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Abstract. Crisp spatial objects are geometric features with exact location on the extent and well-known boundaries.
On the other hand, vague or fuzzy spatial objects are characterized by uncertain or blurred boundaries and interiors.
Despite the importance of fuzzy spatial data in spatial applications, few related work indeed implement them. In
addition, related work do not define abstract data types to enable the management of fuzzy spatial objects by using
database management systems (DBMS). In this article, we propose the abstract data type FuzzyGeometry to handle
fuzzy spatial objects in the PostgreSQL DBMS. Its implementation is open source. It offers management for fuzzy point
objects and fuzzy line objects as well as provides several operations to handle them. As a result, users are able to access
PostgreSQL in order to use fuzzy spatial objects in spatial queries.

Categories and Subject Descriptors: H.2.8 [Database Management]: Spatial databases and GIS

Keywords: abstract data types, fuzzy spatial objects, spatial databases, spatial fuzziness

1. INTRODUCTION

Spatial applications are commonly used for spatial analysis in order to aid in the decision making
process. Real-world phenomena are commonly represented by crisp spatial objects [Güting 1994;
Schneider and Behr 2006], such as crisp points, crisp lines, and crisp regions whose can assume simple or
complex structures. Crisp spatial objects have exact location in the extent, that is, their geographical
coordinates clearly define their geographical positions. In addition, crisp spatial objects have well-
defined boundaries that determine with exactness their limit. In order to handle crisp spatial objects in
spatial Database Management Systems (spatial DBMS) and Geographical Information System (GIS),
spatial operations are defined, such as crisp geometric operations (for instance, union and intersection)
and crisp numerical operations (for instance, area and distance calculations).

On the other hand, real-world phenomena frequently have inexact location, uncertain boundaries,
or blurred interiors [Siqueira et al. 2014]. For instance, the representation of soil mapping, fire and
risk zones, oceans, lakes, and air polluted areas. In order to represent these phenomena, we use
vague spatial data types. There are several models to represent vague spatial objects, such as exact
models [Cohn and Gotts 1996; Pauly and Schneider 2008; Bejaoui et al. 2009; Pauly and Schneider
2010], rough models [Beaubouef et al. 2004], probabilistic models [Cheng et al. 2003; Li et al. 2007; Zinn
et al. 2007], and fuzzy models [Dilo et al. 2007; Schneider 2008; 2014; Carniel et al. 2014]. However,
the majority of existing implementations of vague spatial objects [Kraipeerapun 2004; Dilo et al. 2006;
Pauly and Schneider 2008; 2010; Carniel et al. 2015b] are based on the exact models and fuzzy models
due to the following factors: (i) exact models reuses existing crisp spatial operations from conventional
spatial DBMS and GIS to handle vague spatial objects and (ii) fuzzy models are based on the fuzzy
set theory, which allows the definition of vague spatial objects by using membership functions.
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Exact models have the advantage of the use of well-known and efficient crisp spatial operations
that are largely explored in the literature. As a result, implementations based on these models have
an expressive set of vague spatial operations, such as discussed by Carniel et al. [2015b]. However,
these implementations are not able to represent in detail a real-world phenomenon since a crisp spatial
object is used to denote the well-known part and another crisp spatial object is used to denote the
vague part of a vague spatial object. For instance, a sandy soil mapping is represented by two crisp
region objects. One object indicates where the soil is certainly sandy (that is, the well-known part)
and another object indicates where the soil is possibly sandy (that is, the vague part).

On the other hand, fuzzy models allows us to represent a vague spatial object in more details. This
is done by assigning a membership degree between 0 and 1 for each point of the object. Membership
degrees specify how much a point belongs to a vague spatial object. Using our previous sandy soil
mapping example, we are able to assign different membership degrees to different locations, specifying
to which extent each point belongs to the sandy soil due to different mineral compositions. Therefore,
differently from exact models, we are able to represent in detail a sandy soil mapping. Vague spatial
data based on the fuzzy models are defined as fuzzy spatial data types, such as fuzzy points, fuzzy lines,
and fuzzy regions.

Despite the advantage to use fuzzy models, only few implementations are based on them [Kraipeer-
apun 2004; Dilo et al. 2006]. In addition, they face several limitations, such as: (i) there are no textual
or binary representations specifically designed to handle fuzzy spatial objects, (ii) only a small set of
operations are defined and implemented, and (iii) its implementation is based on a GIS and not in a
spatial DBMS, which can limit the management of fuzzy spatial objects in spatial applications.

In this article, we propose an abstract data type (ADT) named FuzzyGeometry. The FuzzyGeometry
ADT is based on the fuzzy model and is implemented as an open-source PostgreSQL extension. The
main goal of this article is to serve as a specification of implementation of an ADT that handle fuzzy
spatial objects. We conduct this specification by introducing the proposed FuzzyGeometry ADT.
Here, we focus on the design and implementation of fuzzy points and fuzzy lines only, which already
have several challenges for their definitions and implementations. To handle them, we define input
and output functions, fuzzy geometric set operations, and fuzzy spatial operations based on the fuzzy
set theory. We also extend our previous work [Carniel et al. 2015a] with the following contents: (i) we
detail the specification of the implementation and serialization of fuzzy lines and fuzzy points, (ii) we
define textual and binary representations to manage fuzzy lines and fuzzy points, (iii) we exemplify
several fuzzy spatial operations by using graphical representations and textual representations, and
(iv) we introduce a running example to demonstrate the functionalities of the FuzzyGeometry by using
SQL queries.

This article is organized as follows. Section 2 summarizes related work. Section 3 describes the
technical background. Section 4 presents our FuzzyGeomety ADT. Section 5 introduces the running
example in order to show how to use the FuzzyGeometry in SQL queries. Finally, Section 6 concludes
the article and presents future work.

2. RELATED WORK

Few works in the literature implement vague spatial data types based on the fuzzy model by using a
spatial DBMS or GIS. On the other hand, exact models are also frequently adopted to represent vague
spatial objects since they use well-known crisp spatial algorithms. Hence, we compare implementations
based on the exact model and the fuzzy model.

Although several exact models have been proposed [Cohn and Gotts 1996; Pauly and Schneider
2008; Bejaoui et al. 2009; Pauly and Schneider 2010], only few implementations are based on them.
Vague Spatial Algebra (VASA) [Pauly and Schneider 2010] is an exact model that offers several spatial
operations for vague points, vague lines, and vague regions. Implementations based on this model are
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detailed by Pauly and Schneider [2008; 2010]1, and Carniel et al. [2015b]. However, in this article,
we propose an abstract data type for vague spatial data based on the fuzzy model. While VASA
has only three levels of representation for vague spatial objects (the well-known part, the vague part,
and the part that certainly does not belong to the spatial object), vague spatial objects based on the
fuzzy model may have several levels in the interval [0, 1]. Therefore, it allows a refined and detailed
representation of spatial vagueness.

For vague spatial data based on the fuzzy model, the Spatial Plateau Algebra (SPA) [Schneider
2014] provides definitions for fuzzy spatial data that reuses crisp spatial algorithms. Hence, a fuzzy
spatial object, called spatial plateau object, is defined as a finite sequence of pairs where each pair
is formed by one crisp spatial object and a membership degree in ]0, 1]. In addition, SPA defines
spatial plateau operations to handle spatial plateau objects, such as plateau geometric set operations.
Although this implementation concept is proposed, spatial plateau objects were not implemented in
a spatial DBMS.

Vague spatial data based on the fuzzy model were implemented by Kraipeerapun [2004] and Dilo
et al. [2006]. In these approaches, the authors refer to fuzzy spatial objects as vague spatial objects.
Thus, they implement the following vague spatial data types: vague point, vague line, and vague
region. A vague point object is defined as a tuple (x, y, λ), where (x, y) ∈ R2 gives the location,
and λ ∈ ]0, 1] gives the membership degree. A vague line object is defined as a finite sequence of
tuples ((x1, y1, λ1), . . . , (xn, yn, λn)) for some n ∈ N, where each tuple is a vague point object in the
vague line constructed by using linear interpolation. A vague region object is composed by several
vague lines and the Delaunay triangulation, which is stored together with the vague region object. A
membership degree of a point inside a vague region object is calculated by using linear interpolation
between membership degrees of vertices of the triangle to which the point belongs. This model is
implemented in the GRASS GIS2, but not in a spatial DBMS. Further, the authors do not implement
the vague geometric difference between vague lines. However, our article proposes an abstract data
type implemented in a spatial DBMS (that is, the PostgreSQL) to manage fuzzy lines and fuzzy
regions as well as several fuzzy spatial operations to handle them.

3. TECHNICAL BACKGROUND

In this section, we provide some needed concepts that underline our proposed FuzzyGeometry ADT.
Section 3.1 summarizes different models that represent vague spatial data, while Section 3.2 summa-
rizes needed concepts from fuzzy set theory.

3.1 Vague Spatial Data

While crisp spatial objects have exact location and well-known boundaries, vague spatial objects have
inexact location, uncertain boundaries, or blurred interior. There are distinct models to represent
vague spatial data, which can be classified as exact models [Cohn and Gotts 1996; Pauly and Schneider
2008; Bejaoui et al. 2009; Pauly and Schneider 2010], rough models [Beaubouef et al. 2004], probabilistic
models [Cheng et al. 2003; Li et al. 2007; Zinn et al. 2007], and fuzzy models [Dilo et al. 2007; Schneider
2008; 2014; Carniel et al. 2014].

Exact models aim to reuse existing abstract data types of crisp spatial data types (for instance,
crisp points, crisp lines, and crisp regions) to represent vague spatial objects. In general, vague spatial
objects are defined by using two crisp spatial objects. The first spatial object represents the vague
spatial part and second spatial object represents the well-known spatial part. The main exact models
are Egg-Yolk [Cohn and Gotts 1996], Qualitative Min-Max Model (QMM) [Bejaoui et al. 2009], and

1http://www.cise.ufl.edu/research/SpaceTimeUncertainty/
2http://grass.osgeo.org/
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Vague Spatial Algebra (VASA) [Pauly and Schneider 2008; 2010]. Egg-Yolk model defines only vague
region objects, which are represented by two sub-regions that together form the egg: a sub-region
denominates the white (that is, vague spatial part) and other sub-region denominates the yolk (that
is, well-known spatial part) that is contained in the white part. QMM model defines vague spatial
objects by using two spatial limits, a minimum limit (that is, well-known spatial part) and a maximum
limit (that is, includes the minimum limit and extends to the part that possibly belongs to the spatial
object). In addition, this model uses qualitative classifications of vagueness levels, such as completely
crisp, partially vague, and completely vague. Finally, VASA defines a vague spatial object as a pair of
disjoint or adjacent crisp spatial objects of the same type.

Rough models are based on the rough set theory [Pawlak 1982] that defines a lower and an upper
approximation. Hence, a vague spatial object is represented by these approximations. Lower spa-
tial approximation of an object is a subset of its upper spatial approximation. Vague spatial data
represented by rough models deal with vague spatial objects with inexact location as well as inexact
measures [Beaubouef et al. 2004].

Probabilistic models are based on the probability density functions [Cheng et al. 2003; Li et al.
2007; Zinn et al. 2007] and the treatment of spatial vagueness is performed through objects positions
and measures. In general, these models deal with expectation of a future event based on the known-
characteristics.

Fuzzy models, that is, models based on the fuzzy set theory [Zadeh 1965], assign membership degrees
in the interval [0, 1] for each point of a spatial object to represent spatial vagueness in different levels.
There are several representations of vague spatial data by using the fuzzy set theory. Fuzzy Minimum
Boundary Rectangle [Somodevilla and Petry 2004] includes the fuzzy set theory in order to define
membership functions by using several Minimum Boundary Rectangles. Fuzzy spatial data types
have also been defined, such as, fuzzy points, fuzzy lines, and fuzzy regions [Dilo et al. 2007; Schneider
2008; Carniel et al. 2014]. To handle them, fuzzy spatial operations are defined [Dilo et al. 2007;
Schneider 2008; Carniel et al. 2014], such as fuzzy geometric set operations and fuzzy topological
predicates. In addition, vague partitions and their operations are defined [Dilo et al. 2007]. In this
article, we consider fuzzy spatial data types defined by Dilo et al. [2007] as design goals to implement
FuzzyGeometry ADT.

3.2 Fuzzy Set Theory

Fuzzy set theory [Zadeh 1965] is an extension and generalization of the classic (crisp) set theory. In
the classic theory, let X be a crisp set of objects, called universe. The subset A of X can be described
by a function χA : X → {0, 1}, which for all x ∈ X, χA(x) is 1 if and only if, x ∈ A and 0 otherwise.
On the other hand, fuzzy set theory defines a function µÃ that maps all elements of X in the interval
[0, 1] by assigning membership degrees in a specific set. Further, fuzzy set theory allows that an
element x has different membership values in different fuzzy sets. Let X be the universe. Then, the
function µÃ : X → [0, 1] is called of membership function of the fuzzy set Ã. Therefore, each element
of fuzzy set Ã has a membership degree in the interval [0, 1] according to the membership function:
Ã = {(x, µÃ) |x ∈ X}.

Classic operations among crisp sets also are extended for the fuzzy sets. We will summarize these
operations. Let Ã and B̃ be fuzzy sets in X, then the intersection, union, and difference are defined
as follows, respectively.

—Ã ∩ B̃ = {(x, µÃ∩B̃(x)) |x ∈ X ∧ µÃ∩B̃(x) = min(µÃ(x), µB̃(x))}

—Ã ∪ B̃ = {(x, µÃ∪B̃(x)) |x ∈ X ∧ µÃ∪B̃(x) = max(µÃ(x), µB̃(x))}

—Ã− B̃ = {(x, µÃ−B̃(x)) |µÃ−B̃(x) = min(µÃ(x), 1− µB̃(x)}
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An alpha-cut (α-cut) of the fuzzy set Ã for a specific value α is a crisp set defined as follows,
Ã≥α = {x ∈ X |µÃ(x) ≥ α ∧ 0 ≤ α ≤ 1}. When α value is 1, the result is called of core of Ã.

Generalizations of intersection and union, replace the minimum and maximum operators by tri-
angular norms (t-norm) and triangular co-norms (s-norm), respectively. A t-norm T is defined as a
commutative, associative, non-decreasing binary operation on [1, 0], with signature T : [0, 1]2 → [0, 1]
satisfying the following boundary conditions, T (1, x) = x and T (0, x) = 0 for all x ∈ [0, 1] [Klement
et al. 2000]. Let x, y ∈ [0, 1], some examples of t-norms are listed as follows.

—T ∗(x, y) =


x if y = 1

y if x = 1

0 otherwise
(drastic intersection)

—Tp(x, y) = ab (product t-norm)
—Tl(x, y) = max(0, x+ y − 1) (Lukasiewicz t-norm)

For any t-norm there is an s-norm, which is obtained by De Morgan’s laws. Hence, a s-norm
is defined as a commutative, associative, non-decreasing binary operation on [1, 0], with signature
S : [0, 1]2 → [0, 1] satisfying the following boundary conditions, S(1, x) = 1 and S(0, x) = x for all
x ∈ [0, 1] [Klement et al. 2000]. Let x, y ∈ [0, 1], some examples of s-norms are listed as follows.

—S∗(x, y) =


x if y = 0

y if x = 0

1 otherwise
(drastic union)

—Sp(x, y) = x+ y − xy (probabilistic sum)
—Sl(x, y) = min(1, x+ y) (bounded sum)

The height of a fuzzy set Ã is defined as the greatest membership value (sup) of the membership
function of Ã [Jamshidi et al. 1993], that is, h(Ã) = supx[µÃ(x)]. A fuzzy set Ã is called normal
when h(Ã) = 1, and subnormal when h(Ã) < 1. In order to normalize a fuzzy set Ã, we apply the
normalization operation, which is defined as NormµÃ

(x) = [µÃ(x)/h(Ã)] for all x ∈ X.

The concentration (CON) of a fuzzy set Ã decreases the fuzziness, while the dilation (DIL) of a
fuzzy set Ã increases the fuzziness [Jamshidi et al. 1993]. They are defined as follows:

—µCON (Ã)(x) = [µÃ(x)]
p for all x ∈ X where p > 1

—µDIL(Ã)(x) = [µÃ(x)]
r for all x ∈ X where r ∈ ]0, 1[

Finally, there are some notations to textually represent a fuzzy set [Jamshidi et al. 1993]. The
following definitions are textual representation of a fuzzy set Ã.

—Ã =
∑
xi∈X µÃ(xi)/xi when X is finite and discrete

—Ã =
∫
x
µÃ(x)/x when X is continuous

Note that the signs of sum and integral denote the union of the membership degrees and the slash
(/) denotes a separator.

4. THE FUZZYGEOMETRY ABSTRACT DATA TYPE

In this section, we propose a novel ADT to handle fuzzy spatial objects, called FuzzyGeometry.
We implement the FuzzyGeometry ADT as a PostgreSQL extension. PostgreSQL is an open-source
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Definição do TAD VagueGeometry

FuzzyGeometry

Fuzzy Point Fuzzy MultiPointFuzzy LineString Fuzzy MultiLineString

Fig. 1. The hierarchy of the FuzzyGeometry data types.
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Fig. 2. Examples of FuzzyGeometry objects: (a) a fuzzy point object, (b) a fuzzy multipoint object, (c) a fuzzy linestring
object, and (d) a fuzzy multilinestring object. The membership degrees are also showed, where darker parts have higher
membership degrees than lighter areas.

software and it is an extensible DBMS where new ADTs can be implemented by using a low level pro-
gram language (for instance, C language)3. FuzzyGeometry ADT is implemented in the C language
by using the extensibility provided by the PostgreSQL internal library. A detailed documentation
of FuzzyGeometry is available at http://gbd.dc.ufscar.br/fuzzygeometry/. Section 4.1 presents
the FuzzyGeometry data types and how they are implemented in the PostgreSQL. Section 4.2 de-
fines textual and binary representations of FuzzyGeometry objects. Section 4.3 details fuzzy spatial
operations to handle FuzzyGeometry objects in SQL queries.

4.1 Fuzzy Spatial Data Types of the FuzzyGeometry

Figure 1 depicts the fuzzy spatial data types of the FuzzyGeometry ADT. The highest level of hierarchy
is the FuzzyGeometry data type. The FuzzyGeometry data type is a generalization for fuzzy points
and fuzzy lines, which can be simple or complex. The fuzzy point data type represents simple fuzzy
points, while the fuzzy multipoint data type represents complex fuzzy points. Similarly, the fuzzy
linestring data type represents complex fuzzy lines, while the fuzzy multilinestring represents complex
fuzzy lines. Note that the current version of the FuzzyGeometry ADT does not provide support for
fuzzy regions. Figure 2 depicts examples of FuzzyGeometry objects.

In general, FuzzyGeometry objects have a membership degree for each point in the space to denote
spatial imprecision. Such membership degree is a value in the interval [0, 1] that determines the spatial
vagueness in a given point. In the following, we will detail each data type of the FuzzyGeometry
ADT according to Figure 1 by showing its structure. Hence, these structures show the attributes
that compose fuzzy spatial objects and how they are specified in the low-level implementation of
FuzzyGeometry ADT.

The main structure of the FuzzyGeometry ADT is FUZZYGEOM. It handles the FuzzyGeometry
data type, which is a generic data type that can be instanced as fuzzy point objects or fuzzy line

3http://www.postgresql.org/docs/9.5/static/xfunc-c.html
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objects (Figure 1). Algorithm 1 shows the specification of FUZZYGEOM, which has the following
attributes:

—The type attribute (line 2) is an identifier that indicates the data type of a FuzzyGeometry object
(Figure 1), which can be fuzzy point, fuzzy multipoint, fuzzy linestring, and fuzzy multilinestring.

—The srid attribute (line 3) stores the Spatial Reference System Identifier (SRID), which indicates
spatial coordinate system definitions.

—The bbox attribute (line 4) stores the Minimum Boundary Rectangle (MBR) of a FuzzyGeometry
object. Algorithm 2 details BBOX, which is composed by the minimum and maximum coordinates
of each axis, that is, x and y.

—The data attribute (line 5) stores the remaining data related to the FuzzyGeometry object. This is
a void pointer to store any kind of data in order to aid in the conversion between FUZZYGEOM
and similar structures, such as those that define a fuzzy line object.

In order to aid the handling of FuzzyGeometry objects in main memory, we create a new structure
that stores a serialized array of spatial coordinates x, y and its membership degree, that is, fuzzy
points. This structure is named FPOINTARRAY, which is also defined to perform generic operations
in serialized arrays, such as insertion, modification, and retrieval of elements. To efficiently perform
these operations, we employ main memory operations, such as memcpy and memmove. We use
serialized array of fuzzy points since the PostgreSQL internal library requires that an object should
be serialized to be stored in a PostgreSQL table. To handle serialized fuzzy points, we defined the
structure named FPOINT.

Algorithm 3 details the structures FPOINTARRAY and FPOINT. In FPOINTARRAY (lines 1 to
5), the serialized_fpointlist attribute (line 2) stores the serialized array of fuzzy points, the npoints
attribute (line 3) stores the current number of stored points, and the maxpoints attribute (line 5)
stores the maximum number of points that can be stored in the array. FPOINT (lines 7 to 11)
contains the coordinates x and y and its membership degree as attributes.

By using FPOINTARRAY, we are able to define the other structures. Algorithm 4 details FUZZY-
POINT and FUZZYMULTIPOINT, which represent the fuzzy point and the fuzzy multipoint data
types (Figure 1), respectively. The difference between FUZZYPOINT and FPOINT (Algorithm 3) is
that the later only deals with fuzzy points to be serialized in main memory, while the former indeed
handle instances of the fuzzy point data type. As a result, we are able to convert an instance of
FUZZYPOINT into an instance of FUZZYGEOM. Similarly, we also are able to make conversions
between instances of FUZZYMULTIPOINT and FUZZYGEOM. In order to aid these conversions
(that is, explicit type conversions in C), the first three attributes of FUZZYPOINT (lines 2 to 4) and
FUZZYMULTIPOINT (lines 9 to 11) are the same of the first three attributes of FUZZYGEOM (lines
2 to 4 in Algorithm 1). The last attribute of FUZZYPOINT, point, is a pointer to an instance of
FPOINTARRAY that stores the value 1 in its npoints and maxpoints attributes since FUZZYPOINT
represents the fuzzy point data type. On the other hand, the point attribute of FUZZYMULTI-
POINT stores a value n ∈ N in the npoints attribute and a greater value in the maxpoints attribute
(for instance, 2n) since it represents the fuzzy multipoint data type.

Algorithm 1: The structure that represents the FuzzyGeometry data type (Figure 2).
1 typedef struct {
2 uint8_t type;
3 int32_t srid;
4 BBOX *bbox;
5 void *data;
6 } FUZZYGEOM;
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Algorithm 2: The structure that represents a MBR of a FuzzyGeometry object.
1 typedef struct {
2 double xmin;
3 double xmax;
4 double ymin;
5 double ymax;
6 } BBOX;

Algorithm 3: The structures that store a serialized array (FPOINTARRAY) of fuzzy points
(FPOINT).

1 typedef struct {
2 uint8_t *serialized_fpointlist;
3 int npoints;
4 int maxpoints;
5 } FPOINTARRAY;
6

7 typedef struct {
8 double x;
9 double y;

10 double u;
11 } FPOINT;

Algorithm 4: The structures that represent the fuzzy point data type (FUZZYPOINT) and fuzzy
multipoint data type (FUZZYMULTIPOINT).

1 typedef struct {
2 uint8_t type;
3 int32_t srid;
4 BBOX *bbox;
5 FPOINTARRAY *point;
6 } FUZZYPOINT;
7

8 typedef struct {
9 uint8_t type;

10 int32_t srid;
11 BBOX *bbox;
12 FPOINTARRAY *points;
13 } FUZZYMULTIPOINT;

Algorithm 5 details the structures FUZZYLINE and FUZZYMULTILINE for the fuzzy linestring
and fuzzy multilinestring data types (Figure 1), respectively. As for FUZZYPOINT and FUZZY-
MULTIPOINT, the first three attributes of each structure (lines 2 to 4 in FUZZYLINE and lines 10
to 12 in FUZZYMULTILINE) are the same of FUZZYGEOM (Algorithm 1). The point attribute of
FUZZYLINE stores the fuzzy points that compose a fuzzy linestring object. Further, this attribute
should has at least two fuzzy points and there is no intersection in its line segments. A line seg-
ment of a fuzzy linestring object is a consecutive pair of serialized fuzzy points (that is, instances of
FPOINTs). The interpolation attribute indicates the type of interpolation used to calculate the mem-
bership degree of a point in a line segment. We have implemented the linear interpolation, although
other types of interpolations can also be considered as possible extensions. FUZZYMULTILINE has
the following attributes: ngeoms, maxgeoms, and geoms. The ngeoms attribute contains the number
of fuzzy linestring stored in the geoms attribute, while maxgeoms attribute contains the maximum
fuzzy linestring objects that can be stored. This means that FUZZYMULTILINE is formed by a set
of pointers of instances of FUZZYLINEs stored in the geoms attribute.
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Algorithm 5: The structures that represent the fuzzy line data type (FUZZYLINE) and fuzzy
multiline data type (FUZZYMULTILINE).

1 typedef struct {
2 uint8_t type;
3 int32_t srid;
4 BBOX *bbox;
5 FPOINTARRAY *point;
6 uint8_t interpolation
7 } FUZZYLINE;
8

9 typedef struct {
10 uint8_t type;
11 int32_t srid;
12 BBOX *bbox;
13 int ngeoms
14 int maxgeoms
15 FUZZYLINE **geoms;
16 } FUZZYMULTILINE;

Algorithm 6: The structure that stores a FuzzyGeometry object in the PostgreSQL.
1 typedef struct {
2 uint32_t size;
3 uint8_t srid[4];
4 uint8_t data[1];
5 } FGSERIALIZED;

The aforementioned structures (Algorithms 1, 4, and 5) are able to handle only FuzzyGeometry data
types in the main memory and cannot be stored directly in the PostgreSQL. This is due the fact that
the PostgreSQL internal library4 only handles streams of bytes with an alignment, that is, serialized
data. Since a pure implementation based on stream of bytes would be complex, we employ conversions
between the internal (main memory) structures and a serialization structure, named FGSERIALIZED.
These conversions are efficiently performed since FPOINTARRAY deals with serialized fuzzy points.

Algorithm 6 details FGSERIALIZED, which has the following attributes: size, srid, and data. The
size attribute is required by the PostgreSQL internal library and stores the size in bytes of the object
to be stored in the database. The srid attribute is a serialized integer value and corresponds to the
srid attribute of FUZZYGEOM (Algorithm 1). The data attribute stores the remaining data of a
FuzzyGeometry object, that is, the MBR, an identifier of the FuzzyGeometry data type, and the
spatial coordinates with their respective membership degrees. The serialization alignment is 8, which
means that the final size of the object have to be a multiple of 8. Table I depicts the serialization
order of each FuzzyGeometry data type. This table uses the following notation to show the size in
bytes of each serialized element. Elements between <> have 4 bytes, while elements between [ ] have
a size multiple of 8 bytes. Note that for the fuzzy linestring data type, we need to add a padding of
4 bytes to keep the 8-bytes alignment.

Next, we have to use the SQL CREATE TYPE command to create the FuzzyGeometry data type
in the PostgreSQL, as showed in Algorithm 7. Note that only the FuzzyGeometry data type is created
since it can be instanced as fuzzy points and fuzzy lines. The internallength parameter indicates that
the size in bytes of FuzzyGeometry objects is variable since the number of coordinates is not fixed.
The input and output parameters are functions in C that transform a textual representation of a
FuzzyGeometry object into its internal representation as well as the inverse, respectively. Similarly,
the send and receive parameters transform a binary representation into an internal representation

4http://www.postgresql.org/docs/9.5/static/xtypes.html
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Table I. Serialization order of a FuzzyGeometry object stored in the PostgreSQL.

FuzzyGeometry Data Type Serialization Order

Fuzzy Point

[MBR]

<data type identifier>
<number of the fuzzy points (0 for empty and 1 otherwise)>
[x coordinate]
[y coordinate]
[membership degree]

Fuzzy Multipoint

[MBR]

<data type identifier>
<number of the fuzzy points (0 for empty and 1 otherwise)>
[x coordinate]
[y coordinate]
[membership degree]

Fuzzy Linestring

[MBR]
<data type identifier>
<type of interpolation>
<number of the fuzzy points (0 for empty and 2 otherwise)>
<padding>
[x coordinate]
[y coordinate]
[membership degree]

Fuzzy Multilinestring

[MBR]

<data type identifier>
<number of the fuzzy linestrings>
for each fuzzy linestring i

[serialization of the fuzzy linestring i ]

Algorithm 7: The CREATE TYPE command to create the FuzzyGeometry data type in the
PostgreSQL.

1 CREATE TYPE FuzzyGeometry (
2 internallength = variable,
3 input = fg_in,
4 output = fg_out
5 send = fg_send,
6 receive = fg_recv,
7 typmod_in = fg_typmod_in,
8 typmod_out = fg_typmod_out,
9 category = ’G’,

10 alignment = double,
11 storage = main
12 );

as well as the inverse, respectively. The textual and binary representations of the FuzzyGeometry
data types are presented in Section 4.2. The typmod_in and typmod_out parameters manipulate
the FuzzyGeometry data types. The category parameter defines that a FuzzyGeometry object is a
geometric data type. The alignment parameter determines the size of the alignment of the serialized
data, which is specified to be 8 bytes. Finally, the storage parameter specifies the strategy of storage
that the PostgreSQL will use. We specified to be main since it preferentially stores objects in the main
table with possible compressions. The complete documentation of the CREATE TYPE command can
be found in the PostgreSQL documentation5.

5http://www.postgresql.org/docs/9.5/static/sql-createtype.html
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Table II. Examples of FWKT representations.

FuzzyGeometry Data Type FWKT Representation of a FuzzyGeometry object

Fuzzy Point FUZZYPOINT(0.7/10 30)
Fuzzy MultiPoint FUZZYMULTIPOINT(0.5/10 20 + 0.8/5 3 + 0.1/30 20)
Fuzzy LineString FUZZYLINESTRING(0.5/1 1 + 0.7/2 2 + 1.0/4 4)

Fuzzy MultiLineString FUZZYMULTILINESTRING((0.3/1 1 + 0.5/2 2), (0.7/3 3 + 1.0/4 4))

4.2 Textual and Binary Representations

In order to insert and retrieve FuzzyGeometry objects, we define textual and binary representations
for each FuzzyGeometry data type. In addition, these representations allow interoperability between
spatial applications since a FuzzyGeometry object has a unique representation. The textual definition
can be used for general purpose, while the binary representation can be used in applications that
communicate by using network protocols or manage binary data.

We define the Fuzzy Well-Known Text (FWKT) as textual representation, which is based on the
textual representation of fuzzy sets (Section 3.2) and the Well-Known Text representation of the Open
Geospatial Consortium (OGC)6. In general, the FWKT representation of a FuzzyGeometry object
starts with the name of its data type and then, in parentheses, the membership degree and coordinate
pairs of each point. Empty FuzzyGeometry objects, which contain no coordinates and membership
degrees, can be specified by using the symbol EMPTY after the data type name. Table II shows
examples of FWKT representations for each FuzzyGeometry data type (Figure 1). Let (x, y) be a
coordinate pair, u be a membership degree in real interval ]0, 1], and k, j ∈ N. Then, we define the
textual representation FWKT for (i) fuzzy point, (ii) fuzzy multipoint, (iii) fuzzy linestring, and (iv)
fuzzy multilinestring data types, as follows:

(i) FUZZYPOINT(u/x y)
(ii) FUZZYMULTIPOINT(u1/x1 y1 + ...+ uk/xk yk)

(iii) FUZZYLINESTRING(u1/x1 y1 + ...+ uk/xk yk)

(iv) FUZZYMULTILINESTRING((u11/x11 y11 + ... + uk1/xk1 yk1)1, ..., (u1j/x1j y1j + ... +
ukj/xkj ykj )j)

We define the Fuzzy Well-Known Binary (FWKB) as binary representation, which is based on the
Well-Known Binary representation of the OGC. To aid in the FWKB definition, we use the id(Ã)
function, which extracts the binary format of the data type identifier of a FuzzyGeometry object. It
extracts the identifier 1 if Ã is a fuzzy point object, the identifier 2 if Ã is a fuzzy linestring object,
the identifier 3 if Ã is a fuzzy multipoint object, and the identifier 4 if Ã is a fuzzy multilinestring
object. Further, we use the binary function that extract the binary format of a double value. Let n be
the number of points in a fuzzy multipoint and fuzzy linestring object, l be the number of lines in a
fuzzy multilinestring object, and p be a fuzzy point with the coordinates x and y with a membership
degree u. Then, we define the binary representation FWKB for (i) fuzzy point, (ii) fuzzy multipoint,
(iii) fuzzy linestring, and (iv) fuzzy multilinestring data types, as follows:

(i) endianness + id(A) + binary(u) + binary(x) + binary(y)

(ii) endianness + id(A) + binary(n) +
∑n
pi∈A(binary(u)pi + binary(x)pi + binary(y)pi)

(iii) endianness + id(A) + binary(n) +
∑n
pi∈A(binary(u)pi + binary(x)pi + binary(y)pi)

(iv) endianness + id(A) + binary(l) +
∑l
li∈A FWKB of Ali

6http://www.opengeospatial.org/
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The signs of sum are used to denote the union between binary data and do not perform the arithmetic
sum. Further, endianness indicates the way in which the bytes are organized in main memory (that
is, either big-endian or little-endian).

4.3 Fuzzy Spatial Operations of the FuzzyGeometry

FuzzyGeometry ADT provides support to input and output operations, fuzzy geometric set operations,
and fuzzy spatial operations based on the fuzzy set theory. The following subsections detail these
operations by providing examples and their SQL signatures.

4.3.1 Input and Output Operations. The input operations transform a FuzzyGeometry object rep-
resented in the FWKT and FWKB representations into the internal (main memory) format. These
operations are mainly employed to insert new FuzzyGeometry objects in a PostgreSQL relational ta-
ble. The output operations yield the FWKT and FWKB representations of a FuzzyGeometry object
and are applied to retrieve FuzzyGeometry objects in SQL queries. The SQL signatures for input and
output operations are defined as follows, respectively:

(i) FG_FuzzyGeomFromText(text FWKT , integer SRID) → FuzzyGeometry
(ii) FG_FuzzyGeomFromBinary(bytea FWKB , integer SRID) → FuzzyGeometry
(iii) FG_AsText(FuzzyGeometry fg) → text
(iv) FG_AsFWKB(FuzzyGeometry fg) → bytea

Operation (i) is the input operation for the FWKT representation, while operation (ii) is the input
operation for the FWKB representation. These operations also receive the SRID as parameter. Oper-
ations (iii) and (iv) are the output operations for the FWKT and FWKB representations, respectively.

4.3.2 Fuzzy Geometric Set Operations. FuzzyGeometry provides support for the following fuzzy
geometric set operations: union, intersection, and difference. In general, we used the formal definition
provided by fuzzy models that define fuzzy spatial data (Section 3.1) to implement them. We define
the following SQL signatures:

(i) FG_Union(FuzzyGeometry fg1 , FuzzyGeometry fg2 , text s) → FuzzyGeometry
(ii) FG_Union(FuzzyGeometry set fg_field) → FuzzyGeometry
(iii) FG_Intersection(FuzzyGeometry fg1 , FuzzyGeometry fg2 , text t) → FuzzyGeometry
(iv) FG_Difference(FuzzyGeometry fg1 , FuzzyGeometry fg2 , text d) → FuzzyGeometry

Operation (i) is the union operation between FuzzyGeometry objects, which is performed by the
spatial union and the fuzzy union to calculate the membership degree of intersecting points. The
fuzzy union can be executed by using a specific s-norm s, which can be the default union (max
operator), drastic union, probabilistic sum, and bounded sum (Section 3.2). In addition, the union is
only executed for FuzzyGeometry objects of the same data type. For instance, the union of two fuzzy
linestring objects yields other fuzzy linestring object. In addition, the union operation can be used
as an aggregate function, that is, the operation (ii). This means that, given a set of FuzzyGeometry
objects, this operation yields the union among all the objects contained in this set. The strategy to
compute this aggregation is to perform the union operation (i) incrementally for each FuzzyGeometry
object contained in the set by considering the default union to calculate the membership degree of
intersecting points. Figure 3c shows the result of the union operation between two fuzzy multipoint
objects (Figures 3a and 3b) by applying the probabilistic sum as s-norm.

Operation (iii) is the intersection operation between FuzzyGeometry objects, which is performed by
the spatial intersection and the fuzzy intersection to calculate the membership degree of intersecting
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Fig. 3. Result of the fuzzy geometric set operations on two FuzzyGeometry objects (a) and (b): (c) union operation,
(d) intersection operation, and (e) difference operation. Each FuzzyGeometry object has its FWKT representation.

points. The fuzzy intersection can be executed by using a specific t-norm t, which can be the default
t-norm (min operator), drastic intersection, product t-norm, and Lukasiewicz t-norm (Section 3.2).
The intersection can be executed between FuzzyGeometry objects of different types, and the resulting
FuzzyGeometry object is the lower data type by considering the hierarchy: fuzzy linestring > fuzzy
point. For instance, the intersection between fuzzy linestring objects and fuzzy point objects yields a
fuzzy point or a fuzzy multipoint object composed by the commons points with membership degrees
calculated by using a t-norm t. Figure 3d shows the result of the intersection operation between two
fuzzy multipoint objects (Figures 3a and 3b) by applying the product t-norm as t-norm.

Operation (iv) is the difference operation between FuzzyGeometry objects, which is performed by
the spatial difference and the membership degrees of intersecting points are calculated by using a
difference operator. The supported difference operators are the fuzzy difference (Section 3.2) and
bounded difference. The bounded difference is defined by diff (a, b) = a− b if a > b and 0 otherwise.
The difference operation is only performed between FuzzyGeometry objects of the same data type.
For instance, the difference between fuzzy linestring objects yields a fuzzy linestring object. Figure 3e
shows the result of the fuzzy difference operation between the two fuzzy multipoint objects depicted
in Figures 3a and 3b.

4.3.3 Fuzzy Spatial Operations Based on the Fuzzy Set Theory. FuzzyGeometry provides support
for the following fuzzy spatial operations based on the fuzzy set theory: core, boundary, concentra-
tion, dilation, alpha-cut, height, and normalization. These operations can be applied in any type of
FuzzyGeometry object, and they have the following SQL signatures:

(i) FG_Core(FuzzyGeometry fg) → FuzzyGeometry
(ii) FG_Boundary(FuzzyGeometry fg) → FuzzyGeometry
(iii) FG_Concentration(FuzzyGeometry fg , double p) → FuzzyGeometry
(iv) FG_Dilation(FuzzyGeometry fg , double r) → FuzzyGeometry
(v) FG_Alphacut(FuzzyGeometry fg , double α) → FuzzyGeometry
(vi) FG_Height(FuzzyGeometry fg) → double
(vii) FG_Normalization(FuzzyGeometry fg) → FuzzyGeometry

Operations (i) and (ii) correspond to the core and boundary operations, which return the locations
that have exact locations (locations with membership degree equal to 1) and vague locations (locations
with membership degree less than 1 and greater than 0), respectively. Figures 4a and 4b depict the
result of the core and boundary operations on the fuzzy multipoint object of Figure 3a.

Operations (iii) and (iv) correspond to the fuzzy concentration (iii) and dilation (iv) operations
(Section 3.2), which decrease and increase the membership degrees of the locations according to p and
r, respectively. These operations are useful to analyze or edit locations in order to intensify or smooth
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Fig. 4. Result of the core (a), boundary (b), concentration (c), and dilation (d) operations on the FuzzyGeometry object
of Figure 3a, with their FWKT representations.

the spatial vagueness. Figures 4c and 4d depicts the result of concentration and dilation operations
on the fuzzy multipoint object of Figure 3a.

Operation (v) performs the fuzzy alpha-cut (Section 3.2), which filters the locations that have mem-
bership degree equal to or greater to an α value. This means that, this operation identifies locations
that contain specific membership degrees. Operation (vi) corresponds to the fuzzy spatial height that
returns the greatest membership degree of a FuzzyGeometry object. This operation is necessary for
the fuzzy spatial normalization operation (operation (vii)). If the height of a FuzzyGeometry object is
1, than it has a core (for instance, the multipoint object in Figure 3a). Otherwise, the normalization
can be used to create a core, which will be the locations with the greatest membership degree.

5. RUNNING EXAMPLE

This section provides a running example to illustrate the functionalities of FuzzyGeometry ADT by
using the SQL language. The context of this running example is to manage plagues and animal routes
in an ecological application. Hence, we consider the following relational table schemas plague and
animal. Each table has an attribute id as primary key and an attribute geo to store FuzzyGeometry
objects. While plagues are represented by fuzzy multipoint objects, animal routes are represented
by fuzzy multilinestring objects. The following SQL command exemplifies the creation of the table
plague. Note that the FuzzyGeometry data type is specified between parentheses in the attribute geo.

CREATE TABLE plague(
id INTEGER PRIMARY KEY,
geo FUZZYGEOMETRY(FUZZYMULTIPOINT));

Similarly, we are able to create the table to stored the animal routes. By using textual and binary
representations (Section 4.2), we are able to insert FuzzyGeometry objects in tables. The next SQL
command shows an insertion of the fuzzymultipoint object of Figure 3a in the plague table.

INSERT INTO plague VALUES (1,
FG_FuzzyGeomFromText(’FUZZYMULTIPOINT(0.2/-2 1 + 1/-1 2 + 1/1 1 + 0.4/1 2 +

0.6/2 2)’, 4326))

Once we have inserted FuzzyGeometry objects in its respective tables, we are able to perform SQL
queries on them. The following query returns the intersecting parts among all animal routes. This
query shows the result of this intersection operation (Section 4.3.2) by using the FWKT representation.

SELECT FG_AsText(FG_Intersection(A.geo, B.geo, ’default t-norm’))
FROM animal as A, animal as B
WHERE A.id <> B.id
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The next SQL query returns the intersecting points between the animal route with id equal to 5 and
all the plagues of the environment. Hence, we employ the union operation as an aggregate function on
all the plagues, that is, a sequence of union operations explained in Section 4.3.2. Then, we compute
the intersection between this object and the specific animal route.

SELECT FG_AsText(FG_Intersection(P.all, A.geo))
FROM (SELECT FG_Union(geo) as all FROM plague) as P, animal as A
WHERE A.id = 5

The next SQL query returns the plagues with membership degrees greater than 0.8 (by using the
alpha-cut operation described in Section 4.3.3). This means that these plagues need some treatment
of the decision makers since they have high membership degrees.

SELECT FG_AsText(FG_Alphacut(P.geo, 0.8))
FROM plague as P

The next query changes the meaning of spatial vagueness in an animal route (id equal to 10) by
decreasing its membership degrees. For this purpose, we use the concentration operation described in
Section 4.3.3. This means that, due to some factors (for instance, a strong rain), the imprecision of
this animal route is greater than the original.

SELECT FG_AsText(FG_Concentration(A.geo, 2))
FROM animal as A
WHERE id = 10

On the other hand, the final SQL query employs the dilation operation introduced in Section 4.3.3
to increase the membership degrees of another animal route (id equal to 11). As a result, this query
returns an animal route with lesser imprecision than the original.

SELECT FG_AsText(FG_Dilation(A.geo, 0.5))
FROM animal as A
WHERE id = 11

6. CONCLUSIONS AND FUTURE WORK

This article proposes a novel abstract data type, called FuzzyGeometry, to handle fuzzy spatial ob-
jects based on the fuzzy model in PostgreSQL. Fuzzy spatial data are an important representation
of real-world phenomena characterized by spatial vagueness (fuzziness), that is, inexact location or
uncertain boundaries and interiors. Although it can be adequately used to represent spatial vagueness,
implementations based on the fuzzy model are limited and have not been incorporated into spatial
DBMS. Due to the complexity and the limited work on specification of implementation of fuzzy spatial
data types, we focus on the implementation of simple and complex fuzzy points and fuzzy lines only.
As a result, FuzzyGeometry ADT is an important initial work for this research area, which advances
in the state of art to handle vague spatial objects based on the fuzzy model in the PostgreSQL.

Several operations have been proposed and implemented to handle FuzzyGeometry objects, such
as input and output operations, fuzzy geometric set operations, and fuzzy spatial operations based
on the fuzzy set theory. To deal with input and output operations, we propose textual and binary
representations of fuzzy lines and fuzzy points. As a result, users can insert, retrieve, and handle
fuzzy lines and fuzzy points in spatial databases by using our proposed FuzzyGeometry ADT. It is
possible by executing SQL commands, which provides a flexible management of the FuzzyGeometry
objects in spatial databases.

Future work will deal with a number of topics. First, the implementation for the fuzzy region data
type is needed. Some possible implementations can be based on the plateau spatial algebra [Schneider
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2014] and on the triangular irregular networks [Dilo et al. 2006]. Second, we will design the specification
and implementation of fuzzy topological predicates [Carniel et al. 2014] since topological relationships
are often used by spatial applications. Third, since we are using fuzzy set theory, we are able to
use fuzzy inference [Jamshidi et al. 1993] in order to extract information from spatial fuzziness, such
as discussed by Carniel et al. [2015]. Fourth, we will design and implement operations by using the
PostGIS7 spatial extension in order to convert crisp spatial objects to fuzzy spatial objects and vice
versa. Finally, we aim to conduct experiments in order to evaluate the correctness and performance
of the FuzzyGeometry operations.
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