
An Approach for Query Decomposition on Federated
SPARQL Query Systems

Danusa R. B. Cunha, Bernadette Farias Lóscio

Center of Informatics - Federal University of Pernambuco - Brazil
drbc@cin.ufpe.br, bfl@cin.ufpe.br

Abstract. Providing integrated access to data distributed over Linked Data Federations has become a major research
challenge, mainly due to heterogeneity problems. In such context, this work proposes a solution for query decomposition
over Linked Data Federations, i.e., sets of RDF data sources published according to the principles of Linked Data. Our
main contribution lies in the definition and implementation of a query decomposition process, considering that the data
sources have structurally distinct ontologies, which describe their schemas. In order to evaluate the proposed approach,
a prototype was implemented and some experiments were performed.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous; H.2.5 [Heterogeneous Data-
bases]: Data translation; H.3.3 [Information Search and Retrieval]: Query formulation; H.3.4 [Systems and
Software]: Distributed systems

Keywords: Data Integration, Linked Data, RDF, Web of Data

1. INTRODUCTION

Over the years, different solutions for data integration have been proposed, as conventional Data
Integration Systems (DIS) [Doan et al. 2012], Peer Data Management Systems (PDMS) [Halevy
et al. 2006; Sung et al. 2005] and Dataspaces Systems [Franklin et al. 2005]. The primary goal of
a data integration system consists of offering a uniform interface that provides integrated access to a
collection of distributed data sources, which are usually heterogeneous, autonomous and dynamic. In
general, a data integration system should enable users to specify what they want, rather than thinking
about how they obtain the answers.

Initially, data integration solutions were mainly focused on solving the problem of integrating data
distributed in structured data sources (e.g in relational databases). Later, there was a huge interest
on using XML as a common data model to integrate data available on the Web [Doan et al. 2012].
Recently, the growing adoption of Semantic Web technologies, such as RDF (Resource Description
Framework) and OWL (Ontology Web Language), combined with the Linked Data Principles [Bizer
et al. 2009] motivated the development of new data integration solutions.

The principles of data integration in the Semantic Web context are very similar to those of conven-
tional data integration, despite the different terminologies employed to denote them. In both contexts
there are two main approaches for data integration: virtual and materialized approaches [Wiederhold
1992; Pan 2007; Lenzerini 2002; Lóscio 2003; Lóscio et al. 2002; Salgado et al. 2011]. In conventional
data integration systems the mediator architecture implements the virtual approach, in which the
data remains in the sources and queries submitted to the data integration system are decomposed
into queries addressed directly to the sources. In the Semantic Web scenario, the virtual approach is

Copyright c©2015 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 6, No. 2, June 2015, Pages 106–117.

An Approach for Query Decomposition on Federated SPARQL Query Systems · 107

implemented by a federated query architecture [Haase et al. 2010; Hartig and Langegger 2010], where
multiple RDF datasets are accessed by a federation layer through a SPARQL endpoint. Loading of
the data is, thus, not necessary, and an ad hoc federation can be built by simply incorporating an
additional SPARQL endpoint. The materialized approach, on the other hand, is based on a central re-
pository, where all data is physically loaded from dumps of the data sources, and queries are evaluated
against this single repository [Haase et al. 2010; Hartig and Langegger 2010].

In this article, we are interested on virtual data integration in the Semantic Web context. We
focus on Linked Data Federations that offer an integrated view of data distributed in multiple RDF
data sources. In this context, the federator is the component that plays the role of the mediator in
conventional DIS. It receives a SPARQL query, decomposes it into subqueries over the RDF data
sources and integrates the corresponding results [Bizer et al. 2009]. Ontologies are used to describe
the federator schema and the RDF data sources.

We propose a query decomposition strategy that addresses important challenges faced by virtual
data integration solutions. These challenges include the use of different representations to describe
the same real world object and partial data retrieval, which happens when data sources have different
query answering capabilities and provide partial answers for a given query. In order to deal with the
structural heterogeneity, we use a formalism to describe ontology mappings that takes into account the
most common ontology mismatches. Based on these mappings is also possible to generate subqueries
to retrieve complementary information distributed on different datasets of the federation. Another
important aspect of our approach is that it allows the decomposition of SPARQL queries that use
FILTER and OPTIONAL operators. As presented in the literature, these operators are not considered
in similar approaches for decomposition of SPARQL queries [Correndo et al. 2010; Leme et al. 2009;
Makris et al. 2012].

The remainder of the paper is organized as it follows. Section 2 presents an example to illustrate
the data integration problem in the context of Linked Data Federations. Section 3 provides basic
definitions, which will be used along this paper. Section 4 describes the proposed approach. Section
5 presents some aspects concerning the validation of our proposal. Section 6 discusses some related
works and Section 7 presents some conclusions.

2. MOTIVATING EXAMPLE

In this section, we present an example to illustrate some of the main challenges of federated query
processing on Linked Data. Consider a federation F composed by three different RDF data sources:
DBLP1, Kisti2 and DBpedia3. DBLP and Kisti data sources provide information about Computer
Science publications, while DBpedia is a cross-domain dataset. Each data source is associated with
an ontology, called local ontology, that describes the concepts and relationships used to represent the
data. An integrated view of the data is offered by the federator through the SWRC (Semantic Web
for Research Communities) ontology (see Figure 1 (a)), which is a domain ontology that describes
entities of research communities, such as persons, organizations, publications (bibliographic metadata)
and their relationships. The local ontologies are depicted in Figure 1 (b) (note that AKT ontology
describes the DBLP dataset).

In what follows, consider the following global query QF submitted to the federator: "Return the
title, the year (if available) and the abstract of all publications about Data Integration whose author
is Alon Y. Halevy with a brief biography of the author". To answer this query, QF needs to be
decomposed into a set of queries to be executed on the data sources that compose the federation F.

1dblp.rkbexplorer.com/sparql/
2kisti.rkbexplorer.com/sparql/
3wiki.dbpedia.org

Journal of Information and Data Management, Vol. 6, No. 2, June 2015.

108 · D. R. B. Cunha and B. F. Lóscio

Fig. 1: (a) Sample of SWRC Ontology and (b) Sample of Local Ontologies

However, decomposing QF into a set of subqueries is not an easy task. The first challenge is the
use of different concepts or properties to describe the same real world object. For example, the
concept s:Person from SWRC ontology corresponds to the concept k:Person from Kisti ontology,
and the property s:name of s:Person corresponds to the property k:engNameOfPerson. Another
example is the property s:publisher that relates an article to its authors. In the Kisti ontology, the
association between article and author is not direct: an instance of k:Accomplishment has to be
associated with an instance of k:CreatorInfo, and then it should have an association between this
instance of k:CreatorInfo and the instance of k:Person that represents the author of the article. In
this case, there is a correspondence between a property and a set of properties.

Another challenge is to deal with data sources that may provide partial answers for a given query.
Kisti and DBLP data sources, for example, can return publications about Data Integration that belong
to Alon Y. Halevy, but they are not capable of returning all of the required properties. In this case,
subqueries must be evaluated on these data sources based on the information that each source is able
to provide. In a similar way, DBpedia doesn’t provide information about papers, but it may offer
complementary information about authors obtained from Kisti and DBLP. For instance, the biography
of the authors obtained from Kisti may be retrieved from DBpedia (d:abstract) using the property
sameAs between k:Person and d:Person. This type of partial answering should be considering during
query decomposition.

In order to solve the aforementioned problems, we propose a query decomposition strategy based
on heterogeneous mappings between the federator ontology and the local ontologies. These mappings
capture the correspondence between heterogeneous concepts such as a property and a set of properties,
and make it possible to generate subqueries that retrieve partial answers for a given global query. In
the next section, we introduce the formalism to describe these mappings.

3. ONTOLOGY MAPPINGS

In order to perform the query decomposition process, it becomes necessary to obtain the mappings
between the local ontologies that describe the data sources that are being integrated and the domain
ontology that describes the integrated view offered by the federator. The mapping generation process
can be divided in two main phases: (i) vocabulary matching : during this phase is performed the
alignment between the domain ontology and the local ontologies in order to identify correspondences
between their concepts, and (ii) generation of mapping rules, which induces the mapping rules from
the step (i) in order to describe how to map concepts from the domain ontology into concepts from
local ontologies.

Journal of Information and Data Management, Vol. 6, No. 2, June 2015.

An Approach for Query Decomposition on Federated SPARQL Query Systems · 109

Table I: Sample of the result of a vocabulary matching between SWRC ontology and the AKT ontology.

SWRC AKT(DBLP)
v1 e1 v2 e2

1 s:title s:Article a:has-title a:Article-Reference
2 s:date s:Article a:has-date a:Article-Reference
3 s:Article > a:Article-Reference >

In our approach, we extend the vocabulary matching previously defined in [Leme et al. 2009;
Sacramento et al. 2010] to capture correspondences between ontologies with structural heterogeneities.
Our approach deals with situations where a concept is represented as a property in the domain ontology
and as a path of properties in a local ontology. To do this, we use the following path definition [Cunha
and Lóscio 2014]:

Definition 1. Property Path. Given a set of properties p1, . . ., pn of an ontology O, µ = p1, . . .,
pn is a path if: (i) each property pi, 1 ≤ i < n, is a property of O and (ii) the range of pi is equal to
the domain of pi+1, ∀ pi such that 1 ≤ i < n.

In the following, the extended version of the formalism adopted to capture correspondences between
a local ontology (OL) and the domain ontology (OD) is described.

Let OL and OD be two ontologies, and VL and VD be their respective vocabularies. Let CL and
CD be the sets of classes, and PL and PD be the sets of datatype or object properties in VL and VD,
respectively. A vocabulary matching of a local ontology OL to a domain ontology OD is a finite set S
of quadruples (v1, e1,v2, e2) such that:

—If (v1, v2) ε CL × CD, then e1 and e2 are top class >, i.e, there are no restrictions on the respective
classes. In this case, (v1, e1, v2, e2) represents a class correspondence;

—If v1 ε PD and v2 is a path µ = p1, . . ., pn, where each property p1 ε PL, 1 ≤ i < n, then e1 and
e2 are classes in CL and CD, that must be subclasses of the domains, or the domains themselves or
the restrict domains of properties v1 and pn, respectively. If v1 is a datatype property or an object
property then pn is a datatype property or an object property, respectively, and the domain of v1
has a correspondence with the domain of p1. A special case of a property path happens when n =
1. This type of correspondence is called property correspondence.

To illustrate how this formalism is applied, Tables I and II show some samples of a vocabulary
matching between two ontologies.

For example, in Table I, line 3 indicates that classes s:Article and a:Article-Reference match (a class
correspondence) and line 1 indicates that properties s:title and a:has-title match (a property corres-
pondence), as their classes s:Article and a:Article-Reference are equivalent. That is, the property
s:title of an instance of s:Article is equivalent to property a:has-title of a corresponding instance of
a:Article-Reference. It is important to note that, in both examples, s:Article and a:ArticleReference
are the domains of s:title and a:has-title, respectively, representing the context of the properties.

Table II: Sample of the result of a vocabulary matching between SWRC ontology and the Kisti ontology.

SWRC Kisti
v1 e1 v2 e2

1 s:title s:Article k:engNameOfAccomplishment k:Accomplishment
2 s:date s:Article k:yearOfAccomplishment k:Accomplishment
3 s:description s:Article k:engAbstractOfAccomplishment k:Accomplishment
4 s:publisher s:Article [k:hasCreator.k:hasCreatorInfo] k:Accomplishment
5 s:Article > k:Accomplishment >

Journal of Information and Data Management, Vol. 6, No. 2, June 2015.

110 · D. R. B. Cunha and B. F. Lóscio

Furthermore, we consider not only homogeneous correspondences (between classes or between proper-
ties), but also correspondences expressing structural heterogeneity (Path Property Correspondence).
For example, line 4 in Table II indicates an example of a matching between a property and a property
path. In this case, in the ontology OD, the object property s:publisher corresponds to the path v2 =
k:hasCreatorInfo.k:hasCreator.

It is important to note that, in our work, the generation of such correspondences can be a semi-
automatic process, requiring the user intervention for creation, validation and refinement of the on-
tology alignment. After obtaining the correspondences between the local ontologies and the domain
ontology, the set of mappings can be automatically generated.

Generally, mappings between the domain ontology and each local ontology are specified through
rules of the form ψ(w) ← φ1(t1) ∧ . . . ∧ φn(tn), where φ1(t1) ∧ . . . ∧ φn(tn), called the body of the
mapping rule, is an atom or an atom conjunction, and each φi(ti) is a class or a property that occurs
in the local ontology OL. ψ(w) , called the head of the mapping, is an atom, where ψ(w) could be a
class or a property that occurs on the domain ontology OD and w are terms sequences. To understand
the semantics of these mappings consider, for example, the following mapping rules regarding classes
and properties:

(1) s:Person(p) ← a:Person(p)
(2) s:Person(p) ← k:Person(p)
(3) s:Person(p) ← d:Person(p)
(4) s:name(p,n) ← a:full-name(p,n), a:Person(p)
(5) s:name(p,n) ← k:engNameOfPerson(p,n), k:Person(p)
(6) s:name(p,n) ← d:name(p,n), d:Person(p)

Rule (1) expresses the fact that if there is an instance p from Person in the dataset DBLP then there
will be an instance p from Person in the integrated view offered by the federator. The same applies
for rules (2) and (3) for datasets Kisti and DBPedia, respectively. Rule (4) expresses the fact that if
n is the value of the property full-name of an instance p from Person in the DBLP dataset, then n
will be the value of the property name of the instance p from Person in the integrated view offered
by federator. The same applies for rules (5) and (6) for datasets Kisti and DBPedia, respectively.

4. QUERY DECOMPOSITION APPROACH

The query decomposition approach proposed in this paper aims to solve the following problem: Given
a domain ontology OD that represents the federator schema; a set of RDF datasets D = D1, . . ., Dn; a
set of local ontologies OLD

= OD1
, . . ., ODn

, where each OLD
describes the vocabulary of the dataset

Di and a set of mappings M between OD and each local ontology OLD
, the query decomposition

problem consists of identifying how to decompose a global query QF , defined in terms of OD, in one
or more queries {QD1

, . . ., QDn
} to be submitted to datasets from D, whereas the local ontologies

that describe the schemas of datasets from D may have distinct structures.

In the remainder of this section, consider the following query QF posed to the federator: "Return the
title, the year (if available) and the abstract of all publications about Data Integration whose author is
Alon Y. Halevy with a brief biography of the author". The corresponding SPARQL query is presented
in Figure 2. As we may observe, the main components of a SPARQL query are:(i) the Basic Graph
Pattern (BGP), which is composed by a sequence of triple patterns (TP). A triple pattern is an
expression of the form (s, p, o) ε (I ∪ B) × I × (I ∪ B ∪ L) where I, B, and L are IRIs, Blank Nodes,
and literals respectively; (ii) the solution modifiers, which allow to modify the output of the pattern
and (iii) the output, which specifies the result form of the query. It is important to note that our
approach deals with SELECT SPARQL queries whose final form of the result is a table. Moreover,

Journal of Information and Data Management, Vol. 6, No. 2, June 2015.

An Approach for Query Decomposition on Federated SPARQL Query Systems · 111

Fig. 2: SPARQL query example.

the subject (s) and the object (o) of a triple pattern must be a variable or a literal. The operators
AND, OPT and FILTER are also allowed.

The proposed approach consists of the following tasks:

1) Query Graph Generation: during this task, a query graph GQ = (V, E) is generated from
QF , where V is the set of vertices composed by subjects (s) and objects (o) of each TP ε BGP of
QF , and E is the set of edges representing the predicates (p) of each TP ε BGP of QF .

Given a SPARQL query Q, the first step of this task is to find the FILTER and the OPTIONAL
operators that compose the BGP of Q. A list LFQ

is created to store each FILTER operator from Q.

In this work, an operator FILTER is represented by two attributes: an expression and a set of
variables. To illustrate how we deal with the FILTER operator, consider the filter expression of QF

(Figure 2): FILTER regex{?title, "Data Integration", "i"} where:

Expression: regex{?title, "Data Integration", "i"}
Variable: ?title

Both expression and variable are stored as a node on the list LFQF
as illustrated on Figure 3.

If a triple pattern is optional (OPTIONAL TP), then TP is modified, following this format: TP(s,
p , <o, op>), where op is a Boolean variable with true value.

To illustrate the query graph generation task, consider the triple pattern (?paper, rdf:type, s:Article)
from QF . Two new nodes and a new edge are created to represent this triple pattern. New nodes
receive values ?paper and s:Article, while the new edge receives the value rdf:type. Suppose the next
triple pattern (?paper s:year ?year). Note that only a new node and a new edge are created with
values ?year and s:year respectively, because there is already a node with the value ?paper. As this
triple pattern is optional, then, in the query graph, the node with value ?year is annotated with
true. This procedure is done for each triple pattern TP from QF . At the end of the Query Graph
Generation task, we obtain the query graph depicted in Figure 4.

2) Graph Decomposition (subqueries): This task receives as input a query graph GQ = <V,
E>, a set of datasets D and a set of mappings M. During the decomposition process, GQ is decomposed
into a set of graphs GD1 , . . ., GDn according to the mapping rules of M. In general, for each dataset

Fig. 3: List of Filters LFQF

Journal of Information and Data Management, Vol. 6, No. 2, June 2015.

112 · D. R. B. Cunha and B. F. Lóscio

Fig. 4: Query Graph for query QF

Di, 1 ≤ i ≤ n, of D, a new graph is created based on the mappings between the concepts represented
by the vertices of GQ and the concepts available on the dataset Di. The graph decomposition task
is performed for each dataset Di and at the end of the task the graph GDi is created. In order to
produce the graph GDi

the following steps are executed:

—Node Rewriting : this step performs the rewriting of a node v, returning a new rewritten node v’.
Two cases must be considered:
(1) if v is a variable or a literal, then the new node v’ is assigned with the same value of the variable

or the literal;
(2) if v is a class c and there is a mapping rule in M such that c(w) ← ci(w) then a new node n’

is created with value ci.
—Edge Rewriting : this step performs the rewriting of an edge uv, returning a new rewritten edge e’.
Three cases must be considered:
(1) if uv is a variable, then the new edge e’ is assigned with the same value of the variable;
(2) if uv is a property p and there is a mapping rule in M such that p(x,y) ← pi(x,y) then a new

edge is created with value pi to connect the rewritten nodes of u and v.
(3) if uv is a property p and there is a mapping rule in M such that p(x,y)← p1(x,z).←.pi(w,y),

then new i-1 auxiliary nodes are created with values ?tj , 1 ≤ j ≤ i-1, and new edges are created
representing each one of the properties pi to connect the rewritten nodes of u and v through
the auxiliary nodes ?tj .

To illustrate the graph decomposition process, consider query QF (Figure 2), the query graph GQF

(Figure 4) and the dataset Kisti. In the set of mapping, consider, for example, the following mapping
rules:

(1) s:Article(Ar) ← a:Article-Reference(Ar)
(2) s:Article(Ar) ← k:Accomplishment(Ar)
(3) s:publisher(pub, Ar) ← a:has-author(pub, Ar), a:Article-Reference(Ar)
(4) s:publisher(pub, Ar) ← [k:hasCreatorInfo(pub,z).k:hasCreator(z, p)], k:Accomplishment(Ar)

Consider the edge uv of GQF
that connects nodes ?paper and s:Article, whose value is rdf:type.

The first step of the graph decomposition is to rewrite u. Considering that u is a variable (?paper),
then a new node will be created in the query graph QKisti and the value ?paper will be assigned to
the new node. The next step is to rewrite the node v. In this case, the value of v is the name of a
class (s:Article). Then, according to mapping rule (2), a new node will be created in the query graph
QKisti with value k:Accomplishment. Finally, the edge uv is rewritten. In this case, as the value of uv
is a predicate, then a new edge will be created in the query graph QKisti with the same value of the

Journal of Information and Data Management, Vol. 6, No. 2, June 2015.

An Approach for Query Decomposition on Federated SPARQL Query Systems · 113

Fig. 5: Partial Query Graph GQkisti
.

edge uv, i.e., rdf:type. Figure 5 shows the query graph QKisti obtained after the rewriting of the edge
that connects nodes ?paper and s:Article.

To illustrate the graph decomposition process in the presence of a structural heterogeneity between
the domain ontology and one of the local ontologies, consider the edge uv from GQ that connects nodes
?paper and ?author whose value is s:publisher. Considering that nodes ?paper and ?author were alre-
ady rewritten, i.e., corresponding nodes were created for the query graph GQkisti

, then the next step is
to rewrite the edge uv (s:publisher). According to the set of mappings M (Rule 4), there is a mapping
between s:Publisher and the following property path: ([k:hasCreator(pub,Ar).k:hasCreatorInfo(z)],
k:Accomplishment(Ar)). In this case, each property that composes this path (k:hasCreator and
k:hasCreatorInfo) must be considered during the rewriting process. In order to connect nodes ?paper
and ?author through properties k:hasCreator and k:hasCreatorInfo it becomes necessary to create an
auxiliary node in GQkisti

. This auxiliary node is assigned with value ?t1 as depicted in Figure 6. Then
the edge that connects ?paper and ?t1 is assigned with value k:hasCreator and the edge that connects
?t1 and ?author is assigned with value k:hasCreatorInfo.

At the end of the graph decomposition task, a new query graph is created for each one of the local
datasets that is able to answer the original query Q. Considering the query QF from our example,
three new query graphs will be created for each one of the datasets from D (DBLP, DBPedia and
Kisti) as depicted in Figure 7.

3) Subqueries generation: the last step of the query decomposition process consists of creating
SPARQL queries to be evaluated in the local datasets. For each graph GQi

a new SPARQL query
Qi is generated considering node annotations for OPTIONAL operators as well as the corresponding
filter list.

In our example, QF was transformed into the graph GQF
and this graph was decomposed into three

graphs {GQ1
, GQ2

, GQ3
}. For each graph, a SPARQL query is generated in a reverse process of the

graph generation step. Figure 8 shows the queries generated for each query graph obtained at the end
of this task.

It is important to note that we focus just on the generation of the subqueries to be executed on
the local data sources. The integration of the results obtained from each data sources is out of the
scope of this article. This is a very complex task that requires the resolution of relevant problems as
entity matching [Euzenat and Shvaiko 2007] and data fusion [Bleiholder and Naumann 2009; Dong

Fig. 6: Partial Query Graph GQkisti
after the rewriting of the edge s:publisher.

Journal of Information and Data Management, Vol. 6, No. 2, June 2015.

114 · D. R. B. Cunha and B. F. Lóscio

Fig. 7: Query Graphs for each dataset Di

et al. 2013]. In the context of federated SPARQL query processing, the data integration required
efficient query processing strategies. Thus, join processing strategies as well as other sophisticated
optimization approaches are needed to find an appropriate solution. Some approaches deal with these
challenges as [Quilitz and Leser 2008; Magalhães et al. 2013; Schwarte et al. 2011]

It is also important to clarify that the focus of this work is not on aspects related with implemen-
tation and optimization of SPARQL queries.

5. IMPLEMENTATION AND EVALUATION

To evaluate our approach, a prototype, named oLinDa, was developed and some experiments were
performed. oLinDa was implemented in Java and Jena API4 was used to manipulate both ontologies
and SPARQL queries. The evaluation was performed on a Dell Vostro 3450 machine with a processor
Intel Core i5-2430M and 4GB of memory, and Linux Ubuntu 12.04 as operational system. Jena TDB5,
which is an RDF repository, was used to store the datasets. Queries were manipulated through ARQ
API6, whose implementation is available on GitHub7 under Mozilla Public License.

A set of twenty (20) queries were considered in the experiments, among which sixteen (16) were
extracted from the SP2Bench8 SPARQL benchmark. These queries were chosen considering their
main SPARQL constructs and their complexity. To perform the experiments, a repository, called
RD, was created to store integrated data from datasets DBLP, Kisti, DBpedia and Opus Swego9.
From the RD repository, it was possible to assess whether the decomposition process proposed in this
paper was working properly. The idea was to evaluate if the results obtained when executing a query
Q directly on RD was similar to the results obtained when executing the subqueries obtained from
the decomposition of Q in each one of the corresponding data sources. It is important to note that
integration of the subqueries results were performed manually. At the end of the experiments, thirteen
(13) queries were properly decomposed and the results obtained from the execution of queries directly
on RD and the execution on the local data sources were the same in all the cases. Figure 8 shows
an example of a query decomposed properly, treating both structural heterogeneity aspect as showing

4http://jena.apache.org/
5http://jena.apache.org/documentation/tdb/
6https://jena.apache.org/documentation/query/appapi.html
7https://github.com/danusarbc/olinda-rewriting
8http://dbis.informatik.uni-freiburg.de/forschung/projekte/SP2B/
9http://opus.bath.ac.uk/

Journal of Information and Data Management, Vol. 6, No. 2, June 2015.

An Approach for Query Decomposition on Federated SPARQL Query Systems · 115

Fig. 8: Subqueries for each dataset Di

that some data sources may provide partial answers for the original SPARQL query. Two (2) queries
could not be decomposed because they are queries that request properties that are not in the scope
of the domain ontology and five (5) queries were incorrectly decomposed because they have UNION
and OPTIONAL builders with more than one triple pattern.

Importantly, the experiments demonstrated the feasibility of our approach, but it is still necessary
to conduct a more formal proof, demonstrating that our approach is correct.

6. RELATED WORK

In this section, we briefly present some of the research literature related to our proposal. The works
from [Correndo et al. 2010; Leme et al. 2009; Makris et al. 2012] are mainly focused on the problem
of query rewriting, and not on query decomposition, as we do. These approaches do not deal with filter
expressions on SPARQL queries, and consider only homogenous mappings between the ontologies that
describe the datasets. In the former work, a query is first parsed, its basic graph pattern (BGP) is
extracted and every triple pattern of the BGP is translated. This translation is done according to the
correspondences that have been established to specify the semantic relationships between concepts of
the source and the target datasets.

However, if a single triple pattern does not have a corresponding translation, i.e., there are no
correspondences that allow the translation of this triple pattern, the entire query is discarded.

Fig. 9: Query decomposed by OLinDa.

Journal of Information and Data Management, Vol. 6, No. 2, June 2015.

116 · D. R. B. Cunha and B. F. Lóscio

One of the main distinguishing features of our approach is that the BGP of the generated subqueries
do not correspond exactly to the same BGP of the original query, i.e., just triple patterns that can
be answered by the corresponding local data source needs to be translated. Considering our example,
the data source DBpedia has just information about authors, therefore, in this case, just the triple
patterns concerning author were considered during the generation of the corresponding subquery. In
the mentioned query rewriting approaches, the subquery Q2 (Figure 8) wouldn’t be rewritten and
it would not be possible to obtain data from the DBpedia. Traditional query rewriting approaches
do not allow performing incomplete translations of a BGP, i.e., they require the translation of the
whole set of triple patterns. Our main purpose is to find not only the data source(s) that may answer
the original query, but also collecting complementary information and further applying a data fusion
process for answering the query. Other important aspect of our approach is that we deal with triple
patterns that may have FILTER and OPTIONAL clauses, as depicted in Figure 8. The data source
Kisti has information about title and year, which are treated with OPTIONAL and FILTER clauses
respectively; then the generated graph will contain such triple patterns. Finally, we adopt a formalism
that uses the concept of property path to deal with ontologies with distinct structures.

7. CONCLUSIONS AND FUTURE WORK

In this paper we presented an approach to deal with the query decomposition problem in the context
of data integration on the Web of Data, where local data sources are RDF datasets described by
an ontology and accessed through SPARQL queries. One of the main distinguishing features of
our solution is that it can deal with ontologies with distinct structures through the manipulation of
homogeneous and heterogeneous mappings [Sacramento et al. 2010; Leme et al. 2009] between their
concepts. We deal with triple patterns that may have FILTER and OPTIONAL and our approach
retrieves complementary information available on different datasets. In order to evaluate the proposed
approach, a prototype was implemented and some experiments were performed.

As a future work, we plan to develop new experiments considering larger ontologies, more queries
and known datasets. We also plan to extend the scope of the SPARQL language supported by the
federator with the inclusion of other types of SPARQL queries (ASK, CONSTRUCT and DESCRIBE).
Finally, we want to improve the query decomposition strategy to consider the user feedback as well
as to include a new task to allow the automatic generation of the query execution plan. Besides, we
intend to do a formal evaluation of our approach and develop a data fusion strategy.

REFERENCES

Bizer, C., Heath, T., and Berners-Lee, T. Linked Data - The Story So Far. International Journal on Semantic
Web and Information Systems (IJSWIS) 5 (3): 1–22, 2009.

Bleiholder, J. and Naumann, F. Data Fusion. ACM Computing Surveys 41 (1): 11–141, 2009.
Correndo, G., Salvadores, M., Millard, I., Glaser, H., and Shadbolt, N. SPARQL Query Rewriting for

Implementing Data Integration over Linked Data. In Proceedings of the International Conference on Extending
Database Technology, Workshops. Lausanne, Switzerland, pp. 4:1–4:11, 2010.

Cunha, D. R. B. and Lóscio, B. F. oLinDa: uma abordagem para decomposição de consultas em federações de
dados interligados. In Proceedings of the Brazilian Symposium on Databases. Curitiba, Brazil, pp. 137–146, 2014.

Doan, A., Halevy, A., and Ives, Z. Principles of Data Integration. Morgan Kaufmann Publishers Incorporation,
San Francisco, USA, 2012.

Dong, X. L., Berti-Equille, L., and Srivastava, D. Data Fusion: resolving conflicts from multiple sources. In
J. Wang, H. Xiong, Y. Ishikawa, J. Xu, and J. Zhou (Eds.), Web-Age Information Management. Lecture Notes in
Computer Science, vol. 7923. Springer, pp. 64–76, 2013.

Euzenat, J. and Shvaiko, P. Ontology Matching. Springer-Verlag, Heidelberg, Germany, 2007.
Franklin, M., Halevy, A., and Maier, D. From Databases to Dataspaces: a new abstraction for information

management. SIGMOD Record 34 (4): 27–33, 2005.
Haase, P., Mathass, T., and Ziller, M. An Evaluation of Approaches to Federated Query Processing over Linked
Data. In Proceedings of the International Conference on Semantic Systems. New York, USA, pp. 51–59, 2010.

Journal of Information and Data Management, Vol. 6, No. 2, June 2015.

An Approach for Query Decomposition on Federated SPARQL Query Systems · 117

Halevy, A., Rajaraman, A., and Ordille, J. Data Integration: the teenage years. In Proceedings of the International
Conference on Very Large Data Bases. Seoul, Korea, pp. 9–16, 2006.

Hartig, O. and Langegger, A. A Database Perspective on Consuming Linked Data on the Web. Datenbank-
Spektrum 10 (2): 57–66, 2010.

Leme, L. A. P. P., Casanova, M. A., Breitman, K. K., and Furtado, A. L. Instance-Based OWL Schema
Matching. In J. Filipe and J. Cordeiro (Eds.), Enterprise Information Systems. Lecture Notes in Business Information
Processing, vol. 24. Springer, pp. 14–26, 2009.

Lenzerini, M. Data Integration: a theoretical perspective. In Proceedings of the ACM Symposium on Principles of
Database Systems. Madison, USA, pp. 233–246, 2002.

Lóscio, B. F. Managing the Evolution of XML-Based Mediation Queries. Ph.D. thesis, Federal University of Per-
nambuco (UFPE), Brazil, 2003.

Lóscio, B. F., Salgado, A. C., and Vidal, V. M. P. Using Agents for Generation and Maintenance of Mediators.
Journal of the Brazilian Computer Society 8 (1): 32–42, 2002.

Magalhães, R. P., Monteiro, J. M., Vidal, V. M. P., de Macêdo, J. A. F., Maia, M., Porto, F., and
Casanova, M. A. QEF-LD - A Query Engine for Distributed Query Processing on Linked Data. In Proceedings of
the International Conference on Enterprise Information Systems. Angers, France, pp. 185–192, 2013.

Makris, K., Bikakis, N., Gioldasis, N., and Christodoulakis, S. SPARQL-RW: transparent query access over
mapped RDF data sources. In Proceedings of the International Conference on Extending Database Technology.
Berlin, Germany, pp. 610–613, 2012.

Pan, J. Z. A Flexible Ontology Reasoning Architecture for the Semantic Web. IEEE Transactions on Knowledge and
Data Engineering 19 (2): 246–260, 2007.

Quilitz, B. and Leser, U. Querying Distributed RDF Data Sources with SPARQL. In S. Bechhofer, M. Hauswirth,
J. Hoffmann, and M. Koubarakis (Eds.), The Semantic Web: research and applications. Lecture Notes in Computer
Science, vol. 5021. Springer, pp. 524–538, 2008.

Sacramento, E. R., Vidal, V. M. P., de Macêdo, J. A. F., Lóscio, B. F., Lopes, F. L. R., and Casanova,
M. A. Towards Automatic Generation of Application Ontologies. Journal of Information and Data Manage-
ment 1 (3): 535–550, 2010.

Salgado, A. C., Lóscio, B. F., da Conceição Moraes Batista, M., Belian, R. B., Pires, C. E. S., and Souza,
D. The Data Integration Research Group at UFPE. Journal of Information and Data Management 2 (2): 109–122,
2011.

Schwarte, A., Haase, P., Hose, K., Schenkel, R., and Schmidt, M. FedX: a federation layer for distributed
query processing on linked open data. In G. Antoniou, M. Grobelnik, E. Simperl, B. Parsia, D. Plexousakis, P. D.
Leenheer, and J. Pan (Eds.), The Semantic Web: research and applications. Lecture Notes in Computer Science, vol.
6644. Springer, pp. 481–486, 2011.

Sung, L. G. A., Ahmed, N., Blanco, R., Li, H., Soliman, M. A., and Hadaller, D. A Survey of Data
Management in Peer-to-Peer Systems. http://courses.cs.vt.edu/~cs5204/fall07-kafura/Papers/FileSystems/
P2P-DataManagement.pdf, 2005.

Wiederhold, G. Mediators in the Architecture of Future Information Systems. IEEE Computer 25 (3): 38–49, 1992.

Journal of Information and Data Management, Vol. 6, No. 2, June 2015.

