A New Technique for Debugging the Distributed R-Tree
Insertion Algorithm

Savio S. T. de Oliveiral, José F. de S. Filho?, Vagner J. do Sacramento Rodrigues?,
Marcelo de C. Cardoso!, Sérgio T. Carvalho?

! goGeo
{savio.teles, vagner, marcelo.castro}@gogeo.io
% Universidade Federal de Goias, Brazil
jkairos@gmail.com, sergio@inf.ufg.br

Abstract. The ever-increasing of the large spatial datasets and the widely application of the complex computation
have motivated the emergence of distributed algorithms to process spatial operations efficiently. The R-tree index is
broadly used by researches as a distributed spatial structure for indexing and retrieval of spatial objects. However, a big
challenge has arisen, that is, how to debug the distributed R-Tree insertion algorithm. In the past few years researches
have been published on both distributed insertion algorithms and distributed debugging. Though none of them has
proposed a technique to debugging the distributed R-Tree insertion algorithm. This article presents a new technique
for debugging the distributed R-Tree insertion algorithm, which is called RDebug. It allows collect the debugging
information about the spatial index R-Tree once it has been created. RDebug can be used with any index similar to
R-Tree, since the RDebug algorithm uses the nodes organization of the R-Tree to collect the debug information. The
algorithm was used on DistGeo, a platform to process distributed spatial operations. A graphic tool, named RDebug
Visualizer, was developed to show the output of the RDebug algorithm.

Categories and Subject Descriptors: C.2.4 [Computer-communication networks|: Distributed Systems—Dis-
tributed databases; Distributed applications; H.2.8 [Database Management]: Database Applications —Spatial databases
and GIS; D.2.5 [Software Engineering|: Testing and Debugging—Distributed debugging

Keywords: Distributed Debugging, Distributed Algorithm, Distributed Indexes, R-Tree

1. INTRODUCTION

The increasing of large spatial datasets demands high performance engine in order to process complex
spatial models. The best cost-benefit to provide innovative GIS' applications taking advantage of
all available data is through distributed and parallel GIS processing. But develop high performance
engine to distributed spatial computing is very complex and challenging.

In order to handle spatial data efficiently, a database system needs an index mechanism that helps
it retrieve data items quickly according to the spatial objects locations. The R-Tree typically is the
preferred method for indexing spatial data. Many researches such as [An et al. 1999; de Oliveira et al.
2011; Zhong et al. 2012], show that a distributed index structure can provide an efficient mechanism
of spatial operations processing. However, distributed R-Trees indexes for Big Spatial Data are very
complex to be developed and so it demands novel approaches to debug and check stability. This is
the main issue investigated in this article.

Debugging is an essential step in the development process, though often neglected in the development

LGeographical Information Systems

Copyright(©2014 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computagcao.

Journal of Information and Data Management, Vol. , No. , 20, Pages 1-11.

2 . Savio de Oliveira et. al.

of distributed applications due to the fact that distributed systems complicate the already difficult task
of debugging Cheung et al. [1990]. In recent years, researches have developed some helpful debugging
techniques for distributed environment. Nevertheless, we have not found in the literature any work
that have addressed the problem of debugging a distributed R-Tree.

In this article, we propose a new technique for debugging the distributed R-Tree insertion algorithm.
The debugging algorithm, called RDebug, uses the distributed index structure to aggregate debugging
information. RDebug is used on DistGeo, a shared-nothing platform for distributed spatial algorithms
processing. We have also created a graphical tool to visualize the debugging information and the R-
Tree index structure, called RDebug Visualizer.

The main contributions of this article are as follows:

—RDebug - A new technique for debugging the distributed R-Tree insertion algorithm.

—DistGeo - A peer-to-peer platform, with no single point of failure, to process distributed spatial
algorithms of an R-Tree.

—RDebug Visualizer - A graphical tool to visualize debugging information and the distributed R-Tree
index.

The rest of the article is structured as follows. In Section 2, we briefly give an overview of the use of
debugging techniques for distributed environments and the view of the distributed spatial algorithms.
Section 3 describes the distributed processing of spatial algorithms. Section 4 presents our approach for
debugging the distributed R-Tree insertion algorithm. Section 5 presents the evaluation of RDebug
algorithm in the DistGeo platform. Finally, we close the article with some concluding remarks in
Section 6.

2. RELATED WORK

Researches on distributed spatial data either show techniques to debug distributed applications in
general or techniques for R-tree distributed processing, but none addressed both issues. The Section
2.1 shows the distributed debugging researches and 2.2 describes researches of platforms for processing
distributed spatial algorithms.

2.1 Distributed Debugging Techniques

In Boix et al. [2011] the authors break down debuggers in two main families: log-based debuggers (also
known as post-mortem debuggers) and breakpoint-based debuggers (also known as online debuggers).
Log-based debuggers insert log statements in the code to be able to generate a trace log during its
execution. Breakpoint-based debuggers, on the other hand, execute the program in the debug mode
that allows programs to pause/resume the execution at certain points, inspect the state and the
perform step-by-step execution.

Several breakpoint-based debuggers have been designed for parallel programs using message passing
communication including p2d2 Hood [1996], TotalView Gottbrath [2009], and Amoeba Elshoff [1988].
These debuggers offer the traditional commands to stop, inspect and execute step-by-step a running
program. Some of them allow to set breakpoints on statements of one process (e.g. Gottbrath [2009])
or a set of processes (e.g. Hood [1996], Elshoff [1988]).

A great body of concurrent and parallel debugging techniques are event-based. Event-based debug-
gers C. E. Mcdowell [1989] conceive the execution of a program as a sequence of events. The debugger
records the history of the events generated by the application, which can then be used to either browse
the events once the application is finished [Fonseca et al. 2007; Stanley et al. 2009], or to replay the
execution to recreate the conditions under which the bug was observed.

Journal of Information and Data Management, Vol. , No. , 20.

A New Technique for Debugging the Distributed R-Tree Insertion Algorithm : 3

In Cheung et al. [1990] the authors describe a process for distributed debugging in general, instead of
focusing on a specific debugger or a particular technique. The paper focus is on defining a step-by-step
approach to tackle distributed debugging independent of the environment.

2.2 Distributed Spatial Algorithms

There are researches that present the use of parallelism in order to improve the response time of
the spatial algorithms. M-RTree Koudas et al. [1996] was the first published article, which shows a
shared-nothing architecture, with a master and several workstations connected to a LAN network.
The master machine can be a bottleneck because it handles client requests, merges the answers of
the slaves and sends to client machines. A similar technique was found on MC-RTree Schnitzer and
Leutenegger [1999] and An et al. [1999], which show the same problems on master machine.

Hadoop-GIS Kerr [2009] shows a scalable and high performance spatial data warehousing system
for running large scale spatial queries on Hadoop. However, it does not use index to process the
spatial operations. A plataform to process distributed spatial operations is presented in de Oliveira
et al. [2011]. Although the solution proposed implements a distributed index, it is not scalable, since
every message go through the replicated master node. In addition, the hybrid peer-to-peer platform
proposed comprehends a set of machines for naming resolution that could be a bottleneck in the
system. de Oliveira et al. [2013] shows a hybrid peer-to-peer platform, which comprehends a set of
machines for naming resolution that could be a bottleneck in the system.

In Xie et al. [2008], a two-phase load-balancing scheme is introduced for the parallel GIS operations
in distributed environment. MapReduce is described in Zhang et al. [2009], which shows how spatial
queries can be naturally expressed in this model. However, it is only indicated for non-indexed
datasets.

A number of techniques and platforms have been proposed for handling spatial big data. Neverthe-
less, none of the researches propose a technique for distributed spatial index debugging of an R-Tree.
Besides, none of them propose a platform using a peer-to-peer approach for processing distributed
spatial algorithms as found on DistGeo platform (Section 3.1).

3. ALGORITHMS FOR SPATIAL DISTRIBUTED PROCESSING

A number of structures have been proposed for handling multi-dimensional spatial data, such as KD-
Tree Bentley [1975], Hilbert R-Tree Kamel and Jorge [1994] and R-Tree Guttman [1984]. The R-Tree
has been widely used to index the datasets on GIS databases and it has been used as an index data
structure in this work.

An R-Tree is a height-balanced tree similar to a B-Tree Comer [1979] with index records in its leaf
nodes containing pointers to data objects. The key idea of the data structure is to group nearby
objects and represent them with their minimum bounding rectangle (MBR) in the next higher level
of the tree.

Figure 1 illustrates the hierarchical structure of an R-Tree with a root node, internal nodes (N1...2 C
N3...6) and leaves (N3...6 C a...h). Every internal node contains a set of rectangles and pointers to
the corresponding child node and every leaf node contains the rectangles of spatial objects.

The Figure 1(a) illustrates the R-Tree representation, while Figure 1(b) shows MBRs grouping
spatial objects of a...h in sets by their co-location. Each node stores at most M and at least m < M/2
entries Guttman [1984]. Our article uses the formula for M value calculation presented in de Oliveira
et al. [2011].

The Window Query is one of major query algorithms in R-Tree. The search starts from the root
node of the tree and the input is a search rectangle (Query box). For each rectangle in a node, it has

Journal of Information and Data Management, Vol. , No. , 20.

4 . Savio de Oliveira et. al.
N1 a T s | BN Querlap Area

—]E |0 Dead Space

=

laloe] [elaf [efe] [afn] wimsow 3 L

(a) R-Tree index (b) Geographic space
Fig. 1. R-Tree Structure

to be decided whether it overlaps the search rectangle or not. If so, the corresponding child node has
to be searched too.

Searching is done recursively until all overlapping nodes have been traversed. When a leaf node is
reached, the contained bounding boxes (rectangles) are tested against the search rectangle and the
objects that intersects with the search rectangle are returned.

In Figure 1, the search starts on root node, where the window intersects with nodes N1 and N2.
Then, the algorithm analyses node N1, which only N3 intersects with the window. Analysing node
N3, the algorithm returns the spatial object namely b, that is the single object that intersects the
window.

In node N2, we do not have any entry intersecting with the window due to the dead space. In
other words, the window intersects with a space, which does not contain any data. The dead space
should be minimized to improve the query performance, since decisions about which paths have to be
traversed can be taken on higher levels.

The overlapping area between rectangles should be minimized as well, as it degrades the performance
of R-Tree Beckmann et al. [1990]. Less overlapping reduces the amount of sub-trees accessed during
R-tree traversal. The area between ¢ and d in Figure 1 is an example of overlapping.

3.1 DistGeo: A Platform of Distributed Spatial Operations for Geoprocessing

DistGeo is a platform to process spatial operations in a cluster of computers (Figure 2). It is based
on a shared-nothing architecture, which the nodes do not share CPU, hard disk and memory and the
communication relies on message exchange. Figure 2(a) show DistGeo Architecture, which is based
on peer-to-peer model presented as a ring topology. It is divided in ranges of keys, which are managed
for each server of the cluster. In order to a server join the ring it must be assigned a range first.

The range of keys are known by each server in the cluster using a Distributed Hash Table (DHT)
to store the mapping of the keys to servers. For instance, in a ring representation whose keys range
from 0 to 100, if we have 4 nodes in the cluster, the division could be done as shown below: a) 0-25,
b) 25-50, c¢) 50-75 e d) 75-100. If we want to search for one object with key 34, we certainly should
look on the server 2.

Since there is not a master replica, every replica of an object is equally important. Therefore, read
and write operations may be performed in any server of the cluster. When a request is made to a
cluster’s server, it becomes the coordinator of the operation requested by the client. The coordinator
works as a proxy between the client and the cluster servers. DistGeo uses the Gossip protocol Demers
et al. [1988], which every cluster server exchanges information among themselves for everyone to know
the status of each server.

Figure 2(b) illustrates the structure of a Distributed R-Tree in a cluster. The partitioning is
performed grouping the servers in clusters and creating the indexes according to the R-Tree structure.
The lines in Figure 2(b) show the need for message exchange to reach the sub-trees during the algorithm
processing.

Journal of Information and Data Management, Vol. , No. , 20.

A New Technique for Debugging the Distributed R-Tree Insertion Algorithm : 5

s4

(a) DistGeo Architecture (b) R-Tree Partitioning in DistGeo

Fig. 2. DistGeo Platform

Insertions and searching in a distributed R-Tree are similar to the non-distributed version, except
for: i) The need of message exchange to access the distributed partitions and ii) Concurrency control
and consistency due to the parallel processing in the cluster. Both were implemented on DistGeo
platform.

The distributed index has been built according to the taxonomy defined in An et al. [1999], as follows:
i) Allocation Unit: block - A partition is created for every R-Tree node; ii) Allocation Frequency:
overflow - In the insertion process, new partitions are created when a node in the tree needs to split;
iii) Distribution Policy: balanced - To keep the tree balanced the partitions are distributed among
the cluster servers.

Reliability and fault-tolerance were implemented on DistGeo storing the R-Tree nodes in multiple
servers in the cluster. The DistGeo uses Apache Cassandra ? database to store the distributed R-Tree
index nodes on cluster servers. Each R-Tree node N receives a key, which is used to store the node in
a server S responsible for ring range, replicating the node N to the next two servers in S (clockwise).
If a message is sent to N, is selected one of the servers that store a replica of N. The query requests
are always sent to one of the cluster’s server that stores the root node of the R-tree.

As discussed earlier in this Section, reducing the overlapping and dead area on R-Tree minimizes
the number of R-Tree nodes accessed during the tree traversal on search algorithms. The growth of
the number of nodes accessed increases the network traffic because the R-Tree nodes are stored in
several servers on cluster, as shown in Figure 2(b). Our article implements a new algorithm that
collects debugging information about a distribute R-Tree and can helps to reduce the overlapping and
dead area. We cover this algorithm in more details in Section 4.

4. TECHNIQUE FOR DEBUGGING THE DISTRIBUTED R-TREE INSERTION ALGORITHM

In a distributed environment, it is hard to find bugs on insertion algorithms due to the difficult to
synchronize the insertion, since it must be done concurrently. Even in cases where the implementation
is correct, it is not easy to improve the insertion algorithm’s performance (for example, reducing the
overlapping) due to the complexity of collecting information about the spatial index. In other words,
it is not a trivial task to ensure that a distributed spatial index has being built accordingly.

This section describes RDebug, a new technique for debugging the Distributed R-Tree insertion
algorithm, which allows collect debugging information about the distributed spatial index once it has
been created. The following debug information about building consistency of the R-Tree index are

?http://cassandra.apache.org

Journal of Information and Data Management, Vol. , No. , 20.

6 . Savio de Oliveira et. al.

collected by RDebug: i) if each R-Tree node N are consistent between the servers that store any
replica of N; ii) if the MBR of each parent node intersects with the MBR of their children, iii) if there
are duplicated nodes on R-Tree or nodes being referenced by more than one parent node, and iv) if
the value M and m of the nodes are compliant with the R-Tree descriptions as shown in Section 3.
Furthermore, it is possible to access index data to help in optimization and minimizing the dead space
and overlapping area.

Algorithm 1 shows the RDebug technique for debugging the distributed spatial index, using the
index structure itself. The algorithm has two steps: 1) S1 (lines 1-11): The algorithm processing is
similar to the search in an R-Tree with a top-down traversal; 2) S2 (lines 12-39): The algorithm does
a bottom-up traversal on R-Tree, constructing the result with the debug information.

The RDebug algorithm is based on R-Tree structure, which is used to index the spatial datasets on
DistGeo platform, presented in Sub-section 3.1. RDebug can be used with any index similar to R-Tree
like Hilbert R-Tree Kamel and Jorge [1994], since the RDebug algorithm uses the nodes organization
of the R-Tree to collect the debug information.

RDebug has been implemented on DistGeo platform. The R-Tree nodes are distributed and repli-
cated over the cluster. Thus, RDebug can be processed on DistGeo platform without bottlenecks
and point of failures. Besides, the R-Tree replicated nodes in the cluster allow load-balancing in the
distributed R-Tree index traversal. During the traversal, at every node accessed the traversal might
go to a node of the cluster with less workload, increasing the RDebug algorithm performance.

In the first step, called S1 [Search sub-trees| (lines 1 - 11), the Algorithm 1 traverses every node of
the R-Tree starting from the root node to the leaves. The first request is sent to any server, which
stores a replica of the root node.

If the node T is not a leaf (lines 2 - 8), then the number of children entries is stored to control the
number of expected answers associated to 7" in the second step of the algorithm. This information is
stored in a shared memory accessed by all servers with a replica of T'. Lines 4 — 7, show that for each
entry E in T, a message is sent (continuing step S1) to any server that holds a replica of the child
node of F, carrying on the first step in the children nodes. If T is a leaf, the second step, named S2
[Aggregation] is started.

Second step aims (lines 12 — 39) to aggregate the information about the index to be used for future
debugging. This step returns debugging information about each node of the R-Tree. The index itself is
used to aggregate this information using the cluster computational resources to improve the algorithm’s
performance. The index reverse structure facilitates the collection of debugging information, as one
node of the R-Tree is responsible to aggregate only the information of its children.

The debug information about each node of R-Tree is stored in a shared memory that can be accessed
by any server that stores a replica of T. The RDebug updates the information about the node T that
is being analyzed (lines 13 — 18).

In line 13, the information is retrieved from the shared memory. Line 14 verifies the consistency of
T in the servers that store any replica of T'. Line 15 verifies the consistency of M and m values. Lines
16 and 17, in turn, calculate the overlap and the dead space area, respectively, for each node of the
R-Tree. Line 18 gets the MBR of T', which is inserted in in formation on line 18.

Journal of Information and Data Management, Vol. , No. , 20.

A New Technique for Debugging the Distributed R-Tree Insertion Algorithm . 7

Algorithm 1: RDebug(T)

© 00 N O U W=

NN N NNNDNIDLR B B B B B e e e e
NS Ot WY H O © NS ;AN O

28
29

30
31
32
33
34
35
36
37
38
39

Data: T reference of the root node of R-Tree tree
Result: Debugging information about distributed R-Tree tree

S1 [Search subtrees]
if T is not leaf then
stores the number of children entries in each replica server of T
for each entry E in T do
server < choose one server, randomly, that keep one replica of E
send msg to server to process the node’s child of E on step S1
end
else
verify the consistency of 1" in other replicas
Invoke step S2 [Aggregation]
end
S2 [Aggregation]
in formation < the child’s information stored on shared memory by replicas of T’
replica__consistency < verify the consistency of 7' in others replicas
node__consistency < verify the consistency of M and m values of T
overlap < overlap area of T'
dead area < dead area of T
bound <= MBR of T
add in in formation: replica__consistency, node__consistency, overlap, dead _area, bound
if T is leaf then
if T is root then
‘ send response with R-Tree nodes information to app client
end
send msg with in formation to parent of T

else
entry _info < information sent by child node
mbr_consistent < verify if the bound of the child node is equal to bound of entry of T that
points to this child
add in in formation: entries _info, and mbr _consistent
count < retrieve the number of child entries, which did not send a debugging response and
decrement by 1
if count == 0 then
if T is root then
‘ send response with in formation to client
else
‘ send msg with in formation to parent of T
end
else
‘ store in formation on shared memory
end

end

If the aggregation step is being executed in the leaves (lines 20 - 24), then there are two options.

If T is the root node (line 22), the node information is sent to the client application. If T is not the
root node, in line 24, the information is sent to the parent node of T'.

If the aggregation step is in an internal node (lines 26 - 39), the algorithm aggregates the information

Journal of Information and Data Management, Vol. , No. , 20.

8 . Savio de Oliveira et. al.

of the children nodes. In line 29, the algorithm receives the information sent by the child node. Line
27 verifies if the MBR of the entry that points to the child node is indeed the same MBR sent by the
child node.

Line 28 adds the data processed from lines 26 and 27 in in formation. Line 29 retrieves the number
of child nodes, which did not send a debugging response. This number is stored in the variable count,
which is decremented and updated on shared memory.

If every node has sent the answer, the variable count then will hold the value 0 and lines 30-35 are
processed. If T is the root node, then the information is sent to the client application, otherwise, all
information collected is sent to the parent node of T. If the variable count is greater than 0, then
the client information is stored in the shared memory to be used until each reply is received by child
nodes.

Our Algorithm was implemented in the DistGeo platform to collect the debugging information of
the built distributed R-Tree. This information is used in the platform to find out indexing issues and
for speed up the searching on an R-Tree. Using RDebug algorithm it is possible debug the searching
algorithms in a single R-Tree, for example, the Window Query algorithm shown in Section 3. Whereas,
algorithms that access many R-Trees, such as Spatial Join, need a deep change, once algorithms can
go through different paths.

The algorithm RDebug have collected debugging information about the R-Tree index built during
the insertion of the dataset. Figure 3 shows a graphical tool (RDebug Visualizer) created to visualize
the collected debugging information. RDebug Visualizer shows the structure of the distributed R-Tree
index and allows the analysis of each node of the R-Tree. The output of the RDebug algorithm shows
which nodes are currently inconsistent. The user can access the path of the node and visualize the
node’s inconsistent information.

5. EVALUATION

The RDebug algorithm has been evaluated on 3500 MHz Intel(R) Core(TM) i7-2600 CPU workstations
connected by 1 GBit/sec switched Ethernet running Ubuntu 14.04. Each node has 16 GB of main

Jroct =
¢ C1N602|
- CIN1779
o= [N573
o= [N4&]
o= [N1258
o= N16283
- N1875
o= [N1950
o= CJN1878
o= [NS00
- CJN1417
o= N1224
o CJNE7S
o= [N9B88

S niana
replica_consistency=true
node_consistency=true
mbr_consistent=true
overlap=765.6
dead_area=1112.4
bound=[-32.9237529 : -15.8342743, -33.0983409 : -41.3245387]
replica_servers=192,168.88.52; 192.168.88.54; 192.168.88.55

4]

Fig. 3. RDebug Visualizer

Journal of Information and Data Management, Vol. , No. , 20.

A New Technique for Debugging the Distributed R-Tree Insertion Algorithm : 9

memory. The experiment results were achieved with 1, 2, 4 and 8 servers on DistGeo platform.

The experiments were performed using three datasets with different characteristics. The first con-
tains 1000000 points of business listings and points of interest (POIs) from SimpleGeo®. The second
dataset comprises 226964 lines representing the rivers on Brazil from LAPIG*. The third contains
220000 polygons of the census of USA from TIGER/Line®.

The RDebug was executed on DistGeo platform after the indexing of each dataset. The algorithm
was able to collect information about the R-Tree index, such as dead space and overlapping area.
Furthermore, RDebug algorithm has succeeded to collect the index structure allowing to visualize
each data set R-Tree index on RDebug Visualizer tool.

Three inconsistencies were deliberately inserted in the index to evaluate the RDebug: i) inconsis-
tencies between parent and child nodes bounding, ii) nodes filled with more than M entries and iii)
duplication of a node on R-Tree. The RDebug algorithm was able to identify this inconsistencies in
every distributed R-Tree related to datasets.

Figure 4 shows the result of RDebug algorithm with the business listings dataset in RDebug Visu-
alizer tool. An example of node inconsistency is shown in Figure 4(a), which the R-Tree node N1144
contains only three entries. This number of entries violates the m value presented in Section 3. Figure
4(b) shows the bound inconsistency between node N176 and one of its children. The duplicated nodes
identified on R-Tree are shown on final report by RDebug algorithm. The user can traverse the R-Tree
path on RDebug Visualizer to identify these duplicated nodes.

6. CONCLUSION

DistGeo platform presents an approach for processing distributed spatial operations through the
distributed R-Tree index. Due to the distributed processing nature on this platform an issue arises:

3https://github.com/simplegeo
4www.lapig.iesa.ufg.br
5Census 2007 Tiger/Line data

I root = Jroot (=]
¢ CINI123] ¢ CIN1891
o CIN1529 + 1178
o CIN213 - CINT7L =
oI N742 o~ [CJN1O
o= [CIN1135 - CIM108
o CIN1977 oG N1641 —
o CIN1150 1 - CIM1052
I N544 I o I Ngse
oI N1046 o~ [N571
o~ CINTTL -~ CIN474
o CIN534 - I M880
o [N265 o~ [N1366
o= [IN36 >~ CIN594
o [CIN237 | - [IM215
o CIN1360 - [CIM109
o[N1663 o I N99L
o[NO32 o[N1696
o= [CIN1644 = - [CIM1257 =
replica_consistency=true replica_consistency=true
node_consistency=false node_consistency=true
mbr_consistent=true mbr_consistent=false
overlap=554.2 overlap=198.5
dead _area=332.4 dead_area=1129.4
bound=[-11.09733 : -16.89374, -34.0962355 : -14.5408421] bound=[10.72822: -40,21233, -14.98873 : 13.34566243]
replica_servers=192.168.88.51; 192.168.88.53; 192,168.88.55 replica_servers=192.168.88.51; 192,168.88,52; 192.168.88.54
(a) Node inconsistency (b) Bound inconsistency

Fig. 4. RDebug algorithm on business listings dataset

Journal of Information and Data Management, Vol. , No.

10 . Savio de Oliveira et. al.

debugging the R-Tree index distributed in a cluster of computers.

We have seen researches on spatial data processing and distributed debugging, but none of them
propose techniques for debugging spatial algorithms in an R-Tree. Our article presented the RDebug
algorithm for debugging the building of a distributed R-Tree index. RDebug uses the R-Tree index
itself to gather the debug information. The data gathering is achieved in a distributed way, improving
the debugging algorithm efficiency. DistGeo, a new peer-to-peer platform, was proposed in our work
and has been used to execute the RDebug algorithm. Since the R-Tree nodes are distribuited and
replicated over the cluster, RDebug can be processed without bottlenecks and point of failures.

A graphical tool(RDebug Visualizer) has been created to visualize the structure of the distributed R-
Tree index and the debugging information about the index building. Using this debugging information,
we can identify discrepancies in the index building and optimize the R-Tree index too. The RDebug
algorithm can be used to collect debug information in any index with spatial nodes organization
similar to R-Tree (e.g. Hilbert R-Tree Kamel and Jorge [1994]).

Ongoing work includes modify the RDebug algorithm to debug the Window Query and Join Query
searching algorithms. The RDebug algorithm can be easily adapted to gather debugging information
for Window Query. Whereas, for Join Query algorithm, RDebug must be changed considerably, since
the traversal is processed in two different distributed R-Trees. Another ongoing work is to simulate
node replica inconsistencies to evaluate the ability of RDebug to identify these inconsistencies. On
future works, the algorithm RDebug will be evaluated in larger clusters and performance results will
be collected.

REFERENCES

AN, N., Lu, R., QiaN, L., SIvaAsUBRAMANIAM, A., AND KEEFE, T. Storing Spatial Data on a Network of Workstations.
Cluster Computing 2 (4): 259-270, 1999.

BeckMANN, N., KRIEGEL, H.-P., SCHNEIDER, R., AND SEEGER, B. The R*-tree: an efficient and robust access method
for points and rectangles. SIGMOD Rec. 19 (2): 322-331, 1990.

BenTLEY, J. L. Multidimensional Binary Search Trees Used for Associative Searching. Commun. ACM 18 (9):
509-517, 1975.

Boix, E. G., NoGuERa, C., Vax Cutsem, T., DE MEUTER, W., AND D’HonpT, T. REME-D: a reflective epidemic
message-oriented debugger for ambient-oriented applications. In Proceedings of the 2011 ACM Symposium on Applied
Computing. ACM, TaiChung, Taiwan, pp. 1275-1281, 2011.

C. E. McpoweLL, D. P. H. Debugging Concurrent Programs. ACM Computing Surveys vol. 21, pp. 593-622, 1989.

CHEUNG, W. H., Brack, J. P., aND MaNNING, E. A Framework for Distributed Debugging. IEEE Software 7 (1):
106-115, 1990.

CoMER, D. Ubiquitous B-tree. ACM Computing Surveys (CSUR) 11 (2): 121-137, 1979.

DE OLIVEIRA, S. S., VAGNER, J., CunHA, A. R., ALEIx0, E. L., bpE OrLivEira, T. B., Carposo, M. b. C., AND
Junior, R. R. Processamento Distribuido de Operagoes de Juncao Espacial com Bases de Dados Dinamicas para
Anélise de Informagoes Geogréficas. In XX XTI Simpdsio Brasileiro de Redes de Computadores e Sistemas Distribuidos.
Brasilia, DF, Brazil, pp. 1009-1022, 2013.

DE OLIVEIRA, T., SACRAMENTO, V., OLIVEIRA, S., ALBUQUERQUE, P., AND CarRDOSO, M. DSI-Rtree - Um Indice
R-Tree Escalavel Distribuido. In XXIX Simpdsio Brasileiro de Redes de Computadores e Sistemas Distribuidos.
Campo Grande, MS, Brazil, pp. 719-732, 2011.

DeMERS, A., GREENE, D., Housgr, C., Irisu, W., Larson, J., SHENKER, S., STUrGIS, H., SWINEHART, D., AND
TeERRY, D. Epidemic Algorithms for Replicated Database Maintenance. ACM SIGOPS Operating Systems Re-
view 22 (1): 8-32, 1988.

Evsnorr, 1. J. P. A Distributed Debugger for Amoeba. ACM SIGPLAN Notices 24 (1): 1-10, 1988.

Fonseca, R., PorTER, G., Karz, R. H., SHENKER, S., AND STOIcA, [. X-Trace: a pervasive network tracing
framework. In 4th USENIX Symposium on Networked Systems Design And Implementation. Berkeley, CA, USA,
pp. 271-284, 2007.

GortBrATH, C. Deterministically Troubleshooting Network Applications. Tech. rep., Technical report, TotalView
Technologies, 2009.

GurTMaN, A. R-trees: a dynamic index structure for spatial searching. STGMOD Rec. 14 (2): 47-57, 1984.

Hoopb, R. The P2d2 Project: building a portable distributed debugger. In In Symposium on Parallel and distributed
tools. pp. 127-136, 1996.

Journal of Information and Data Management, Vol. , No. , 20.

A New Technique for Debugging the Distributed R-Tree Insertion Algorithm : 11

KameL, . aAnD JorGE, B. Hilbert R-tree: an improved R-tree using fractals. In VLDB 94, Proceedings of 20th
International Conference on Very. Morgan Kaufmann Publishers Inc., Santiago de Chile, Chile, pp. 500-509, 1994.

KEeRrr, N. T. Alternative approaches to parallel GIS processing. Ph.D. thesis, Arizona State University, 2009.

Koupas, N., Faroutsos, C., aND KaMmEL, I. Declustering Spatial Databases on a Multi-computer Architecture.
Advances in Database Technology-EDBT’96, 1996.

SCHNITZER, B. AND LEUTENEGGER, S. Master-client R-trees: a new parallel R-tree architecture. In Scientific and
Statistical Database Management, 1999. Eleventh International Conference on. IEEE, Cleveland, Ohio, USA, pp.
68-77, 1999.

StaNLEY, T., CLosg, T., AND MILLER, M. Causeway: a message-oriented distributed debugger. Tech. rep., HP
Laboratories, 2009.

Xie, Z., Y, Z., anp Wu, L. A Two-Phase Load-Balancing Framework of Parallel GIS Operations. In Geoscience
and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE International. Vol. 2. Boston, Massachusetts, USA,
pp. 1286-1289, 2008.

ZHANG, S., Han, J., Liu, Z., Wang, K., aND FENG, S. Spatial Queries Evaluation with Mapreduce. In Grid and
Cooperative Computing, 2009. GCC’09. FEighth International Conference on. Lanzhou, China, pp. 287292, 2009.
Zuong, Y., Han, J., Zuang, T., L1, Z., Fang, J., aND CHEN, G. Towards Parallel Spatial Query Processing for Big
Spatial Data. In Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE

26th International. Hyderabad, India, pp. 2085-2094, 2012.

Journal of Information and Data Management, Vol. , No. , 20.

