; Spolaôr et al. 2013] and mutual
information [Lee and Kim 2013].
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