
Improving Pairwise Preference Mining Algorithms Using
Preference Degrees

Juliete A. Ramos Costa, Sandra de Amo

Federal University of Uberlândia-MG, Brazil
juliete@mestrado.ufu.br, deamo@ufu.br

Abstract. Different preference mining techniques designed to predict a preference order on objects have been proposed
in the literature, with very good accuracy results. In this article, we propose to consider not only the fact that the

user prefer an item i1 to an item i2 but also the degree of his preference on the two items. We propose the algorithm

FuzzyPrefMiner designed to predict fuzzy preferences and show through a series of experiments that it outperforms
pairwise preference mining techniques whose training phase do not include information on preference degrees.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—data mining; I.2.6

[Artificial Intelligence]: Learning—concept learning

Keywords: data mining, fuzzy preference, preference mining

1. INTRODUCTION

Most known recommendation systems, following a collaborative filtering or a content-based approach,
rely on explicit user preference feedback data in order to provide recommendations on items not yet
seen by the user. These explicit preference data are given by the utility matrix which contains at each
position i, j the rating given by user i to item j. However, this explicit way to get user feedback lacks
of effectiveness, since most users are unwilling to rate items while browsing the web. Moreover, the
information obtained in that way may be biased, since it does not include preferences from users who
are not keen on rating things. Another drawback of using explicit user feedback is related to the fact
that the rating scale is fixed (normally going from 0 to N, where N is the maximum rating permitted).
Let us suppose that a user u rated a movie f1 as N since he/she loved it. Sometime later u saw the
movie f2 which he/she liked more than f1. In this case, since past given ratings cannot be modified,
u is forced to give equal ratings (namely N) to both movies, even if f2 is largely preferred to f1.

For those reasons, we argue that preference data obtained in an implicit manner (by inferring
user preferences from his/her browsing behavior) and following a pairwise representation (the user
preference is represented by a set of pairs of items (i1, i2) telling that i1 is preferred to i2) are more
desirable. For instance, let us suppose that, while browsing the IMDB website1, user u spent 30
seconds on the page of movie f1 and 10 minutes on the page of f2. One can infer that u is far more
interested on film f2 than on film f1. One can go a step further and assume that u prefers f2 to f1 and
represent this preference as a pair (f2, f1). Pairwise preference data obtained in this implicit way do
not contain sufficient information for inferring specific ratings on items. However, they are sufficient
for inferring a ranking of the top-k films the user would probably like, and consequently, recommend
those films to him/her [Cohen et al. 1999].

1www.imdb.com

Copyright c©2016 Permission to copy without fee all or part of the material printed in JIDM is granted provided that

the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission

of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 7, No. 2, August 2016, Pages 86–98.

Improving Pairwise Preference Mining Algorithms Using Preference Degrees · 87

Most preference mining methods proposed in the literature rely on explicit ratings provided by the
user as input data represented by means of a score function [Cohen et al. 1999; Crammer and Singer
2001; Burges et al. 2005]. Pairwise representation [Jiang et al. 2008; Koriche and Zanuttini 2010; de
Amo et al. 2013; de Amo et al. 2012] and Ranking2 representation [Joachims 2002; Freund et al. 2003]
are receiving more attention in recent research.

Preference mining techniques that use input data following a pairwise representation usually obtain
this input data directly from the user, using a pre-processing step for transforming explicit user rating
into pairs3. For instance, if the user evaluated item i1 as 5 and i2 as 1, this information is transformed
into the pair (i1, i2). We claim that in this transformation, a lot of information has been lost. Indeed,
if the ratings were 5 and 4, the same pair (i1, i2) would be obtained. In the first situation, the user
prefers object i1 to i2 more intensely than in the second situation.

In previous work [de Amo et al. 2013] we proposed the algorithm CPrefMiner for mining a crisp
contextual preference model from a set of preference samples represented as pairs of alternatives. The
model is said to be crisp since the input data provided by the user is based on yes/no alternatives
(either he/she prefers object i1 to object i2 or vice-versa) and the output model allows to predict if a
new object i3 is preferred to a new object i4 or vice-versa. The mined preference model is said to be
contextual since it is constituted by a set of contextual preference rules [Wilson 2004] of the form IF
<context> then I prefer ‘this’ to ‘that’ . For instance: For films directed by Spielberg, I prefer Action
to Comedy whereas for films directed by Woody Allen I prefer Comedy to Action. The preference
model extracted by CPrefMiner is capable to infer an order relation on objects (a task that a classifier
would not be able to achieve!), that is, it is capable to infer transitivity relationships (if i1 � i2 and
i2 � i3 then i1 � i3 4) and also satisfying irreflexibility (i1 6� i1).

The main hypothesis of this article is that “the more information is enclosed in the input preference
data, the more efficient is the mined preference model”. We propose the method FuzzyPrefMiner
to mine fuzzy contextual preference model from a set of preferences samples represented as triples
(i1, i2, n) where i1 and i2 are items evaluated by a user u and n is the degree of preference (0 ≤ n ≤ 1)
of i1 w.r.t. i2 provided by user u. An extensive set of experiments comparing CPrefMiner and
FuzzyPrefMiner validates this hypothesis: FuzzyPrefMiner is far more accurate then CPrefMiner to
predict user preferences. Besides, the preference knowledge extracted by FuzzyPrefMiner is more
refined then the one provided by CPrefMiner, since it is capable to predict not only if i1 � i2 but also
the degree of preference of i1 with respect to i2. We present in this article a subset of the experiments
carried out to validate our hypothesis.

Fuzzy preference modeling and reasoning has been extensively studied in the last decade [Chiclana
et al. 1998; Herrera-Viedma et al. 2004; Ma et al. 2006; Xu et al. 2013]. However, to the best of our
knowledge this kind of preference model has not yet been exploited in the preference mining research.

2. PROBLEM FORMALIZATION

In this section, we formalize the problem of mining fuzzy contextual preferences, introducing the
notion of fuzzy preference model (FPM), how it is used to order things and some quality measures to
evaluate its order predicting capability.

A Fuzzy Preference Relation over a set of objects X = {x1, ..., xn} is a n × n matrix P such that
Pij ∈ [0, 1] represents the degree of preference (dp) of u over objects xi and xj . Fuzzy preference
relations have been introduced in Chiclana et al. [1998] and should satisfy certain conditions (see

2The user provides a sequence of objects in decreasing order of preference.
3Notice that, as argued before, pairwise preference data could also be obtained indirectly by examining the user’s
browsing behavior.
4the symbol � standing for “is preferred to”

Journal of Information and Data Management, Vol. 7, No. 2, August 2016.

88 · J. A. R. Costa and S. de Amo

Fig. 1. Fuzzy Contextual Preference Mining Process.

Chiclana et al. [1998] for details), the most important being the reciprocity property Pij = 1 − Pji
(which entails that Pii = 0.5). One way of obtaining fuzzy preference relations from a set of item
ratings provided by the user is to consider Pij = f(rirj), where ri is the rating u assigned to item xi and

f is a function belonging to the family {fn : n ≥ 1}, fn(x) = xn

xn+1 . This family of functions produces
matrices satisfying all the properties required for fuzzy preference relations. Fig. 1(b) illustrates the
fuzzy preference relation corresponding to the item-rating database of Fig. 1(a). Here, function f2
has been considered for fuzzification.

A Fuzzy Preference Database (FPD) over a relation schema R(A1, ..., An) is a finite set P ⊆ Tup(R)
× Tup(R) × [0,1] which is consistent, that is, if (i, j, n) ∈ P and (j, i,m) ∈ P then m = 1 − n.
The triple (i, j, n) represents the fact that the user prefers the tuple i to the tuple j with a degree
of preference n. Fig. 1(c) illustrates a fuzzy preference database corresponding to a subset of the
information contained in the matrix depicted in Fig. 1(b) (the triples presented in (c) correspond to
the underlined positions of (b)).

Pre-processing the FPD : Let P be a fuzzy preference database. First of all, triples with dp < 0.5
are transformed into triples with dp ≥ 0.5. For instance, triple (i2, i3, 0.31) in Fig. 1(c) becomes
(i3, i2, 0.69). After doing that, let dpmin (resp. dpmax) be the smallest (resp. the largest) dp appearing
in (the transformed) P.
Partition of P into k layers: First, let us partition the interval I = [dpmin, dpmax] into k disjoints and

contiguous subintervals I1, ..., Ik, such that
⋃k
i=1 Ii = I. Second, partition P into k disjoint subsets

of triples P1,..., Pk. Each Pi is obtained by inserting into Pi all triples (w1, w2, n) with n ≥ 0.5 such
that (w1, w2, n) or (w2, w1, 1− n) ∈ P. Fig. 1(d) illustrates this step.
Layers can be viewed as classes: Let Ii = [ai, bi] and λi = ai+bi

2 . Triples (w1, w2, n) in Ii are
characterized by tuples w1 and w2 having an average “intensity” of preference λi between them. For
instance, triples of layer T1 in Fig. 1(d) are associated to class λ1 = 0.72 (average of 0.73, 0.69, 0.8
and 0.64).

The Fuzzy Preference Model (FPM): The fuzzy preference model proposed in this article is a
structure Fk = <M,PNet1,...,PNetk>, where M is a classification model extracted from the set of
layers I1, ..., Ik (considering elements in Ii as (w1, w2, λi) with the extra “class” dimension λi), and
PNeti is a Bayesian Preference Network (BPN) extracted from layer Ii, for all i = 1, ..., k. BPNs
have been introduced in de Amo et al. [2013] for mining crisp preference models from a set of pairwise
preference data. In the crisp scenario, a unique BPN is extracted from the input data. This unique
BPN is used to predict if (yes or no) a tuple w1 is preferred to a tuple w2. In the fuzzy scenario, we will

Journal of Information and Data Management, Vol. 7, No. 2, August 2016.

Improving Pairwise Preference Mining Algorithms Using Preference Degrees · 89

Fig. 2. A Bayesian Preference Network.

mine several BPNs, one for each layer. Fig. 1(e) illustrates a FPM extracted from the pre-processed
preference input data of Fig. 1(d). BPNs are defined as follows:

Definition 2.1 [de Amo et al. 2013]. A Bayesian Preference Network (BPN) over a relational schema
R(A1, ..., An), consists in: (1) a directed acyclic graph G whose nodes are attributes in {A1, ..., An}
and the edges stand for attribute dependency and (2) a mapping θ that associates to each node of G
a finite set of conditional probabilities (see Fig. 2).

Fig. 2 illustrates a BPN PNet1 over the relational schema R(A,B,C,D). Notice that, the pref-
erence on values for attribute B depends on the context C: if C = c1, the probability that value b1
is preferred to value b2 for the attribute B is 60%. The following example illustrates how BPNs are
used to predict the order between two new tuples in the crisp scenario:

Example 1 : Let us consider the BPN PNet1 depicted in Fig. 2. In order to compare two new
tuples w1 = (a1, b1,c1,d1) and w2 = (a2, b2,c1,d2), we proceed as follows: (1) Let ∆(w1, w2) be
the set of attributes for which w1 and w2 differ. In this example, ∆(w1, w2) = {A,B,D}; (2) Let
min(∆(w1, w2)) ⊆ ∆(w1, w2) such that the attributes in min(∆) have no ancestors in ∆ (according to
graph G underlying the BPN PNet1). In this example, min(∆(w1, w2)) = {D,B}. The necessary and
sufficient conditions for w1 to be preferred to w2 are: w1[D] � w2[D] and w1[B] � w2[B]; (3) Compute
the following probabilities: p1 = probability that w1 � w2 = P [d1 � d2|C = c1] ∗ P [b1 � b2|C = c1]
= 0.6 * 0.6 = 0.36; p2 = probability that w2 > w1 = P [d2 � d1|C = c1] ∗ P [b2 � b1|C = c1] = 0.4 *
0.4 = 0.16. In order to compare w1 and w2 we select the highest between p1 and p2. In this example,
p1 > p2 and so, we infer that w1 is preferred to w2. If p1 = p2, a random choice decides if w1 is
preferred to w2 or vice-versa. So, a BPN is capable to compare any pair of tuples: either it effectively
infer the preference ordering without randomness or it makes a random choice.

How a FPM can be used to predict preference degree between tuples: Let Fk =
<M,PNet1,...,PNetk> be a k-layer FPM and let w1, w2 be two new tuples. First of all, we have to
infer the intensity of preference between these tuples. The classifier M is responsible for this task: it
is executed on (w1, w2) and returns a class λi for this pair. Then the BPN PNeti, specific for this
layer, is executed on (w1, w2) to decide which one is preferred. This execution follows the same steps
as illustrated in Example 1. If PNeti decides that w1 is preferred to w2 (resp. w2 is preferred to w1),
the final prediction is: w1 is preferred to w2 with degree of preference λi (resp. 1− λi). Remark that,
the classifier M only decides how intense the preference between the tuples is. The BPN decides the
preference ordering between them. This prediction may be effective or random as remarked at the end
of Example 1. Fig. 1(f) shows how a FPM can be used to predict both crisp and fuzzy preferences.

Measuring the quality of a fuzzy preference model: Since an exact match between the pre-
dicted dp (dpp) and the real one (dpr) is quite unlikely to occur, we consider a threshold σ > 0 to
measure how good is the prediction. We consider that the predicted dpp is correct if the following
conditions are both verified: (1) | dpr − dpp |≤ σ and (2) (dpr ≥ 0.5 and dpp ≥ 0.5) or (dpr < 0.5 and
dpp < 0.5). We say that the inference is effective (resp. random) depending on the effectiveness or
randomness of the BPN prediction. The quality of a FPM Fk is evaluated by calculating the following

Journal of Information and Data Management, Vol. 7, No. 2, August 2016.

90 · J. A. R. Costa and S. de Amo

measures on a test FPD P:
The Accuracy(acc): defined by acc(Fk,P,σ)=Ne+Nr

M , where M is the number of triples in P, Ne
(resp. Nr) is the amount of triples (t1, t2, dpr) ∈ P for which the dpp inferred by Fk is effectively
(resp. randomly) correct;
The Recall(rec): defined by rec(Fk,P,σ)= Ne

M ;

The Randomness Rate(rr): defined by rr(Fk,P,σ)= Nr

M ;

The Precision(prec): defined by prec(Fk,P,σ)= Ne

Nc
, where Nc is the number of triples (t1, t2, dpr)

∈ P that have been effectively compared by Fk (correctly or not);
The Comparability Rate(cr): defined by rec(Fk,P,σ))= Nc

M .

Example 2 : Let us consider tuples w1 and w2 of Example 1. Let us also suppose the input FPD depicted
in Fig. 1(d) with its 2-layer partitions T1 and T2. The corresponding classes are λ1 = 0.72 (average
dp of [0.64, 0.8]) and λ2 = 0.865 (average dp of [0.83, 0.9]). Let us suppose that dpr(w1, w2) = 0.76
and that the classifierM assigns the class λ1 to (w1, w2). Notice that, the classifier only predicts that
the intensity of preference between the two tuples is 0.72. It doesn’t say anything about the ordering
of preference between them. This task is achieved by the BPN1 associated to partition T1. Let us
suppose that BPN1 is the same as the one illustrated in Fig. 2. It compares w1 and w2 as described in
Example 1, by calculating the probabilities p1 = 0.36 and p2 = 0.16. As p1 > p2 then the predicted dp
is dpp = λ1 = 0.72. So, both dpr and dpp are ≥ 0.5 (condition (2) of the quality test is verified). Let
us consider parameter σ = 0.05 as in the experiments of Section 5. Since | 0.76− 0.72 | = 0.04 < 0.05,
we conclude that the fuzzy model correctly and effectively predicted the dp of w1 w.r.t. w2.

The Problem of Mining Fuzzy Contextual Preferences: This problem consists in, given a fuzzy
preference database and k > 0, return a k-layer fuzzy preference model Fk having good quality with
respect to acc, prec, rec, cr and rr measures and a given threshold σ.

3. ALGORITHM FUZZYPREFMINER

The FuzzyPrefMiner algorithm we propose to solve the Fuzzy Contextual Preference Mining Problem
follows the same strategy of the algorithm CPrefMiner proposed in de Amo et al. [2013] to solve the
crisp counterpart problem. The general framework of the algorithm is showed in Alg. 1. In this
section, we present the details only of the parts of the method that have been modified in order to
treat the fuzzy information. The specific procedures which have been modified are indicated inside a
rectangle, in boldface.

3.1 Learning the Network Structure

Procedure Extract(Alg. 2)[de Amo et al. 2013] is responsible for learning the network topology G from
the training preference database P. G is a graph with vertices in A1, ..., An. An edge (Ai, Aj) in G

Algorithm 1: The FuzzyPrefMiner Algorithm

Input: A Fuzzy Preference Database Pi over relational schema R(A1, ..., An) % corresponding to a layer in the

entire training FPD P;

Output: A BPN PNet

1 Extract(P, G);
2 for each i = 1, . . . , n do

3 Parents(G,Ai) = [Ai1 , ..., Aim];

4 CPTable(Ai, Parents(Ai, G)) = [CProb1, ..., CProbl] ;

5 return PNet

Journal of Information and Data Management, Vol. 7, No. 2, August 2016.

Improving Pairwise Preference Mining Algorithms Using Preference Degrees · 91

Algorithm 2: Extract Procedure

Input: P: a fuzzy preference database over relational schema R(A1, ..., An); β: population size; ϑ: number of

generations; γ: number of attribute orderings
Output: A directed graph G = (V,E), with vertices V ⊆ {A1, ..., An} that fits best to the fitness function

1 for each i = 1, . . . , γ do

2 Randomly generate an attribute ordering;
3 Generate an initial population I0 of random individuals;

4 Evaluate individuals in I0, i.e., calculate their fitness ;

5 for each j-th generation, j = 1, . . . , ϑ do
6 Select β/2 pairs of individuals from Ij ;

7 Apply crossover operator for each pair, generating an offspring population I′j ;

8 Evaluate individuals of I′j ;

9 Apply mutation operator over individuals from I′j , and evaluate mutated ones;

10 From Ij ∪ I′j , select the β fittest individuals through an elitism procedure;

11 Pick up the best individual after the last generation;

12 return the best individual among all γ GA executions

means that the preference on values for attribute Aj depends on values of attribute Ai. That is, Ai is
part of the context for preferences over the attribute Aj . This learning task is performed by a genetic
algorithm which generates an initial population P of graphs with vertices in A1, ..., An and for each
graph G ∈ P evaluates a fitness function score on G. Full details on the codification of individuals
and on the crossover and mutation operations are presented in de Amo et al. [2013].

The Fitness Function. This is the only part of the Extract procedure where the degrees of preference
included in the input data are relevant. The degree of preference affects primarily the way one decides
if a given structure is good or not.

The main idea of the fitness function is to assign a real number (a score) in [−1, 1] for a candidate
structure G, aiming to estimate how good it captures the dependencies between attributes in a fuzzy
preference database P. In this sense, each network arc is “punished” or “rewarded”, according to the
matching between each arc (X,Y) in G and the corresponding degree of dependence of the pair (X,Y)
with respect to P (see Alg. 3).

The degree of dependence of a pair of attributes (X,Y) with respect to a FPD P is a real num-
ber that estimates how preferences on values for the attribute Y are influenced by values for the
attribute X. Its computation is carried out as described in Alg. 3. In order to facilitate the
description of Alg. 3, we introduce some notations as follows: (1) For each y, y′ ∈ dom(Y),
y 6= y′ we denote by Tyy′ the subset of pairs (t, t′) ∈ P, such that t[Y] = y ∧ t′[Y] = y′ or
t[Y] = y′ ∧ t′[Y] = y; (2) If S is a set of triples in P, we denote by DP (S) the (multi)set con-
stituted by the dp appearing in the triples of S (repetitions are considered as different elements); (3)

Algorithm 3: The degree of dependence between a pair of attributes

Input: P: a fuzzy preference database; (X,Y): a pair of attributes; two thresholds α1 ≥ 0 and α2 ≥ 0.

Output: The Degree of Dependence of (X,Y) with respect to P
1 for each pair (y, y′) ∈ dom(Y) × dom(Y), y 6= y′ and (y, y′) comparable do
2 for each x ∈ dom(X) where x is a cause for (y, y′) being comparable do

3 Let f1(Sx|(y,y′)) = max{N, 1−N}, where

4 N =
{
∑

dp∈DP (Sx|(y,y′))}:t�t′∧(t[Y]=y∧t′[Y]=y′)∑
dp∈DP (Sx|(y,y′))

5 Let f2(Tyy′) = max {f1(Sx|(y,y′)) : x ∈ dom(X)}
6 Let f3((X,Y), T) = max{f2(Tyy′) : (y, y′) ∈ dom(Y) × dom(Y), y 6= y′, (y, y′) comparable}
7 return f3((X,Y), T)

Journal of Information and Data Management, Vol. 7, No. 2, August 2016.

92 · J. A. R. Costa and S. de Amo

We define support((y, y′),P) =

∑
dp∈DP (Ty,y′)∑
dp∈DP (P)

. We say that the pair (y, y′) ∈ dom (Y) × dom (Y) is

comparable if support((y, y′),P) ≥ α1, for a given threshold α1, 0 ≤ α1 ≤ 1; (4) For each x ∈ dom(X),
we denote by Sx|(y,y′) the subset of Tyy′ containing the triples (t, t′, n) such that t[X] = t′[X] = x;

(5) We define support((x|(y, y′)),P) =

∑
dp∈DP (S

x|(y,y′))
dp∑

z∈dom(X),dp∈DP (S
z|(y,y′))

dp
; (6) We say that x is a cause for

(y, y′) being comparable if support(Sx|(y,y′),P) ≥ α2, for a given threshold α2, 0 ≤ α2 ≤ 1.

The fitness score associated to G is calculated as in de Amo et al. [2013] by the formula:∑
X,Y

g((X,Y),G)

n(n−1)

where function g is calculated as follows: (1) If f3((X,Y),P) ≥ 0.5 and edge (X,Y) ∈ G, then
g((X,Y), G) = f3((X,Y),P); (2) If f3((X,Y),P) ≥ 0.5 and edge (X,Y) /∈ G, then g((X,Y), G) =
−f3((X,Y),P); (3) If f3((X,Y),P) < 0.5 and edge (X,Y) /∈ G, then g((X,Y), G) = 1; (4) If
f3((X,Y),P) < 0.5 and edge (X,Y) ∈ G, then g((X,Y), G) = 0. More details on the motivation
behind this computation in the crisp scenario, please see de Amo et al. [2013].

3.2 Calculating the Probability Tables Associated to each Vertex

Procedure Parents(Ai, G) returns the list of the parents of vertex Ai in the directed graph G. Procedure
CPTable(Ai, Parents(Ai)) returns, for each vertex Ai of the graph returned by Procedure Extract, a
list of conditional probabilities [CProb1, ..., CProbl]. Each conditional probability CProbi is of the
form Pr[E1|E2] where E2 is an event of the form Ai1 = a1 ∧... ∧ Ail = al and E1 is event of the form
(B = b1) � (B = b2).

The second point in the FuzzyPrefMining algorithm where the degree of preference is relevant is
in procedure CPTable. We calculate the maximum likelihood estimates for each conditional prob-
ability distribution of our model. The underlying intuition of this principle uses frequencies as
estimates; for instance, if want to estimate P (A = a � A = a′|B = b, C = c) we need to calcu-

late

∑
n∈DP (S(a,a′|b,c))∑

m∈DP (S(a,a′|b,c))+
∑

m′∈DP (S(a′,a|b,c))
, where S(a, a′|b, c) = set of triples (t, t′, dp) such that

t[B] = t′[B] = b and t[C] = t′[C] = c and t[A] = a and t′[A] = a′.

4. ASSESSMENT OF THE PREFERENCE MODEL CONSISTENCY

In order to assess the consistency of the preference model inferred by FuzzyPrefMiner, we used the weak
transitivity property of a fuzzy preference relation [Herrera-Viedma et al. 2004]. A fuzzy preference
relation is consistent if it meets the weak transitivity property, which states: Let M be a fuzzy
preference relation. The relation is consistent if: mij ≥ 0.5,mjk ≥ 0.5 ⇒ mik ≥ 0.5 for every i, j, k
of the relation.

This type of transitivity is the minimum property a fuzzy preference relation must meet for it to
be considered consistent. It is interpreted as an “IF ... THEN” rule: If a tuple ti is preferred to tuple
tj and the latter is preferred to tuple tk, then the tuple ti is also preferred to tuple tk. Based on
this property, Xu et al. [2013] proposed a method to find inconsistencies in fuzzy preference relations.
Basically, finding all inconsistencies in a fuzzy preference relation is equivalent to finding all the size-3
cycles in the directed graph that represents this relation.

A size-3 cycle means a contradiction of the weak transitivity property since each cycle found repre-
sents an type mij ≥ 0.5, mjk ≥ 0.5, and mik < 0.5 inconsistency. In order to find the size-3 cycles, Xu
et al. [2013] also proposed an algorithm based only on the matrices and some definitions, as follows:

Journal of Information and Data Management, Vol. 7, No. 2, August 2016.

Improving Pairwise Preference Mining Algorithms Using Preference Degrees · 93

Fig. 3. (a) Fuzzy Preference Relation M , (b) Adjacency Matrix E and (c) Directed Graph.

Definition 4.1. (Adjacency Matrix): Let M be a fuzzy preference relation, an adjacency matrix E
over M is defined by:

eij =

 1 if mij ≥ 0.5, i 6= j;
0 if mij = ∗;
0 otherwise

where mij = ∗ represents an empty position in the matrix, i.e., the user has specified no preference
for this tuple pair. To illustrate, let us consider the following example:

Example 3 : Let the fuzzy preference relation beM , obtained from a set of tuples Tup(R) = {t1, t2, t3, t4}
illustrated in Fig. 3(a). Fig. 3(b) represents the adjacency matrix from M obtained by Definition 4.1,
while Fig. 3(c) illustrates the directed graph that represents the preferences of the matrix E. The
directed edge (t1, t4) represents the fact that tuple t1 is preferred to tuple t4, which is illustrated in
matrix E by the value e14 = 1.

Two size-3 cycles can be observed in the graph (Fig. 3(c)): c1(t2, t1, t4, t2) and c2(t2, t3, t4, t2), and
each cycle represents a contradiction of the weak transitivity property. In order to find all these cycles,
Xu et al. [2013] defines the following theorem:

Theorem 4.2. Let M be a fuzzy preference relation, E the adjacency matrix of M , and E3 the
third power of E. The number of cycles C of a graph that represents a preference matrix is given by:

C =

∑
e3ij
3

, such that, i = j (1)

The sum of the elements in the main diagonal of the matrix E3 divided by the value 3 corresponds
to the number of size-3 cycles in a graph that represents the adjacency matrix of the fuzzy preference
relation.

Journal of Information and Data Management, Vol. 7, No. 2, August 2016.

94 · J. A. R. Costa and S. de Amo

Fig. 4. (a) The FPDs, (b) The Preference Layers, (c) Preparing the training data for classification and (d) Classifier’s

Accuracy.

5. EXPERIMENTAL RESULTS

5.1 Preparing the Experiments

The Fuzzy Preference Datasets (FPD). The datasets used in the experiments have been obtained
from the GroupLens Project5. The original data are of the form (UserId, FilmId, Rating). More details
about the movies, namely Genre, Actors, Director, Year and Language, have been obtained by means
of a crawler which extracted this information from the IMDB website6. Six datasets of film evaluations,
corresponding to six different users have been considered. Details about them are shown in Fig. 4(a).
For instance, dataset D1 is a set of 34.526 triples (w1, w2, n) where w1, w2 are taken from a pool of
300 movies.

Training a Classifier. A classifier is trained on each dataset in order to predict the “intensity of
preference” existing between two movies. A preliminary pre-processing is needed before the classifier
training phase. Each preference layer should contain 50% of triples with dp ≥ 0.5 and 50% with
dp < 0.5 in order to contain equal amount of pairs (w1, w2) with “yes” and “no” answers to “is w1

preferred to w2?”. This pre-processing is illustrated in Fig. 4(c), where the preference layers T1 and
T2 of Fig. 1(d) have been transformed into layers T ′1 and T ′2. After the calculation carried out by the
fuzzification function f2 (as explained in Section 3) we have dpmin = 0.6 and dpmax = 1.0 for each
FPD considered in our experiments. The interval I = [0.6, 1.0] is partitioned into k layers, and triples
of each layer receives an extra class attribute with value λi, the average dp for the layer. The triples
of the Weka File of Fig. 4(c) are depicted with their respective “classes” λ1 = 0.72 and λ2 = 0.9. The
Weka classifiers have been trained on a FPD of 31713 triples partitioned into 4 layers: T1 = (0.6, 0.7],
T2 = (0.7, 0.8], T3= (0.8, 0.9] and T4 = (0.9, 1.0]. The accuracy results are shown in Fig. 4(d). The
Bayesian classifiers Naive Bayes and BayesNet presented the best results. Besides, they execute faster
than the other ones. Thus, the BayesNet has been chosen for the remaining experiments concerning
FuzzyPrefMiner evaluation.

5.2 Performance and Scalability Results

A 30-cross-validation protocol has been considered in the experiments with FuzzyPrefMiner. The
FuzzyPrefMiner was implemented in Java and all the experiments were performed on a core i7 3.20GHZ

5www.grouplens.org
6www.imdb.com

Journal of Information and Data Management, Vol. 7, No. 2, August 2016.

Improving Pairwise Preference Mining Algorithms Using Preference Degrees · 95

Fig. 5. Influence of Classifiers.

Fig. 6. Influence of Preference Layers.

processor, with 32GB RAM, running on operating system Linux Ubuntu 12.10. The following default
values have been set for the parameters involved in the algorithm: (1) Extract Procedure: β = 50,
ϑ = 100 and γ = 20; (2) Algorithm 3: α1 = 0.2 e α2 = 0.2. These parameters were tested and verified
in our previous work [de Amo et al. 2013]. We prefer to keep the same parameter’s values used in
the CPrefMiner to make some comparisons and also the statistical significance test between these two
algorithms (CPrefMiner and FuzzyPrefMiner). For evaluating the acc, prec, rec, cr, rr measures, a
threshold σ = 0.05 has been considered.

Experiments have been carried out in order to test our original claim: the more information is
contained in the input data the better are the performance results. We conducted a series of experiments
to validate this hypothesis and then we compare the FuzzyPrefMiner with CPrefMiner.

Influence of Classifiers. In the first test (see Fig. 4(d)), the Bayesnet classifier stands as the
most performatic. However, the stratification protocol used by Weka is not the same protocol used
by FuzzyPrefMiner algorithm. Therefore, we performed a second test to support us in the choice of
the classifier. The main goal of this test is to analyze the influence of different classifiers when applied
with FuzzyPrefMiner algorithm in crisp scenario. We chose three classifiers by analyzing the results
of the first test, they are: AdaBoostM1, DecisionTable and BayesNet.

We figured out that even with a different stratification protocol the BayesNet classifier got better
accuracy, recall and precision in all data sets (see Fig. 5). Regarding comparability and randomness
rates, the results are quite similar in the three classifiers.

Influence of the preference layers. Intending to evaluate how the algorithm behaves according to
changes in the preference layers, we varied the number of preference layers on three levels. We divided
the FPD on 2, 4 and 8 layers to analyze the performance in crisp scenario. Fig. 6 shows the results
to accuracy, recall and precision. We realized that when the preference layer becomes more refined
(i.e., k = 8) better results come up.

Regarding comparability and randomness rates (see Fig. 6), we note that the results do not have
significant differences. The results of all k-values are satisfactory, since we have a high comparability
rate and low values of randomness rate. In this way, the FuzzyPrefMiner has good prediction because
most hits are obtained by the BPN preference order.

Influence of Fuzzification Functions. In order to evaluate how the algorithm behaves with the

Journal of Information and Data Management, Vol. 7, No. 2, August 2016.

96 · J. A. R. Costa and S. de Amo

Fig. 7. Influence of Fuzzification Functions.

Fig. 8. Comparison with CPrefMiner algorithm - Crisp Scenario.

Fig. 9. Comparison with CPrefMiner algorithm - Fuzzy Scenario.

change of fuzzification function, we tested three levels of the function fn(x) = xn

xn+1 (n = 1, n = 2
and n = 3). We consider the FuzzyPrefMiner in the fuzzy scenario and the preference layers varying
according to the function. For f1, f2 and f3 we have the intervals I1 = [0.55, 0.85] with 6 layers,
I2 = [0.6, 1.0] with 8 layers and I3 = [0.65, 1.0] with 7 layers, respectively. We have noticed that, the
higher the value of n (n = 3), better the results obtained for accuracy, recall and precision (see Fig.
7). For results of comparability and randomness rates, we have noticed that these results do not have
significant differences. Nevertheless, for the next tests, we will fix n = 2 for the fuzzification function,
because this value is an intermediate level between the functions, it has a bigger preference interval
and divides the degrees of preferences better in 8 layers of the interval.

Comparison with Baseline. We consider a paired difference one tailed t-test to measure the
statistical significance of the differences between the accuracy (resp. recall, precision, comparability
rate and randomness rate) of the FuzzyPrefMiner (acting in the crisp and fuzzy scenarios) with the
algorithm CPrefMiner [de Amo et al. 2013].

Both algorithms return BPNs, but CPrefMiner learns its BPN from a crisp training set and
FuzzyPrefMiner from a fuzzy one. We adapted the technique described in Urdan [2010] (originally
designed for comparing classifiers) for our fuzzy preference mining approach. For each one of the
quality measures d′ (where d′ ∈ {acc, rec, prec, cr, rr}) let d̄′ be the difference between the d′-measure
of the FuzzyPrefMiner (crisp and fuzzy scenarios) and the respective d′-measure the CprefMiner. The
main objective of the t-test is to compute the confidence interval γ for d′ and test if the Null Hypoth-
esis (H0) is rejected. The confidence interval γ is calculated as follows: γ = t(1−α,k−1) × σd′ , where
t(1−α,k−1) is a coefficient obtained in the distribution table with (1− α) being the level of t-test and
k − 1 is the degree of freedom. In all experiments we considered α = 0.95 and k = 30. We evaluated

Journal of Information and Data Management, Vol. 7, No. 2, August 2016.

Improving Pairwise Preference Mining Algorithms Using Preference Degrees · 97

Fig. 10. (a) consistency analysis of the preference model, (b) time spent for building the models and (c) time spent for
using the model on 1000 pairs of tuples.

the statistical significance for all the quality measures, because all of them were evaluated in the same
size samples.

For these experiments, the main question is: With α = 0.95 of certainty, can we conclude that
FuzzyPrefMiner (crisp and fuzzy scenarios) outperforms the CPrefMiner? The null and alternative
hypothesis for acc, rec, prec and cr are H0: FuzzyPrefMiner ≤ CPrefMiner and HA: FuzzyPrefMiner
> CPrefMiner. For the rr measure, the null and alternative hypothesis are H0: FuzzyPrefMiner ≥
CPrefMiner and HA: FuzzyPrefMiner < CPrefMiner. The Fig. 8 and Fig. 9 show the results and the
statistical significance test to compare the FuzzyPrefMiner with CPrefMiner. The results (crisp and
fuzzy scenarios) show that for accuracy, recall and precision measures the H0 is rejected (since all the
values contained in the confidence interval are positive), and, for these measures HA is substantiated.
As for the comparability and randomness rate measures, the H0 is rejected in some FPD such as D4
and D5, and thus, HA is substantiated for these cases and for others FPD (D1, D2, D3 and D6) the
observed differences has not statistical significance.

These results show the superiority of FuzzyPrefMiner over CPrefMiner, even when validated in the
fuzzy scenario. As expected the performance of FuzzyPrefMiner in the fuzzy scenario decreases with
respect to its performance in the crisp scenario, since the fuzzy validation protocol requires predicting
the degree of preference between two tuples and not only their relative preference ordering.

Execution Time. Fig. 10(b) presents the time spent by CPrefMiner and FuzzyPrefMiner to build
their respective models. In the case of FuzzyPrefMiner the total time includes the time spent for pre-
processing the input data for the classifier (involving I/O operations), the time spent by the classifier
BayesNet to build the classification model and the time spent to mine the 8 BPNs, one for each
partition. As expected, FuzzyPrefMiner is more costly than CPrefMiner.

The Fig. 10(c) shows the time spent to predict the preference for 1000 pairs of tuples. Again,
FuzzyPrefMiner is a little more costly than CPrefMiner taking nearly 1.4T3, where T3 is the time
spent by CPrefMiner to accomplish the same task.

Consistency Analysis. We analyzed the consistency of preference model, based on the amount
cycles of size-3 of fuzzy preference relations inferred by the FuzzyPrefMiner. Fig. 10(a) shows the
matrix size of each test FPD and the average cycles of 30 rounds of algorithm. The fuzzy preference
relations obtained from the fuzzification function are consistent, because, the function ensures the
weak transitivity property. Moreover, the fuzzy preference relation obtained by the FuzzyPrefMiner
algorithm are not completely consistent, the algorithm does not hit all user preferences. However, we
consider that there is a weak inconsistency in preference model, once the algorithm has good results
for accuracy, recall and precision.

Journal of Information and Data Management, Vol. 7, No. 2, August 2016.

98 · J. A. R. Costa and S. de Amo

6. CONCLUSION

We studied the influence of the degree of preference in the performance of Preference Mining techniques
specific for learning contextual preference models and propose the algorithm FuzzyPrefMiner for this
task, with very promising results. We have fixed the parameter σ = 0.05 to the experiments in
this paper. However, it is intended to change this value in futures works, as well as apply others
fuzzification functions found in the literature.

Other future research concentrates on the design of techniques for repairing inconsistency in the
fuzzy relation produced by FuzzyPrefMiner. Although the original BPN introduced in our previous
works is capable to infer a strict partial order on the set of tuples, the fuzzy relation produced by
FuzzyPrefMiner does not verify some transitivity properties of fuzzy relations such as weak transitivity
or additive transitivity [Herrera-Viedma et al. 2004].

REFERENCES

Burges, C. J. C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., and Hullender, G. N. Learning

to Rank Using Gradient Descent. In Proceedings of the International Conference on Machine Learning. New York,
NY, USA, pp. 89–96, 2005.

Chiclana, F., Herrera, F., and Herrera-Viedma, E. Integrating three representation models in fuzzy multipurpose

decision-making based on fuzzy preference relations. Fuzzy Sets and Systems 97 (1): 33–48, 1998.

Cohen, W. W., Schapire, R. E., and Singer, Y. Learning to Order Things. Journal of Artificial Intelligence
Research 10 (1): 243–270, 1999.

Crammer, K. and Singer, Y. Pranking with Ranking. In Proceedings of the International Conference on Neural

Information Processing Systems: Natural and Synthetic. Vancouver, Canada, pp. 641–647, 2001.

de Amo, S., Bueno, M. L. P., Alves, G., and da Silva, N. F. F. Mining User Contextual Preferences. Journal of
Information and Data Management 4 (1): 37–46, 2013.

de Amo, S., Diallo, M. S., Diop, C. T., Giacometti, A., Li, H. D., and Soulet, A. Mining Contextual Preference

Rules for Building User Profiles. In Proceedings of International Conference on Data Warehousing and Knowledge

Discovery. Vienna, Austria, pp. 229–242, 2012.

Freund, Y., Iyer, R., Schapire, R. E., and Singer, Y. An Efficient Boosting Algorithm for Combining Preferences.
The Journal of Machine Learning Research vol. 4, pp. 933–969, 2003.

Herrera-Viedma, E., Herrera, F., Chiclana, F., and Luque, M. Some Issues on Consistency of Fuzzy Preference

Relations. European Journal of Operational Research 154 (1): 98–109, 2004.

Jiang, B., Pei, J., Lin, X., Cheung, D. W., and Han, J. Mining Preferences from Superior and Inferior Examples. In
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Las Vegas,

USA, pp. 390–398, 2008.

Joachims, T. Optimizing Search Engines Using Clickthrough Data. In Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, pp. 133–142, 2002.

Koriche, F. and Zanuttini, B. Learning Conditional Preference Networks. Artificial Intelligence 174 (11): 685–703,

2010.

Ma, J., Fan, Z.-P., Jiang, Y.-P., Mao, J.-Y., and Ma, L. A Method for Repairing the Inconsistency of Fuzzy

Preference Relations. Fuzzy Sets and Systems 157 (1): 20–33, 2006.

Urdan, T. C. Statistics in Plain English. Taylor & Francis, 2010.

Wilson, N. Extending CP-Nets with Stronger Conditional Preference Statements. In Proceedings of the National

Conference on Artificial Intelligence. San Jose, CA, USA, pp. 735–741, 2004.

Xu, Y., Patnayakuni, R., and Wang, H. The Ordinal Consistency of a Fuzzy Preference Relation. Information

Sciences vol. 224, pp. 152–164, 2013.

Journal of Information and Data Management, Vol. 7, No. 2, August 2016.

