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Abstract. With the popularity of devices that are able to annotate data with spatial information (latitude and
longitude), more and more spatial data are becoming available. This has attracted the attention from the research
community in the processing of advanced spatial queries. In this article, we study a new query type named Top-k Spatial
Keyword Preference Query that selects objects of interest based on the textual relevance of other spatio-textual objects
in their spatial neighborhood. This article introduces this new query type, presents three algorithms for processing
the query efficiently and goes over an extensive experimental evaluation to study the performance of the algorithms
proposed, employing real datasets.

Categories and Subject Descriptors: H.2.8 [Database Applications]: Spatial databases and GIS; H.2.4 [Systems]:
Textual databases; H.2.4 [Systems]: Query processing

Keywords: Hybrid Access Methods, Preference Queries, Spatial Databases, Query Processing, Textual Databases

1. INTRODUCTION

With the popularization of GPS enabled devices, the volume of spatial data produced has increased
significantly in the last years, which explains the interest for new approaches to extract relevant
information from this amount of data [Cao et al. 2012]. Facebook, Google Maps, Twitter and Waze
are examples of applications that process spatial data in order to obtain relevant information. Most
of the spatial data available is associated with a text. For example, some messages of Twitter (text)
sent from Smartphones have the spatial coordinates (latitude and longitude). The objects in the
OpenStreetMap (www.osm.org) have a spatial location and are associated with a descriptive text.
The objects that have spatial and textual information are so called spatio-textual objects [Vaid et al.
2005].

A significant part of the traditional spatial types of query is user centered. Most types of query
search for spatial objects considering the user position. This is the case of the spatial queries range
and nearest neighbor (nn). The range selects objects that are within a distance r (radius) of the user
location, while nn returns the closest spatial object from the user location. This is also the case of
the Top-k Spatial Keyword Query [Cong et al. 2009] that returns the k most relevant spatio-textual
objects by considering both the distance between the spatio-textual objects and the user location, and
the relevance between the text of the spatio-textual objects and the query keywords.

In this article, we propose a new query type named Top-k Spatial Keyword Preference Query.
Differently from the user centered spatial types of query, this new query type searches for spatial
objects of interest considering other spatio-textual objects in their spatial neighborhood. Specifically,
given a set of spatial objects of interest (e.g. hotels), a set of spatio-textual objects of reference (e.g.
bars, restaurants and tourist attractions), a spatial selection criteria (e.g. 100m from the spatial
objects of interest) and a set of query keywords (e.g. “Italian food”); the Top-k Spatial Keyword
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Fig. 1. Objects of interest (p) and objects of reference (f) associated with a text.

Preference Query returns the k best spatial objects of interest, where the score of each object is given
by the highest textual relevance between the query keywords and the text of the spatio-textual objects
of reference that satisfies the spatial selection criteria.

For example, Fig. 1 presents a spatial area (e.g. a city) with spatial objects of interest p (e.g.
apartments for renting) and spatio-textual objects of reference f (e.g. any establishment). Thus, a
user interested in renting an apartment close to a bus stop specifies the query keywords “bus stop”
and defines the spatial selection criteria (the circle around the spatial objects of interest). The Top-k
Spatial Keyword Preference Query returns the objects p2 as top-1 and p3 as top-2. The object p2 is
more relevant than p3 because it has in its spatial vicinity the spatio-textual object of reference f3
that is more textually relevant to the query keywords than any other spatio-textual object of reference
in the vicinity of p3. The object p3 is more relevant than p1. In the spatial vicinity of p3, the object f4
is textually relevant to the query keywords, while there is no textually relevant object in the vicinity
of p1. Note that f5 is textually relevant to the query keywords, but it is not in the spatial vicinity of
any spatial object of interest.

Several applications can benefit from this new query type in order to provide advanced location-
based services. For example, an application for helping tourists can employ this query type for
selecting the best metro stations according to the tourist interest. In this case, the tourist would
select the metro stations to be the objects of interest, defining his preference through the query
keywords (e.g. “open air museum”). This query type would return the k best metro stations (spatial
objects of interest) near establishments (spatio-textual objects of reference) relevant to the query
keywords. Government applications (e-Gov) can also benefit from this query type. For example,
given a set of streets (spatial objects of interest) and tweets with spatial location (spatio-textual
objects of reference), the query returns the streets that are more relevant to the query keywords
“theft, robbery and shooting”, indicating streets that should receive better attention from the police.

To the best of our knowledge, there is no other spatial or textual query type that is able to select
the k best objects of interest, employing only the textual relevancy of the spatio-textual objects of
reference in the spatial vicinity of the objects of interest. The two most related work are proposed by
Yiu et al. [2007] and Tsatsanifos and Vlachou [2015]. The first does not consider the textual relevance
of the objects of reference and the second requires a predefined score in the objects of reference, which
is not available in most real datasets.

The main contributions of this article are:

—To propose an new query type named Top-k Spatial Keyword Preference Query;

—To present algorithms to process this query type efficiently with two different spatial selection
criteria: range and nearest neighbor;

—To perform an experimental evaluation to study the algorithms proposed using real datasets.
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The rest of this article is organized as follows: Section 2 presents the related work; Section 3
contains a precise definition of this new query type; Section 4 describes the algorithms to process this
query type for range and nearest neighbor; Section 5 contains the experimental evaluation and, finally,
Section 6 contains the final remarks.

2. RELATED WORK

The research in the field of spatio-textual queries can be separated in three main periods. In the first
period, the research focus was on improving the results of the search engines, with an information
retrieval perspective. The queries had the main purpose of retrieving relevant documents for the query
keywords. Instead of searching for objects with a specific spatial location, the approaches employed
the name of the places such as cites and countries, in order to search for relevant results [Zhou et al.
2005]. For example, in order to answer the query “Eiffel Tower in Paris”, the keyword “Paris” is
employed to define the place of interest, filtering out documents that are not relevant for this place.

In the second period, with the popularity of GPS enabled devices, the research focus was on iden-
tifying spatial objects relevant for the query keywords. The research did not focus in computing the
precise textual relevance between the query keywords and the text of the spatial objects. Instead,
they employed a Boolean approach by returning the objects that match the query keyword [De Felipe
et al. 2008]. For example, “return all objects that are from 100m of the given query location (latitude,
longitude) that have the keywords ‘Eiffel’ and ‘Tower’ in their description”.

In the third period (current), the researchers are interested in the precise location of the spatial-
textual objects and in the textual relevance between the query keywords and the text of the objects.
The textual relevance is computed by employing text similarity approaches such as cosine [Zobel and
Moffat 2006]. In order to compute the score of the objects, considering the precise spatial location
and the textual relevance, new hybrid indexes have been proposed [Chen et al. 2013; Cong et al. 2009;
Rocha-Junior et al. 2011].

These hybrid indexes combine spatial and textual indexes such as R*-tree [Beckmann et al. 1990]
and Inverted Files [Zobel and Moffat 2006]. These indexes can be divided in two categories: spatial
first or textual first. The spatial first indexes [Cong et al. 2009] include inverted files inside spatial
indexes such as R*-tree. On the other hand, the textual first indexes include spatial indexes such as
R*-tree in the Inverted Files. The textual first approach has presented better results in most cases
and are employed in this work [Chen et al. 2013].

One of the most studied types of query in the third period is the Top-k Spatial Keyword Query [Cong
et al. 2009; Rocha-Junior et al. 2011]. Given a query location (latitude and longitude) and a set of
query keywords, this query returns the k best spatio-textual objects considering the distance between
the objects and the query location, and the textual relevance between the objects and the query
keywords. There is an equation1 that combines the spatial distance and textual relevance, enabling
to compute the score of each object precisely. The k objects with highest scores are returned. The
Top-k Spatial Keyword Preference Query proposed in this article is different from the Top-k Spatial
Keyword Query. Instead of searching for spatio-textual objects near a given location, it assumes a
predefined set of objects of interest and searches for the top-k best objects of interest based on the
text of other spatio-textual objects in their spatial neighborhood.

Another type of query of interest is the Traditional Top-k Spatial Preference Query [Yiu et al. 2007],
which is described as follows. Given a set of spatial objects of interest P , a set of spatial objects of
reference Fi, where each f ∈ Fi have a predefined score, and a spatial neighborhood criteria; the
Traditional Top-k Spatial Preference Query returns the k best objects p ∈ P , where the score of each

1The equation is α · θ + (1 − α) · λ, where θ is the textual relevance and λ is the spatial distance [Rocha-Junior et al.
2011].
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object p is the highest score among the objects of reference f that satisfy the spatial neighborhood
criteria.

For example, Fig. 2 presents a spatial area containing spatial objects of interest p (e.g. hotels)
and spatial objects of reference a ∈ F1 (e.g. cafes) and b ∈ F2 (e.g. bars). Each object of reference
is associated with a predefined score. The circle around each spatial object of interest p represents
the spatial neighborhood criteria defined by the user (e.g. 100m from the objects of interest). A user
interested in a hotel near a good bar and a good restaurant will have p1 as top-1 and p2 as top-2,
because the object of reference a1 in the spatial neighborhood of p1 has a higher score than a3.

In the Traditional Top-k Spatial Preference Query, the score of the spatial objects of reference is
known in advance, which allows materializing partial results to process this query efficiently [Rocha-
Junior et al. 2010]. In the Top-k Spatial Keyword Preference Query proposed in this article, the
spatio-textual objects of reference do not have a predefined score, but a text. Thus, in order to
compute the score of the spatial objects of interest, the textual relevance between the query keywords
and the text of the spatio-textual objects of reference must be computed. Processing the Top-k Spatial
Keyword Preference Query is more challenging.

Recently, Tsatsanifos and Vlachou [2015] presented a type of query similar to the one proposed
in this article. However, they assume that each spatio-textual object have a predefined score and a
text, not only a text. This assumption is not practical for most datasets available in the Internet.
Most datasets have a text and a spatial location and do not have a pre-defined score (ex. Twitter
and Open Street Map). Moreover, the predefined score is employed in the proposed algorithms in
order to improve the processing performance of this type of query. In our work, we assume that the
spatio-textual objects of reference have only the text and we do not benefit from any predefined score
in order to process this type of query.

3. SPECIFICATION OF THE TOP-K SPATIAL KEYWORD PREFERENCE QUERY

In this section, we specify the Top-k Spatial Keyword Preference Query proposed in this article. First,
we present the datasets required for the query processing; next, we present the query parameters; and
finally, we present the spatial selection criteria.

Given a set of spatial objects of interest P , where each object p ∈ P has a spatial coordinate
p = (p.x, p.y); and a set of spatio-textual objects of reference f ∈ F , where each f has a spatial
coordinate (f.x, f.y) and a text f.D, f = {(f.x, f.y), f.D}. The Top-k Spatial Keyword Preference
Query Q has three parameters Q = {Q.D,Q.ψ,Q.k}, where Q.D is the set of query keywords, Q.ψ is
the spatial selection criteria, and Q.k is the number of expected results.

The Query Q returns the Q.k objects in P with the highest scores. The score of an object p, τQ.ψ(p),
is the highest textual relevance (textual similarity) among all spatio-textual objects of reference f
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Fig. 2. Objects of interest (p) and objects of reference (a and b) with a score.
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that satisfy the spatial selection criteria Q.ψ. The spatial selection criteria can be range (Q.ψ = rng),
nearest neighbor (Q.ψ = nn) and influence (Q.ψ = inf) [Yiu et al. 2007].

—Given a radius r, the score of p assuming the range as the spatial selection criteria is:

τ rng (p) = max { θ(f.D,Q.D) | f ∈ F : dist(p, f) <= r }

—The score of p assuming the nearest neighbor as the spatial selection criteria is:

τnn (p) = max { θ(f.D,Q.D) | f ∈ F , θ(f.D,Q.D) > 0, ∀ v ∈ F : dist(p, f) ≤ dist(p, v) }

—Given a radius r, the score of p assuming the influence as the spatial selection criteria is:

τ inf (p) = max { θ(f.D,Q.D) · 2 −dist(p,f)/r | f ∈ F }

where θ(f.D,Q.D) is the textual relevance (textual similarity) between the text of the spatio-textual
object of reference f.D and the query keywords Q.D. In this article, we employ the cosine to compute
the textual relevance as defined by Rocha-Junior et al. [2011] and the Euclidean distance dist(p, f)
between an object p and a spatio-textual object of reference f .

For example, in Fig. 1, the objects of interest P (apartments) are {p1, p2, p3}, while the spatio-
textual objects of reference F are {f1, f2, f3, f4, f5, f6, f7}. The parameters of the query Q are
Q.D =“bus stop”, Q.ψ =rng (with a radius of 200m), and Q.k = 1, which will return the best
apartment for the query keywords “bus stop” taking into account the highest textual relevance among
the objects f which are from a given distance (radius) of each object p.

With the range as the spatial selection criteria (Q.ψ = rng), the score of a spatial object of
interest p is defined by the highest textual relevance θ(f.D,Q.D) among the spatio-textual objects of
reference f whose the distance to p is smaller or equal the radius r, dist(p, f) ≤ r. With the nearest
neighbor (Q.ψ = nn) as the spatial selection criteria, the score of p is defined by the textual relevance
θ(f.D,Q.D) of the nearest object f , if θ(f.D,Q.D) > 0. If there is more than one textual relevant
object f with the same smallest distance to p, the score of p is the highest textual relevance among
the objects with the same smallest distance. Finally, with the influence as the spatial selection criteria
(Q.ψ = inf), the score of p is defined by an equation that combines textual relevance and spatial
distance. The larger the distance, the smaller the value returned by the equation. Among all objects
f , the score of p is the highest value returned by the equation.

In this article, we present algorithms to process the Top-k Spatial Keyword Preference Query,
employing the range and nearest neighbor as spatial selection criteria.

4. PROPOSED APPROACHES

In this section, we present the algorithms proposed to process the Top-k Spatial Keyword Preference
Query. The first algorithm is the base for the other two algorithms proposed. The first algorithm
IFA (Inverted File based Algorithm), employs an Adapted Inverted File to store the set of objects
of reference. The other two algorithms SIA (Spatially Inverted Algorithm) and SIA+ (Advanced
Spatially Inverted Algorithm) employ a Spatial Inverted Index to store the set of objects of reference.
In all algorithms, the objects of interest p ∈ P are stored in a R*-tree [Beckmann et al. 1990].
First, we present the algorithms considering the range as the spatial selection criteria; next we adapt
each algorithm to consider the nearest neighbor selection criteria. Before presenting the algorithms,
we briefly describe the Adapted Inverted File and the Spatial Inverted Index structures used in the
algorithms.
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Adapted Inverted File. An Inverted File [Zobel and Moffat 2006] maps each term of a vocabulary
to an Inverted List, containing the documents (text) that have the term. For each entry in the list,
the id of the document and the frequency (or the term impact2) of the document is stored [Anh et al.
2001; Rocha-Junior et al. 2011; Salton and Buckley 1988; Zobel and Moffat 2006]. Therefore, given
a term, the list of documents that contains the term can be obtained efficiently. IFA employs an
adapted Inverted File to store the spatio-textual objects of reference f ∈ F . Besides the id of f and
the term impact, each entry stores the spatial location of f . Thus, it is more efficient to check, at
query time, if a given object of reference f attends the spatial selection criteria.

Spatial Inverted Index. The Spatial Inverted Index (S2I) is a hybrid index structure to process
spatio-textual queries [Rocha-Junior et al. 2011; Chen et al. 2013]. The index can search spatio-textual
data in an optimized way. Similar to an Inverted File, the S2I stores for each term of a vocabulary,
the set of objects that contains the term. However, different from an Inverted File, the S2I stores the
most frequent terms in a Spatial Index (aR-tree [Papadias et al. 2001]), while the less frequent terms
are stored in an Inverted List. Each entry of the S2I stores for each object the id, the spatial location
and the term impact.

4.1 Inverted File based Algorithm

The naive approach to process the Top-k Spatial Keyword Preference Query requires finding all spatio-
textual objects in the vicinity of each spatial objects of interest and computing the textual relevance
of each spatio-textual object to the query keywords, in order to compute the score of each spatial
object of interest. These steps have to be repeated for all object of interest, in order to find the k
best objects. This approach is inefficient.

The idea behind the Inverted File based Algorithms (IFA) is to filter the objects that are not
textually relevant by using the Inverted File, reducing the processing cost. Specifically, the spatio-
textual objects of reference that are not present in the inverted lists of the terms t in Q.D are not
relevant to the query keywords Q.D.

The objects are retrieved from the Inverted Lists ordered by the id, which improves the merging
process to compute the final textual relevance of an object f . Once an object f is found in one inverted
list of a term ti, the entry contains the impact of the term ti in the textual relevance of f . Computing
the textual relevance of f for all terms in Q.D requires retrieving the same object of reference f from
all inverted lists. The textual score of f is the sum of all partial scores of f retrieved from each inverted
list. After computing the score of each object of reference f , the algorithm checks if f attends the
spatial selection criteria. In the case of range, the criteria is attended if dist(p, f) ≤ Q.r. Finally, the
textual score of f is attributed to p if the score of f is higher than the current score of p (p.score),
(θ(f.D,Q.d) > p.score). The k objects of interest with the highest scores are maintained in a heap of
k size. After computing the score of all objects p, the heap contains the k best objects of interest.

Algorithm 1 presents the IFA algorithm. The algorithm computes the score of each object p ∈ P
(lines 3-27), initially the score of p is zero (line 4). It then employs an iterator (line 6) to access all
objects in the Inverted List of a given term t. The objects are accessed in increasing order of id. The
algorithm employs the heap H ordered by id to store the references for the unvisited objects of the
inverted lists. Each entry e of the heap H has two attributes e.f and e.l (e = {e.f, e.l}). The e.f is
the next object in the list to be visited, while e.l is a reference to the list iterator (lines 7-9). The
objective of the heap H is to store, for each inverted list of a term t ∈ Q.D, the spatio-textual object
of reference f with smallest id that is textually relevant to the term t that has not being visited yet.

2The term impact is the textual relevance of a term in a document, without considering the other documents of the
collection. The term impact takes into account the length of the document and can be used to compare the textual
relevance of two different documents according to a single term t that they have in common [Anh et al. 2001; Rocha-
Junior et al. 2011; Salton and Buckley 1988].
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Algorithm 1: Inverted File based Algorithm (IFA)
Input: Q = (Q.D,Q.r,Q.k) //The Q.r (radius) is the spatial selection criteria for range (rng).
Output: Heap that maintains the k best objects of interest.

1 M ← ∅ //Heap that maintains the k best objects of interest.
2 H ← ∅ //Heap that maintains the entries e ordered by the id of the object of reference f .
3 for each p ∈ P do
4 p.score← 0
5 for each t ∈ Q.D do
6 iterator ← IF.list(t).iterator()
7 if iterator.hasNext() then
8 H.add({iterator.next(), iterator})
9 end

10 end
11 e← nextEntry(H)
12 while e 6= null AND H 6= ∅ do
13 e′ ← nextEntry(H)
14 while e′ 6= null AND e.f = e′.f do
15 e.f.θ ← e.f.θ + e′.f.θ
16 e′ ← nextEntry(H)

17 end
18 updateScore(p, e.f)
19 e← e′

20 end
21 updateScore(p, e.f)
22 if |M | < k OR p.score > M.peekMin().score then
23 M.add(p)
24 if |M | > k then
25 M.removeMin()
26 end
27 end
28 end
29 return M

The algorithm resumes accessing the next entry in the list. This entry has the spatio-textual object
of reference e.f has the smallest id (line 11). The function nextEntry(H) removes the entry e from
the Heap (e← heap.pollF irst()) and adds a new entry {e.l.next(), e.l} with the next object f in the
same list. If the heap is empty, the entry e will be null. While e is not null and H is not empty
(lines 12-20), the algorithm computes the score of p. The score of p is the highest score among the
spatio-textual objects of reference f that are textually relevant and that attend the spatial selection
criteria. Thus, before setting the score of p, the textual score of f is computed. The score of f is
the sum of the partial scores of f found in each Inverted List in which it appears. Since the lists are
ordered by id of the objects of reference, the score of f is computed by checking if f is in the next
object to be accessed in all inverted lists (lines 14-17).

For example, assuming that the query keywords Q.D contains two terms t1 and t2, Q.D = {t1, t2}
and the spatio-textual object of reference f1 has in its textual description f.D the same terms t1
and t2. In this case, the object f1 appears in both Inverted Lists of t1 and t2. Once the objects are
accessed in the list in increasing order of id, f1 (whose id = 1) is in the top of both lists. In order to
compute the score of f1, both entries are retrieved from the heap and the partial scores in each list is
summed to obtain the final score of f1. On the other hand, if f1 had only the term t1, it would not
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Algorithm 2: Spatially Indexed Algorithm (SIA)
Input: Q = (Q.D,Q.r,Q.k) //The Q.r (radius) is the spatial selection criteria for range (rng).
Output: Heap that maintains the k best objects of interest.

1 M ← ∅ //Heap that maintains the k best objects of interest.
2 H ← ∅ //Heap that maintains the entries e ordered by the id of the object of reference f .
3 for each p ∈ P do
4 p.score← 0
5 for each t ∈ Q.D do
6 iterator ← S2I.search(t, p.x, p.y,Q.r)
7 lines 7-9 of the IFA algorithm
8 end
9 lines 11-27 of the IFA algorithm

10 end
11 return M

appear in the Inverted List of t2. Thus, the second entry in the heap would be of another object of
reference with a higher id. In this case, the final score of f1 would be the partial score found in the
Inverted List of t1.

After computing the score of the spatio-textual object of reference f , the function updateScore(p,
e.f) updates the score of p. The function checks if f attends the spatial selection criteria and if the
textual score of f is higher than the current score of p, updating the score of p if both conditions
are true. After computing the score of p, the algorithm updates the heap M that maintains the k
objects with the highest scores (lines 22-27). Therefore p is added into M only if M has less than k
objects or if the score of p is higher than the smallest score among the objects currently stored in M
(p.score > M.peekMin().score). The object in M with the smallest score is removed when the size
of M is larger than k (lines 24-26). The algorithm repeats this process until the heap H is empty or
e = null, returning the k objects with the highest scores stored in M .

4.1.1 Nearest Neighbor. Few changes are required to adapt IFA (Algorithm 1) for processing the
Top-k Spatial Keyword Preference Queries by assuming the nearest neighbor as the spatial selection
criteria (Q.ψ = nn). First, the algorithm receives a new variable named minDist (line 3) to maintain
the minimum distance between p and a relevant spatio-textual object of reference e.f (e.f.θ > 0).
The variable minDist is initialized with the largest distance among two objects in the dataset. The
minDist is updated every time that a new relevant object of reference e.f is found with a smaller
distance to p than minDist. This update happens in the updateScore(p, e.f) function. Second, the
score of p is updated when one of the following conditions happens: 1) a textually relevant spatio-
textual object of reference e.f with a smaller distance to p is found; or 2) the distance between e.f
and p has the same smallest distance, but the textual score of e.f is higher than the current score of
p. This update also happens in the updateScore(p, e.f) function.

4.2 Spatially Indexed Algorithm

The Spatially Indexed Algorithm (SIA) employs a hybrid index, instead of an Inverted File, for pro-
cessing the query. Similar to IFA, SIA also computes the score of each p ∈ P , before finding the top-k
objects. However, different from IFA that filters the objects that are textually irrelevant only, SIA
filters the objects that are textually and spatially irrelevant.

Algorithm 2 presents SIA. The algorithm computes the score of each object p ∈ P , initially the
score of p is zero (line 4). For each term t ∈ Q.D, the algorithm accesses the S2I in order to get
an iterator that accesses the spatio-textual objects of reference f in increasing order of id. Only the

Journal of Information and Data Management, Vol. 6, No. 3, October 2015.



170 · J. P. D. de Almeida and J. B. Rocha-Junior

Algorithm 3: Optimized Spatially Indexed Algorithm (SIA+)
Input: Q = (Q.D,Q.r,Q.k) //The Q.r (radius) is the spatial selection criteria for range (rng).
Output: Heap that maintains the k best objects of interest.

1 M ← ∅ //Heap that maintains the k best objects of interest.
2 H ← ∅ //Heap that maintains the entries e ordered by the id of the object of reference f .
3 for each V ∈ P do
4 ∀p ∈ V, p.score← 0
5 for each t ∈ Q.D do
6 iterator ← S2I.search(t, V.MBR,Q.r)
7 lines 7-9 of the IFA algorithm
8 end
9 e← nextEntry(H)

10 while e 6= null AND H 6= ∅ do
11 e′ ← nextEntry(H)
12 while e′ 6= null AND e.f = e′.f do
13 e.f.θ ← e.f.θ + e′.f.θ
14 e′ ← nextEntry(H)

15 end
16 updateScore(V, e.f) e← e′

17 end
18 updateScore(V, e.f)
19 for each p ∈ V do
20 if |M | < k OR p.score > M.peakMin().score then
21 M.add(p)
22 if |M | > k then
23 M.removeMin()
24 end
25 end
26 end
27 end
28 return M

objects that are textually and spatially relevant are returned by the S2I (line 6). The rest of the
algorithm is identical to IFA.

4.2.1 Nearest Neighbor. Some changes are required to adapt SIA (Algorithm 2) for processing
Top-k Spatial Keyword Preference Queries by assuming the nearest neighbor as the spatial selection
criteria (Q.ψ = nn). First, it adds the variable minDist (line 3) to maintain the minimum distance
between p and a relevant spatio-textual object of reference e.f (e.f.θ > 0). The variable minDist is
initialized with the largest distance between any two objects in the dataset. The variable is updated
every time that a new relevant object of reference e.f is found whose distance to p is smaller than
the current minDist. The update happens in the updateScore(p, e.f) function. Second, instead of
calling the function S2I.search(t, p.x, p.y,Q.r) (line 6) that receives as parameter the radius r, the
algorithm calls the function S2I.searchNN(t, p.x, p.y) that returns an iterator to access all spatio-
textual objects with the same smallest distance to p. Third, the algorithm updates the score of p in
the updateScore(p, e.f) function. The score of p is updated when a relevant spatio-textual object of
reference e.f with a smaller distance to p is found, or when the distance between e.f and p has the
same smallest distance, but the textual score of e.f is higher than the current score of p.
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Fig. 3. Objects of reference necessary to compute the score of objects p ∈ V .

4.3 Optimized Spatially Indexed Algorithm

The Optimized Spatially Indexed Algorithm SIA+ is an extension of SIA that concurrently computes
the score of a set V of spatial objects of interest that are spatially near to each other. The idea is
accessing the S2I only once to compute the score of all objects p ∈ V , reducing I/O.

For example, Fig. 3 presents the spatial objects of interest p (Fig. 3(a)) and the spatio-textual
objects of reference f (Fig. 3(b)). In this example, the set V is composed by the objects p1, p2 and p3
and the query radius is r. Therefore, the SIA+ searches the index that stores the objects of reference
for the objects that can contribute with the score computation of any object p in V , using the MBR
(Minimum Bounding Box) that encapsulates all objects in V expanded with the query radius (gray
area) to guarantee that all important objects are selected. Looking for the projection of the area of
interest in Fig. 3(b), the only important object is f2, because all the other objects are outside the
range area of the MBR of V . Thus, f2 is returned and its distance to all objects in V is computed
to check which objects in V are in the radius distance to f2, which is only p3. The score of p3 is
computed based on the textual relevance of f2 and p3 is added in the heap if its score is higher than
the score of the kth object already stored in the heap. The problem of this approach is if the MBR
of V is large. For example, if V was composed by objects p1 and p7, it would have a large MBR. In
this case, almost all features would be returned to compute the score of the objects p1 and p7.

Algorithm 3 presents SIA+. For each V ∈ P , where each V is a set of spatial objects of interest
that are spatially near each other, the algorithm sets the scores of the objects p ∈ V to zero (line 4).
Then, the algorithm accesses the S2I to select the candidate spatio-textual objects of reference that
can contribute in the score computation of the object p ∈ V (line 6). In order to find the candidate
objects, the algorithm computes the distance between f and the MBR (Minimum Bounding Rectangle)
that encloses the objects p ∈ V . If the distance between f and V.MBR is smaller than or equal to
Q.r, the object f is selected as candidate. Therefore, the smaller the size of the MBR, the lower the
the number of candidates, reducing the cost of the algorithms in terms of query processing.

Lines 9-18 are identical to IFA and SIA, except lines 16 and 18 that instead of computing the score
of a single object p, SIA+ requires computing the score of all objects p ∈ v. The same happens in
the lines 19-26, where the algorithm checks for each p ∈ V , if p can be inserted in the heap M that
maintains the k best objects.

4.3.1 Nearest Neighbor. Some changes are required to adapt SIA+ (Algorithm 3) for processing
the Top-k Spatial Keyword Preference Query by assuming the nearest neighbor as the spatial selection
criteria (Q.ψ = nn). First, each p ∈ V receives a variable p.minDist (line 5) to maintain the minimum

Journal of Information and Data Management, Vol. 6, No. 3, October 2015.



172 · J. P. D. de Almeida and J. B. Rocha-Junior

distance between p and a relevant spatio-textual object of reference e.f (e.f.θ > 0). The variable
p.minDist is initialized with the largest distance among two objects in the dataset. The variable is
updated in the updateScore(p, e.f) function every time that a new relevant object of reference e.f is
found whose distance to p is smaller than the current p.minDist.

Second, instead of calling the function S2I.search(t, V.MBR, Q.r) (line 6), the algorithm calls the
function S2I.searchNN(t, V) that returns an iterator to access all spatio-textual candidate objects
to compute the score of all objects p ∈ V . The function S2I.searchNN(t, V) maps each p ∈ V
to the variable minDist that stores the minimum distance between p and any other feature visited
during this index access. The function also maps each p to the set of objects of reference C with the
same smallest distance3. The function also maintains a variable named worstMinDist that stores
the maximum minimum distance among the objects p ∈ V . This variable works as lower bound,
stopping the search for candidate objects when there is no other object in the index whose distance to
V.MBR is smaller or equals the worstMinDist. After stopping the search, the function returns the
spatio-textual objects of references C associated with each p ∈ V in increasing order of id (line 6).

Third, the algorithm updates the score of p in the updateScore(p, e.f) function. The score of p is
updated when a relevant spatio-textual object of reference e.f with a smaller distance to p is found,
or when the distance between e.f and p has the same smallest distance, but the textual score of e.f
is higher than the current score of p.

In this article, we have chosen to group the objects spatially by putting in a set V the objects p that
are near each other. Since the spatial objects of interest p are stored in a Spatial Index (R∗-tree), we
have chosen to make each leaf of the R∗-Tree one set V. Another solution could be employing a cluster
algorithm to create groups of objects spatially close each other, where each group would compose a
set V .

4.4 Complexity Analysis of the Algorithms

In this section, we make a brief complexity analysis of the algorithms proposed for processing the
Top-K Spatial Keyword Preference Query.

In the baseline algorithm, the score of each object p ∈ P is computed comparing the distance
between p and each f ∈ F and the textual relevance of f for the query keywords. Therefore, the
complexity of the baseline algorithm is O(|P | · |F |). In the IFA algorithm, the score of each object
p ∈ P is computed comparing the distance between p and each f ′ ∈ F ′ and the textual relevance of
f ′, where F ′ is a subset of F (F ′ ⊆ F ) that contains the objects of reference f ′ that are textually
relevant to the query keywords (the objects in the inverted lists of the query keywords). Therefore,
the complexity of the IFA algorithm is O(|P | · |F ′|). In the SIA algorithm, the score of each object
p ∈ P is computed checking only the textual relevance of the objects f ′′ ∈ F ′′ that are textually
and spatially relevant to compute the score of p, where F ′′ is a subset of F ′ (F ′′ ⊆ F ′ ⊆ F ) that
contains the objects of reference f ′′ that are spatially and textually relevant to the query keywords
and spatially relevant to compute the score of p. Therefore, the complexity of the SIA algorithm is
O(|P | · |F ′′|). Different from the other algorithm, SIA+ does not compute the score for each p ∈ P ,
but for a set objects V ∈ P . Similar to SIA, the SIA+ algorithm employs the set F ′′ of objects
that are textually and spatially relevant to the set of objects V . Therefore, the complexity of SIA+
algorithm is O( |P ||V | · |F

′′|).

3This set is very small in practice, since the probability of having objects with the same smallest distance is small.
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Table I. Settings of the experiments. The default values are presented in bold.
Parameters Values

Number of results (k) 1, 5, 10, 15
Number of keywords 1, 3, 5, 7

Datasets Venice, London, North America

5. EXPERIMENTAL EVALUATION

In this section, we evaluate the algorithms proposed (IFA, SIA e SIA+). All algorithms were imple-
mented in Java, using the XXL Library4. All experiments were executed in the same machine with
an Intel Processor of 2.0GHz and 4GB of RAM memory.

In each experiment, we evaluate the impact of a single variable, while the others are maintained
fixed. The variables studied are I/O (pages of 4MB accessed from the disk), response time and group
size (in the case of SIA+). The response time is measured in milliseconds. We repeat the same
experiment 10 times and collect the average results. In each round, we execute the query 50 times.
The terms used in each experiment are from a set with the 500 most frequent terms. The radius, for
the range selection criteria, is set in approximately5 200m.

Table I presents the settings of the experiments. The values in bold are the default values, when not
explicitly mentioned. All figures are in logarithm scale due to the huge difference in the performance
of the algorithms.

The remaining of this section is organized as follows: first, we present the datasets used in the
experiments; next, we study the performance of the algorithms in terms of I/O and response time,
while varying the number of query keywords, the number or results and datasets. Finally, we evaluate
the impact of varying the size of the groups V in the performance of SIA+ algorithm. We present
the results for the range spatial selection criteria (Q.ψ = rng), since the results for nearest neighbor
selection criteria were similar.

5.1 Datasets

The datasets used in the experiments were obtained at Mapzen6 and GEOFABRIK7. These sites
maintain extracts from the OpenStreetMap for the main cities and countries, obtained from Open-
StreetMap (http://www.osm.org). The datasets with data from Venice and London were obtained at
Mapzen, while the dataset of the North America was obtained at GEOFABRIK.

We process the datasets to extract only the spatio-textual objects. The set of objects of interest
P is composed by spatial objects whose the category in the OpenStreetMap is hotel, while the set of
spatio-textual objects of reference F is composed by the other spatio-textual objects.

Table II presents some characteristics of the datasets: the number of objects of interest |P |,
the number of spatio-textual objects of reference |F |, the number of unique terms in the dataset
and the total number of terms. The datasets used in the experiments can be downloaded from
https://goo.gl/zHExTn.

4http://dbs.mathematik.uni-marburg.de/Home/Research/Projects/XXL
5The function employed to compute the distance does not consider the inclination of the planet earth. The same
function is employed by all algorithms, without interfering in the results obtained.
6http://mapzen.com/metro-extracts
7http://download.geofabrik.de/
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Table II. Some characteristics of the datasets used in the experimental evaluation.
Datasets |P | |F | Number of unique terms Total number of terms
Venice 504 167,958 14,678 408,747
London 1,341 463,066 56,569 1,198,649

North America 9,132 2,521,344 187,179 8,881,870
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Fig. 4. Impact on I/O and response time, while varying the number of query keywords (k).

5.2 Varying the number of query keywords

In this experiment, we study the impact in I/O and response time in the algorithms proposed, while
varying the number of query keywords (Fig. 4).

SIA+ is better than the other algorithms in terms of I/O and response time for all setups. The
performance of SIA+ in terms of I/O (Fig. 4(a)) is more than one order of magnitude better than
the performance of SIA, SIA+ is 4,497% better than SIA in terms of I/O for three query keywords.
This shows the efficacy of accessing the index in groups. SIA+ also presented better result in terms
of response time (Fig. 4(b)), SIA+ is 261% better than SIA in terms of response time for three query
keywords. The results in terms of I/O are not completely traduced in the response time. The main
reason is the number of false positive spatio-textual objects of reference that are selected searching
for V in the Spatial Inverted Index.

Varying the number of keywords has a significant impact in the I/O and response time. The more
the number of keywords, the more the number of data that must be accessed in query time. Thus, all
algorithms were impacted by the change in this variable.

5.3 Varying the number of results

In this section, we study the impact on I/O and response time, while varying the number of results
in the performance of the algorithms proposed (Fig. 5).

SIA+ is better than the other algorithms in terms of I/O and response time for all setups. The
performance of SIA+ in terms of I/O (Fig. 5(a)) is more than one order of magnitude better than the
performance of SIA, SIA+ is 4,497% better than SIA in terms of I/O for all values of k. This shows
the efficacy of the group access strategy in reducing the number of times the index is accessed, and
consequently the I/O. The response time of SIA+ is also better (Fig. 5(b)), SIA+ is 271% better than
SIA in terms of response time for k = 5. However, the difference between SIA and SIA+ in terms of
response time is smaller than the difference in terms of I/O. The group processing reduces I/O, but
the number of false positive spatio-textual objects of reference that are selected due to the search for
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Fig. 5. Impact on I/O and response time, while varying the number of results (k).
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Fig. 6. Impact on I/O and response time for different datasets.
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Fig. 7. Impact on I/O and response time, while varying the size of the groups V for SIA+ algorithm.

V causes an additional cost in terms of processing. Therefore, the importance of selecting groups of
objects that are very close each other.

Varying the number of results has no impact in the I/O (Fig. 5(a)) and almost no impact in the
response time 5(b)). All algorithms proposed (IFA, SIA and SIA+) calculate the score of each p ∈ P ,
maintaining the k best objects in the heap. Therefore, for the same keywords, the same algorithm
will access the same number of disk pages independent of the size of k, incurring in no impact in
terms of I/O. However, varying the number of k may affect the response time, since the size of the
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heap increases and more processing steps are required to maintains this heap updated with the k best
results. However, the heap maintains few items (from 1 to 15) and they are kept in main memory
during the query processing. Therefore, increasing the value of k has almost no additional cost in
terms of response time.

5.4 Varying the datasets

In this experiment, we study the impact in the I/O and response time for different datasets (Fig. 6).

Fig. 6(a) presents the results in terms of I/O. SIA+ is better than the other algorithms in terms
of I/O for all datasets, SIA+ is 3,201%, 4,497% and 3,310% better than SIA in Venice, London
and North America datasets respectively. In this experiment, the difference between SIA and IFA is
smaller when compared with the other experiments. The main reason is that SIA employs an hybrid
index that stores the inverted lists of the frequent term in a spatial index. Therefore, the bigger the
dataset the larger the number of the Inverted Lists that are stored in the spatial indexing, giving a
bigger advantage for SIA and SIA+ in terms of I/O compared to IFA.

Fig. 6(b) presents the impact in the response time. SIA+ is 237%, 272% and 252% better than
SIA in Venice, London and North America datasets respectively. The difference is consistent among
the datasets, indicating that more populated datasets do not have a significant impact in increasing
or reducing the number of false positives, showing the efficacy of SIA+ for small and large datasets.

5.4.1 Varying the size of the groups. In this experiment, we study the impact of the size of the
groups V in the I/O and response time of SIA+ (Fig. 7).

The larger the group, the smaller the number of times the index is accessed, since one access is
sufficient to select the spatio-textual candidates to process the score of all objects p ∈ V . Therefore,
as shown in Fig. 7(a), the I/O reduces when the size of the group increases. On the other hand, the
larger the group, the bigger the MBR that encapsulates all objects in the group, selecting more false
positives candidates. As presented in Fig. 7(b), the smaller the size of V , the better the response
time.

The size of the group V can be employed to adjust SIA+ to attend different objectives of an
application. If the main objective is to access less data, the number of elements in V should be
increased. However, if the objective is to reduce the response time, smaller V is better.

The success of SIA+ depends on the groups created. If the objects in a group are very close each
other (which has a higher probability of happening when the group is small), the number of candidates
is reduced, and the query process has good results. However, if there are some objects distant of each
other, the MBR of V will be large and SIA+ will select a lot of false candidates, leading to poor
performance.

The default value of V employed in the other experiments is 102. Therefore, SIA+ could have
presented better performance in terms of response time if we had selected the size of V to be 50, for
instance.

6. FINAL REMARKS

In this article, we have presented a new query type named Top-k Spatial Keyword Preference Query.
This query selects the k objects of interest considering other spatio-textual objects in their vicinity
that are relevant to the query keywords. We have also presented three algorithms to process this query
IFA, SIA and SIA+. The IFA algorithm employs an Inverted File to reduce the number of objected
accessed at query time, while SIA and SIA+ have employed a spatio-textual index. SIA and SIA+

have performed better than IFA in all setups, showing the importance of employing hybrid indexes
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to process this query. SIA+ had better performance than SIA, mainly in terms of I/O due to a group
processing technique that accesses the index only once to obtain the score of a set of objects of interest
concurrently. We have also observed that the group size has significant impact in terms of I/O and
response time.

In the future, we plan to develop a new algorithms to process the Top-k Spatial Keyword Preference
Query for the influence selection criteria. The SIA and SIA+ cannot be adapted to process queries
with this spatial selection criteria, because the influence has no spatial limit such as the range and
the nn. Other directions are processing this query by employing the network distance, instead of
the Euclidean distance. In this case, other indexes and algorithms are required. Another interesting
direction is to study how to process this query in a distributed scenario. Finally, it is very important
to evaluate this query qualitatively in order to evaluate its relevance compared with the Traditional
Top-k Spatial Preference Query.
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