
Handling Fuzzy Points and Fuzzy Lines using the

FuzzyGeometry Abstract Data Type

Anderson Chaves Carniel1, Ricardo Rodrigues Ciferri2, Cristina Dutra de Aguiar Ciferri1

1 University of São Paulo, Brazil

accarniel@gmail.com, cdac@icmc.usp.br
2 Federal University of São Carlos, Brazil

ricardo@dc.ufscar.br

Abstract. Crisp spatial objects are geometric features with exact location on the extent and well-known boundaries.
On the other hand, vague or fuzzy spatial objects are characterized by uncertain or blurred boundaries and interiors.
Despite the importance of fuzzy spatial data in spatial applications, few related work indeed implement them and they
do not de�ne abstract data types to enable the management of fuzzy spatial objects by using database management
systems (DBMS). To �ll this gap in the literature, we propose the abstract data type FuzzyGeometry to handle fuzzy
spatial objects in the PostgreSQL DBMS. Its implementation is open source. It o�ers management for fuzzy point
objects and fuzzy line objects and provides several operations to handle them. As a result, users are able to access the
PostgreSQL in order to use fuzzy spatial objects in spatial queries.

Categories and Subject Descriptors: H.2.8 [Database Management]: Spatial databases and GIS

Keywords: abstract data types, spatial databases, fuzzy spatial objects, spatial fuzzyness

1. INTRODUCTION

Spatial applications are commonly used for spatial analysis in order to aid in the decision making
process. They mainly analyze spatial objects that can be represented by crisp spatial data types [Güt-
ing 1994; Schneider and Behr 2006]. These crisp spatial data types can have simple structure, such
as crisp point, line, and polygon (that is, region), or complex structure, such as crisp multipoint,
multiline, and multipolygon. Real-world phenomena represented by them have exact location in the
extent, that is, their geographical coordinates clearly de�ne their geographical positions. In addition,
they have well-de�ned boundaries, expressing with exactness their limit. In order to handle crisp spa-
tial objects in spatial Database Management Systems (spatial DBMS) and Geographical Information
System (GIS), spatial operations are de�ned, such as crisp geometric operations (for instance, union
and intersection) and crisp numerical operations (for instance, area and distance).

On the other hand, real-world phenomena frequently have inexact location, uncertain boundaries,
or blurred interiors [Siqueira et al. 2014]. For instance, the representation of soil mapping, �re and
risk zones, oceans, lakes, and air polluted areas. In order to represent these phenomena, we use
vague spatial data types. There are several models to represent vague spatial objects, such as exact
models [Cohn and Gotts 1995; Pauly and Schneider 2008; Bejaoui et al. 2009; Pauly and Schneider
2010], rough models [Beaubouef et al. 2004], probabilistic models [Cheng et al. 2003; Li et al. 2007; Zinn
et al. 2007], and fuzzy models [Dilo et al. 2007; Schneider 2008; 2014; Carniel et al. 2014]. However,
the majority of existing implementations of vague spatial objects [Kraipeerapun 2004; Dilo et al. 2006;
Pauly and Schneider 2008; 2010; Carniel et al. 2015b] are based on the exact models and fuzzy models
due to the following factors: (i) exact models reuses existing crisp spatial operations from conventional

The authors have been supported by the Brazilian research agencies FAPESP, CAPES, and CNPq.
Copyright©2014 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 6, No. 1, June 2015, Pages 1�16.

2 · A. C. Carniel, R. R. Ciferri, and C. D. A. Ciferri

spatial DBMS and GIS to handle vague spatial objects and (ii) fuzzy models are based on the fuzzy
set theory and allows us to re�ne the de�nition of a vague spatial object by assigning, for each point,
a membership degree between 0 and 1 that indicates how much a point belongs to the object.

Exact models have the advantage of the use of well-known and e�cient crisp spatial operations
that are largely explored in the literature. As a result, implementations based on these models have
an expressive set of vague spatial operations, such as discussed in Carniel et al. [2015b]. However,
these implementations are not able to represent in detail a real-world phenomenon since a crisp spatial
object is used to denote the well-known part and another crisp spatial object is used to denote the
vague part of a vague spatial object. For instance, an air polluted area is represented by two crisp
polygon objects, which one object indicates where the pollution certainly occurs (that is, the well-
known part) and the other object indicates where the pollution occurs with some degree (that is, the
vague part).

On the other hand, fuzzy models allows us to represent a vague spatial object in more details. This
is done by assigning a membership degree between 0 and 1 for each point of the object. Membership
degrees specify how much a point belongs to a vague spatial object. For instance, due to di�erent
concentrations of air pollution at di�erent locations of an air polluted area, these locations are assigned
with di�erent membership degrees that specify to which extent each point belongs to the air polluted
area. Therefore, di�erently from exact models, we are able to represent the pollution concentration
for each point of a vague spatial object. Vague spatial data based on the exact models are de�ned as
fuzzy spatial data types, such as fuzzy points, fuzzy lines, and fuzzy regions.

Despite the advantage to use fuzzy models, only few implementations are based on them [Kraipeer-
apun 2004; Dilo et al. 2006]. In addition, they face several limitations, such as: (i) there are no textual
or binary representations speci�cally designed to handle fuzzy spatial objects, (ii) only a small set of
operations are de�ned and implemented, and (iii) its implementation is based on a GIS and not in a
spatial DBMS, which can limit the management of fuzzy spatial objects in spatial applications.

To �ll this gap, we propose an abstract data type (ADT) named FuzzyGeometry. The FuzzyGeom-
etry ADT is based on the fuzzy model and it is an open-source PostgreSQL extension. In this article,
we focus on the design and implementation of fuzzy points and fuzzy lines only, which already have
several challenges for their de�nitions and implementations. To handle them, we de�ne input and

output functions, fuzzy geometric set operations, and fuzzy spatial operations based on the fuzzy set

theory. We also extend our previous work in Carniel et al. [2015a] with the following contents: (i) we
detail the speci�cation of the implementation and serialization of fuzzy lines and fuzzy points, (ii) we
de�ne textual and binary representations to manage fuzzy lines and fuzzy points, (iii) we exemplify
several fuzzy spatial operations by using graphical representations and textual representations, and
(iv) we introduce a running example to demonstrate the functionalities of the FuzzyGeometry by using
SQL queries.

This article is organized as follows. Section 2 summarizes related work. Section 3 describes the
technical background. Section 4 presents our FuzzyGeomety ADT. Section 5 introduces the running
example in order to show how to use the FuzzyGeometry in SQL queries. Finally, Section 6 concludes
the article and presents future work.

2. RELATED WORK

Few works in the literature implement vague spatial data types based on the fuzzy model by using a
spatial DBMS or GIS. On the other hand, exact models are also frequently adopted to represent vague
spatial objects since they use well-known crisp spatial algorithms. Hence, we compare implementations
based on the exact model and the fuzzy model.

Despite there are several exact models [Cohn and Gotts 1995; Pauly and Schneider 2008; Bejaoui

Journal of Information and Data Management, Vol. 6, No. 1, June 2015.

FuzzyGeometry Abstract Data Type · 3

et al. 2009; Pauly and Schneider 2010], only few implementations are based on them. Vague Spatial
Algebra (VASA) [Pauly and Schneider 2010] is an exact model that o�ers several spatial operations
for vague points, vague lines, and vague regions. Implementations based on this model are detailed
in in Pauly and Schneider [2008], Pauly and Schneider [2010]1 and Carniel et al. [2015b]. However, in
this article, we propose an abstract data type for vague spatial data based on the fuzzy model. While
VASA has only three levels of representation for vague spatial objects (the well-known part, the vague
part, and the part that certainly does not belong to the spatial object), vague spatial objects based
on the fuzzy model may have several levels in the interval [0, 1]. Therefore, it allows a more detailed
representation of spatial vagueness.

For vague spatial data based on the fuzzy model, the Spatial Plateau Algebra (SPA) [Schneider
2014] provides de�nitions for fuzzy spatial data that reuses crisp spatial algorithms. Hence, a fuzzy
spatial object, called spatial plateau object, is de�ned as a �nite sequence of pairs where each pair
is formed by one crisp spatial object and a membership degree in]0, 1]. In addition, SPA de�nes
spatial plateau operations to handle spatial plateau objects, such as plateau geometric set operations.
Though this implementation concept was proposed, spatial plateau objects were not implemented in
a spatial DBMS.

Vague spatial data based on the fuzzy model are implemented in Kraipeerapun [2004] and Dilo
et al. [2006]. The authors in these approaches refer to fuzzy spatial objects as vague spatial objects.
Thus, they implement the following vague spatial data types: vague point, vague line, and vague
region. A vague point object is de�ned as a tuple (x, y, λ), where (x, y) ∈ R2 gives the location, and
λ ∈]0, 1] gives the membership degree. A vague line object is de�ned as a �nite sequence of tuples
((x1, y1, λ1), . . . , (xn, yn, λn)) for some n ∈ N, where each tuple is a vague point object in the vague line
constructed by using linear interpolation. A vague region object is composed by several vague lines
and the Delaunay triangulation, which is stored together with the vague region object. A membership
degree of a point inside a vague region object is calculated by using linear interpolation between
membership degrees of vertices of the triangle to which the point belongs. This implementation is
performed in the GRASS GIS, and not in a spatial DBMS. Further, they do not implement the
vague geometric di�erence between vague lines. However, our article proposes an abstract data type
implemented in a spatial DBMS (that is, the PostgreSQL) to manage fuzzy lines and fuzzy regions as
well as several fuzzy spatial operations to handle them.

3. TECHNICAL BACKGROUND

This section summarizes the main needed concepts to understand our proposed FuzzyGeometry ADT.
Section 3.1 summarizes di�erent models that represent vague spatial data, while Section 3.2 summa-
rizes concepts from fuzzy set theory.

3.1 Vague Spatial Data

While crisp spatial objects have exact location and well-known boundaries, vague spatial objects have
inexact location, uncertain boundaries, or blurred interior. There are distinct models to represent
vague spatial data, which can be classi�ed as exact models [Cohn and Gotts 1995; Pauly and Schneider
2008; Bejaoui et al. 2009; Pauly and Schneider 2010], rough models [Beaubouef et al. 2004], probabilistic
models [Cheng et al. 2003; Li et al. 2007; Zinn et al. 2007], and fuzzy models [Dilo et al. 2007; Schneider
2008; 2014; Carniel et al. 2014].

Exact models aim to reutilize existing abstract data types of crisp spatial data types (for instance,
crisp points, crisp lines, and crisp regions) to represent vague spatial objects. In general, vague spatial
objects are de�ned by using two crisp spatial objects. One object represents the vague spatial part

1http://www.cise.u�.edu/research/SpaceTimeUncertainty/

Journal of Information and Data Management, Vol. 6, No. 1, June 2015.

4 · A. C. Carniel, R. R. Ciferri, and C. D. A. Ciferri

and the other object represents the well-known spatial part. The main models are Egg-Yolk [Cohn
and Gotts 1995], Qualitative Min-Max Model (QMM) [Bejaoui et al. 2009], and Vague Spatial Algebra
(VASA) [Pauly and Schneider 2008; 2010]. Egg-Yolk model de�nes only vague region objects, which
are represented by two sub-regions: a sub-region denominates the yolk (that is, vague spatial part) and
other sub-region denominates the egg (that is, well-known spatial part) that is contained in the yolk
part. QMM model de�nes vague spatial objects by using two spatial limits, a minimum limit (that is,
well-known spatial part) and a maximum limit (that is, includes the minimum limit and extends to the
part that possibly belongs to the spatial object). In addition, this model uses qualitative classi�cations
of vagueness levels, such as completely crisp, partially vague, and completely vague. Finally, VASA
de�nes a vague spatial object as a pair of disjoint or adjacent crisp spatial objects of the same type.

Rough models are based on the rough set theory [Pawlak 1982] that de�nes a lower and an upper
approximation. Hence, a vague spatial object is represented by these approximations. Lower spa-
tial approximation of an object is a subset of its upper spatial approximation. Vague spatial data
represented by rough models deal with vague spatial objects with inexact location as well as inexact
measures [Beaubouef et al. 2004].

Probabilistic models are based on the probability density functions [Cheng et al. 2003; Li et al.
2007; Zinn et al. 2007] and the treatment of spatial vagueness is performed through objects posi-
tions and measures. In general, these models deal with expectative of a future event based on the
known-characteristics. While the probability density functions are exacts, the location of an object is
uncertain.

Fuzzy models, that is, models based on the fuzzy set theory [Zadeh 1965], assign membership
degrees in [0, 1] for each point to represent spatial vagueness in di�erent levels. There are several
representations of vague spatial data by using the fuzzy set theory. Fuzzy Minimum Boundary Rect-
angle [Somodevilla and Petry 2004] includes the fuzzy set theory in order to de�ne membership
functions by using several Minimum Boundary Rectangles. Fuzzy spatial data types denominated
fuzzy points, fuzzy lines, and fuzzy regions as well as fuzzy geometric set operations, such as, fuzzy
geometric union, fuzzy geometric intersection, and fuzzy geometric di�erence has been de�ned [Dilo
et al. 2007; Schneider 2008; 2014; Carniel et al. 2014]. In addition, vague partitions and their oper-
ations are de�ned [Dilo et al. 2007]. In this article, we consider the fuzzy spatial data types de�ned
in Dilo et al. [2007] as design goals to implement the FuzzyGeometry ADT. Section 3.2 summarizes
needed fuzzy set theory concepts.

3.2 Fuzzy Set Theory

Fuzzy set theory [Zadeh 1965] is an extension and generalization of the classic (crisp) set theory. In
the classic theory, let X be a crisp set of objects, called universe. The subset A of X can be described
by a function χA : X → {0, 1}, which for all x ∈ X, χA(x) is 1 if and only if, x ∈ A and 0 otherwise.
On the other hand, fuzzy set theory de�nes a function µÃ that maps all elements of X in the real
interval [0, 1] by assigning membership degrees in a speci�c set. Further, fuzzy set theory allows that
an element x has di�erent membership values in di�erent fuzzy sets. Let X be the universe. Then,
the function µÃ : X → [0, 1] is called of membership function of the fuzzy set Ã. Therefore, each

element of fuzzy set Ã has a membership degree in the real interval [0, 1] according to the membership
function: Ã = {(x, µÃ) |x ∈ X}.

Classic operations among crisp sets also are extended for the fuzzy sets. We will summarize these
operations. Let Ã and B̃ be fuzzy sets in X, then the intersection, union, and di�erence are de�ned
as follows, respectively.

�Ã ∩ B̃ = {(x, µÃ∩B̃(x)) |x ∈ X ∧ µÃ∩B̃(x) = min(µÃ(x), µB̃(x))}
�Ã ∪ B̃ = {(x, µÃ∪B̃(x)) |x ∈ X ∧ µÃ∪B̃(x) = max(µÃ(x), µB̃(x))}

Journal of Information and Data Management, Vol. 6, No. 1, June 2015.

FuzzyGeometry Abstract Data Type · 5

�Ã− B̃ = {(x, µÃ−B̃(x)) |µÃ−B̃(x) = min(µÃ(x), 1− µB̃(x)}

An alpha-cut (α-cut) of the fuzzy set Ã for a speci�c value α is a crisp set de�ned as follows,
Ã≥α = {x ∈ X |µÃ(x) ≥ α ∧ 0 ≤ α ≤ 1}. When α value is 1, the result is called of core of Ã.

Generalizations of fuzzy sets operations, such as intersection and union, replace the minimum and
maximum operators by triangular norms (t-norm) and triangular co-norms (s-norm), respectively.
A t-norm T is de�ned as a commutative, associative, non-decreasing binary operation on [1, 0], with
signature T : [0, 1]2 → [0, 1] satisfying the following boundary conditions, T (1, x) = x and T (0, x) = 0
for all x ∈ [0, 1] [Klement et al. 2000]. Let x, y ∈ [0, 1], some examples of t-norms are listed as follows.

�T ∗(x, y) =

x if y = 1

y if x = 1

0 otherwise

(drastic intersection)

�Tp(x, y) = ab (product t-norm)

�Tl(x, y) = max(0, x+ y − 1) (Lukasiewicz t-norm)

For any t-norm there is an s-norm, which is obtained by De Morgan's laws. Hence, a s-norm
is de�ned as a commutative, associative, non-decreasing binary operation on [1, 0], with signature
S : [0, 1]2 → [0, 1] satisfying the following boundary conditions, S(1, x) = 1 and S(0, x) = x for all
x ∈ [0, 1] [Klement et al. 2000]. Let x, y ∈ [0, 1], some examples of s-norms are listed as follows.

�S∗(x, y) =

x if y = 0

y if x = 0

1 otherwise

(drastic union)

�Sp(x, y) = x+ y − xy (probabilistic sum)

�Sl(x, y) = min(1, x+ y) (bounded sum)

The height of a fuzzy set Ã is de�ned as the greatest membership value (sup) of the membership
function of Ã [Jamshidi et al. 1993], that is, h(Ã) = supx[µÃ(x)]. A fuzzy set Ã is called normal

when h(Ã) = 1, and subnormal when h(Ã) < 1. In order to normalize a fuzzy set Ã, we apply the
normalization operation, which is de�ned as NormµÃ

(x) = [µÃ(x)/h(Ã)] for all x ∈ X.

The concentration (CON) of a fuzzy set Ã decreases the fuzziness, while the dilation (DIL) of a
fuzzy set Ã increases the fuzziness [Jamshidi et al. 1993]. They are de�ned as follows:

�µCON (Ã)(x) = [µÃ(x)]
p for all x ∈ X where p > 1

�µDIL(Ã)(x) = [µÃ(x)]
r for all x ∈ X where r ∈]0, 1[

Finally, there are some notations to textually represent a fuzzy set [Jamshidi et al. 1993]. The
following de�nitions are textual representation of a fuzzy set Ã.

�Ã =
∑
xi∈X µÃ(xi)/xi when X is �nite and discrete

�Ã =
∫
x
µÃ(x)/x when X is continuous

Note that the signs of sum and integral denote the union of the membership degrees and the slash
(/) denotes a separator.

Journal of Information and Data Management, Vol. 6, No. 1, June 2015.

6 · A. C. Carniel, R. R. Ciferri, and C. D. A. Ciferri

Definição do TAD VagueGeometry

FuzzyGeometry

Fuzzy Point Fuzzy MultiPointFuzzy LineString Fuzzy MultiLineString

Fig. 1. The hierarchy of the FuzzyGeometry data types.

0.1

0.3

0.71.0

0.4

0.6

0.7

0.9
0.8

0.2

0.1

0.6

0.4

0.8

1.0

0.50.6

0.8

0.4

0.1

0.3

0.71.0

0.4

0.6

0.7

0.9
0.8

0.2

0.1

0.6

0.4

0.8

1.0

0.50.6

0.8

0.4

0.1

0.3

0.71.0

0.4

0.6

0.7

0.9
0.8

0.2

0.1

0.6

0.4

0.8

1.0

0.50.6

0.8

0.4

0.1

0.3

0.71.0

0.4

0.6

0.7

0.9
0.8

0.2

0.1

0.6

0.4

0.8

1.0

0.50.6

0.8

0.4

(a) (b) (c) (d)

Fig. 2. Examples of FuzzyGeometry objects: (a) a fuzzy point object, (b) a fuzzy multipoint object, (c) a fuzzy linestring
object, and (d) a fuzzy multilinestring object. The membership degrees also are showed, where darker parts have higher
membership degrees than lighter areas.

4. THE FUZZYGEOMETRY ABSTRACT DATA TYPE

In this section, we propose a novel ADT to handle fuzzy spatial objects, called FuzzyGeometry.
We implement the FuzzyGeometry ADT as a PostgreSQL extension. PostgreSQL has free license
and it is an extensible DBMS where new ADTs can be implemented by using a low level program
language (for instance, C language)2. FuzzyGeometry ADT is implemented in the C language by
using the extensibility provided by the PostgreSQL internal library. A detailed documentation of
FuzzyGeometry is available at http://gbd.dc.ufscar.br/fuzzygeometry/.

This section is structured as follows. Section 4.1 presents the FuzzyGeometry data types and
how they are implemented in the PostgreSQL. Section 4.2 de�ne textual and binary representations
of FuzzyGeometry objects. Section 4.3 details fuzzy spatial operations to handle FuzzyGeometry
objects in SQL queries.

4.1 Fuzzy Spatial Data Types of the FuzzyGeometry

Figure 1 depicts the fuzzy spatial data types of the FuzzyGeometry ADT. The highest level of hierarchy
is the FuzzyGeometry data type. The FuzzyGeometry data type is a generalization for fuzzy points
and fuzzy lines, which can be simple or complex. The fuzzy point data type represents simple fuzzy
points, while the fuzzy multipoint data type represents complex fuzzy points. Similarly, the fuzzy

linestring data type represents complex fuzzy lines, while the fuzzy multilinestring represents complex
fuzzy lines. Note that the current version of the FuzzyGeometry ADT does not provide support for
fuzzy regions. Figure 2 depicts examples of FuzzyGeometry objects.

In general, FuzzyGeometry objects have a membership degree for each point in the space to denote
inexact location or spatial imprecision. Such membership degree is a value in the real interval [0, 1]
that determines the spatial vagueness in a given point. In the following, we will detail each data
type of the FuzzyGeometry ADT according to Figure 1 by showing its C structure. Hence, these C
structures show the attributes that compose fuzzy spatial objects and how they are speci�ed in the
low-level implementation of the FuzzyGeometry ADT.

2http://www.postgresql.org/docs/9.5/static/xfunc-c.html

Journal of Information and Data Management, Vol. 6, No. 1, June 2015.

FuzzyGeometry Abstract Data Type · 7

Algorithm 1: The C structure to represent the FuzzyGeometry data type (Figure 2).

1 typedef struct {

2 uint8_t type;

3 int32_t srid;

4 BBOX *bbox;

5 void *data;

6 } FUZZYGEOM;

Algorithm 2: The C structure to represent a MBR of a FuzzyGeometry object.

1 typedef struct {

2 double xmin;

3 double xmax;

4 double ymin;

5 double ymax;

6 } BBOX;

The main C structure of the FuzzyGeometry ADT is the FUZZYGEOM structure. This structure
handles the FuzzyGeometry data type, which is a generic data type that can be instanced as fuzzy
point objects or fuzzy line objects (Figure 1). Algorithm 1 shows the FUZZYGEOM structure, which
has the following attributes.

�The type attribute (line 2) is an identi�er that indicates the data type of a FuzzyGeometry object
(Figure 1), which can be fuzzy point, fuzzy multipoint, fuzzy linestring, and fuzzy multilinestring.

�The srid attribute (line 3) stores the Spatial Reference System Identi�er (SRID), which indicates
the spatial coordinate system de�nitions.

�The bbox attribute (line 4) stores the Minimum Boundary Rectangle (MBR) of a FuzzyGeometry
object. Algorithm 2 shows the BBOX structure, which is composed by the minimum and maximum
coordinates of each axis, that is, x and y.

�The data attribute (line 5) stores the remaining data related to the FuzzyGeometry object. This
is a void pointer to store any kind of data and to aid in the conversion between the FUZZYGEOM
structure and similar structures (for instance, the C structure that de�nes a fuzzy point object).

In order to aid the handling of FuzzyGeometry objects in main memory, we create a new structure
that stores a serialized array of the spatial coordinates x and y and its membership degree, that is,
fuzzy points. This structure is named FPOINTARRAY, which is also de�ned to perform generic
operations in serialized arrays, such as insertion, remove, update, and retrieval of elements in such
arrays. To e�ciently perform these operations, we employ main memory operations in C, such as
memcpy and memmove. We use serialized array of fuzzy points since the PostgreSQL internal library
requires that an object should be serialized to be stored in a PostgreSQL table. Further, in order to
handle serialized fuzzy points in main memory, we also de�ne the FPOINT structure.

Algorithm 3 shows the FPOINTARRAY and FPOINT structures. In the FPOINTARRAY structure
(lines 1 to 5), the serialized_fpointlist attribute (line 2) stores the serialized array of fuzzy points,
the npoints attribute (line 3) stores the current number of stored points, and the maxpoints attribute
(line 5) stores the maximum number of points that can be stored in the array. The FPOINT structure
(lines 7 to 11) contains the coordinates x and y and its membership degree as attributes.

By using the FPOINTARRAY structure, we are able to de�ne the other C structures. Algorithm 4
shows the FUZZYPOINT and FUZZYMULTIPOINT structures for the fuzzy point and fuzzy mul-
tipoint data types (Figure 1), respectively. The di�erence between the FUZZYPOINT structure and
the FPOINT structure (Algorithm 3) is that the FPOINT structure only deals with fuzzy points in
main memory to be serialized in the FPOINTARRAY structure, while the FUZZYPOINT structure

Journal of Information and Data Management, Vol. 6, No. 1, June 2015.

8 · A. C. Carniel, R. R. Ciferri, and C. D. A. Ciferri

Algorithm 3: The C structures to store serialized array (FPOINTARRAY) of fuzzy points
(FPOINT).

1 typedef struct {

2 uint8_t *serialized_fpointlist;

3 int npoints;

4 int maxpoints;

5 } FPOINTARRAY;

6

7 typedef struct {

8 double x;

9 double y;

10 double u;

11 } FPOINT;

Algorithm 4: The C structures to represent the fuzzy point data type (FUZZYPOINT) and fuzzy
multipoint data type (FUZZYMULTIPOINT).

1 typedef struct {

2 uint8_t type;

3 int32_t srid;

4 BBOX *bbox;

5 FPOINTARRAY *point;

6 } FUZZYPOINT;

7

8 typedef struct {

9 uint8_t type;

10 int32_t srid;

11 BBOX *bbox;

12 FPOINTARRAY *points;

13 } FUZZYMULTIPOINT;

indeed handle instances of the fuzzy point data type. As a result, we are able to convert an instance of
the FUZZYPOINT structure into an instance of the FUZZYGEOM structure. Similarly, we also are
able to make conversions from instances of the FUZZYMULTIPOINT structure to instances of the
FUZZYGEOM structure. In order to aid these conversions (that is, explicit type conversions in C),
the �rst three attributes of the FUZZYPOINT structure (lines 2 to 4) and the FUZZYMULTIPOINT
structure (lines 9 to 11) are the same of the �rst three attributes of the FUZZYGEOM structure
(lines 2 to 4 in Algorithm 1). The last attribute of the FUZZYPOINT structure, point, is a pointer
to an instance of the FPOINTARRAY structure that stores the value 1 in its npoints and maxpoints

attributes since the FUZZYPOINT structure represents the fuzzy point data type. On the other
hand, the point attribute of the FUZZYMULTIPOINT structure stores a value n ∈ N in the npoints
attribute and a greater value in the maxpoints attribute (for instance, 2n) since it represents the fuzzy
multipoint data type.

Algorithm 5 shows the FUZZYLINE and FUZZYMULTILINE structures for the fuzzy linestring and
fuzzy multilinestring data types (Figure 1). As for the FUZZYPOINT and FUZZYMULTIPOINT
structures, the �rst three attributes of each structure (lines 2 to 4 in FUZZYLINE structure and
lines 10 to 12 in FUZZYMULTILINE structure) are the same of the FUZZYGEOM structure (Al-
gorithm 1). The point attribute of the FUZZYLINE structure stores the fuzzy points that compose
a fuzzy linestring object. Further, this attribute should has at least two fuzzy points and there is
no intersection in its line segments. A line segment of a fuzzy linestring object is a consecutive pair
of serialized fuzzy points (that is, instances of the FPOINT structure). The interpolation attribute
indicates the type of interpolation used in the calculation of membership degree of a point in a line
segment. The implemented interpolation is the linear; but, other type of interpolations can be also
implemented. The FUZZYMULTILINE structure has the following attributes: ngeoms, maxgeoms,

Journal of Information and Data Management, Vol. 6, No. 1, June 2015.

FuzzyGeometry Abstract Data Type · 9

Algorithm 5: The C structures to represent the fuzzy line data type (FUZZYLINE) and fuzzy
multiline data type (FUZZYMULTILINE).

1 typedef struct {

2 uint8_t type;

3 int32_t srid;

4 BBOX *bbox;

5 FPOINTARRAY *point;

6 uint8_t interpolation

7 } FUZZYLINE;

8

9 typedef struct {

10 uint8_t type;

11 int32_t srid;

12 BBOX *bbox;

13 int ngeoms

14 int maxgeoms

15 FUZZYLINE **geoms;

16 } FUZZYMULTILINE;

Algorithm 6: The C structure to store a FuzzyGeometry object in the PostgreSQL.

1 typedef struct {

2 uint32_t size;

3 uint8_t srid[4];

4 uint8_t data[1];

5 } FGSERIALIZED;

and geoms. The ngeoms attribute stores the number of fuzzy linestring that is stored in the geoms
attribute, while maxgeoms attribute stores the maximum fuzzy linestring objects that can be stored.
This means that the FUZZYMULTILINE structure is formed by a set of pointers of instances of the
FUZZYLINE structure stored in the geoms attribute.

Despite we have de�ned all the C structures to handle the FuzzyGeometry data types, we are
not able to use them to store FuzzyGeometry objects in the PostgreSQL. The reason is that the
PostgreSQL internal library3 only handles streams of bytes with an alignment, that is, serialized data.
Therefore, the aforementioned structures (Algorithms 1 to 5) are used only in main memory in order
to aid in the handling of fuzzy spatial operations since a pure implementation based on stream of bytes
would be complex. Hence, we employ conversions between the internal (main memory) structures and
the serialization structure, named FGSERIALIZED. These conversions are e�ciently performed since
the FPOINTARRAY structure deals with serialized fuzzy points.

Algorithm 6 shows the FGSERIALIZED structure, which has the following attributes: size, srid,
and data. The size attribute is required by the PostgreSQL internal library and stores the size in
bytes of the object to be stored in the database. The srid is a serialized integer value and corresponds
to the srid attribute of the FUZZYGEOM structure. The data attribute stores the remaining data
of a FuzzyGeometry object, that is, the MBR, an identi�er of the FuzzyGeometry data type, and
the spatial coordinates with their respective membership degrees. The alignment of the serialization
is 8, which means that the �nal size of the object have to be a multiple of 8. Table I depicts the
serialization order of each FuzzyGeometry data type. This table uses the following notation to show
the size in bytes of each serialized element. An element between <> represents that such element has
4 bytes, while an element between [] has a size multiple of 8 bytes. Note that for the fuzzy linestring
data type, we need to add a padding of 4 bytes to keep the 8-bytes alignment.

3http://www.postgresql.org/docs/9.5/static/xtypes.html

Journal of Information and Data Management, Vol. 6, No. 1, June 2015.

10 · A. C. Carniel, R. R. Ciferri, and C. D. A. Ciferri

Table I. Serialization order of a FuzzyGeometry object stored in the PostgreSQL.

FuzzyGeometry Data Type Serialization Order

Fuzzy Point

[MBR]

<data type identi�er>
<number of the fuzzy points (0 for empty and 1 otherwise)>
[x coordinate]
[y coordinate]
[membership degree]

Fuzzy Multipoint

[MBR]

<data type identi�er>
<number of the fuzzy points (0 for empty and 1 otherwise)>
[x coordinate]
[y coordinate]
[membership degree]

Fuzzy Linestring

[MBR]
<data type identi�er>
<type of interpolation>
<number of the fuzzy points (0 for empty and 2 otherwise)>
<padding>

[x coordinate]
[y coordinate]
[membership degree]

Fuzzy Multilinestring

[MBR]

<data type identi�er>
<number of the fuzzy linestrings>
for each fuzzy linestring i

[serialization of the fuzzy linestring i]

Once all the internal C structures were de�ned, we have to link them in the PostgreSQL by using the
SQL language. Hence, we use the CREATE TYPE command to create the FuzzyGeometry data type
in the PostgreSQL, as showed in Algorithm 7. Note that only the FuzzyGeometry data type is created
since it can be instanced as fuzzy points and fuzzy lines. The internallength parameter indicates that
the size in bytes of FuzzyGeometry objects is variable since the number of coordinates is not �xed.
The input and output parameters are functions in C that transform a textual representation of a
FuzzyGeometry object into its internal representation as well as the inverse, respectively. Similarly,
the send and receive parameters transform a binary representation into an internal representation
as well as the inverse, respectively. The textual and binary representations of the FuzzyGeometry
data types are presented in Section 4.2. The typmod_in and typmod_out parameters deal with
the FuzzyGeometry data types. The category parameter de�nes that the FuzzyGeometry data type
is a geometric data type. The alignment parameter determines the size of the alignment of the
serialized data, which is speci�ed to be 8 bytes. Finally, the storage parameter speci�es the strategy
of storage that the PostgreSQL will use for the FuzzyGeometry objects. It was speci�ed to be main
since it preferentially stores objects in the main table with possible compressions. The complete
documentation of the CREATE TYPE command can be found in the PostgreSQL documentation4.

4.2 Textual and Binary Representations

In order to insert and retrieve FuzzyGeometry objects, we de�ne textual and binary representations
for each FuzzyGeometry data type. In addition, these representations allow interoperability between
spatial applications since a FuzzyGeometry object has an unique representation. The textual de�nition
can be used for general purpose, while the binary representation can be used in applications that
communicate by using network protocols or manage binary data.

4http://www.postgresql.org/docs/9.5/static/sql-createtype.html

Journal of Information and Data Management, Vol. 6, No. 1, June 2015.

FuzzyGeometry Abstract Data Type · 11

Algorithm 7: The CREATE TYPE command to create the FuzzyGeometry data type in the
PostgreSQL.

1 CREATE TYPE FuzzyGeometry (

2 internallength = variable,

3 input = fg_in,

4 output = fg_out

5 send = fg_send,

6 receive = fg_recv,

7 typmod_in = fg_typmod_in,

8 typmod_out = fg_typmod_out,

9 category = 'G',

10 alignment = double,

11 storage = main

12);

We de�ne the Fuzzy Well-Known Text (FWKT) as textual representation, which is based on the
textual representation of fuzzy sets (Section 3.2) and the Well-Known Text representation of the Open
Geospatial Consortium (OGC)5. In general, the name of the FuzzyGeometry data type �rstly appears
and then, in parentheses, the membership degree and coordinate pairs of each point. Empty Fuzzy-
Geometry objects, which contain no coordinates and membership degrees, can be speci�ed by using
the symbol EMPTY after the data type name. Table II shows examples of FWKT representations for
each FuzzyGeometry data type (Figure 1). Let (x, y) be a coordinate pair, u be a membership degree
in real interval]0, 1], and k, j ∈ N. Then, we de�ne the textual representation FWKT for (i) fuzzy
point, (ii) fuzzy multipoint, (iii) fuzzy linestring, and (iv) fuzzy multilinestring data types, as follows.

(i) FUZZYPOINT(u/x y)

(ii) FUZZYMULTIPOINT(u1/x1 y1 + ...+ uk/xk yk)

(iii) FUZZYLINESTRING(u1/x1 y1 + ...+ uk/xk yk)

(iv) FUZZYMULTILINESTRING((u11/x11 y11 + ... + uk1/xk1 yk1)1, ..., (u1j/x1j y1j + ... +
ukj/xkj ykj)j)

We de�ne the Fuzzy Well-Known Binary (FWKB) as binary representation, which is based on the
Well-Known Binary representation of the OGC. To aid in the FWKB de�nition, we use the id(Ã)
function, which extracts the binary format of the data type identi�er of a FuzzyGeometry object. It
extracts the identi�er 1 if Ã is a fuzzy point object, the identi�er 2 if Ã is a fuzzy linestring object,
the identi�er 3 if Ã is a fuzzy multipoint object, and the identi�er 4 if Ã is a fuzzy multilinestring
object. Further, we use the binary function that extract the binary format of a double value. Let n be
the number of points in a fuzzy multipoint and fuzzy linestring object, l be the number of lines in a
fuzzy multilinestring object, and p be a fuzzy point with the coordinates x and y with a membership
degree u. Then, we de�ne the binary representation FWKB for (i) fuzzy point, (ii) fuzzy multipoint,
(iii) fuzzy linestring, and (iv) fuzzy multilinestring data types, as follows.

5http://www.opengeospatial.org/

Table II. Examples of FWKT representations.

FuzzyGeometry Data Type FWKT Representation of a FuzzyGeometry object

Fuzzy Point FUZZYPOINT(0.7/10 30)

Fuzzy MultiPoint FUZZYMULTIPOINT(0.5/10 20 + 0.8/5 3 + 0.1/30 20)

Fuzzy LineString FUZZYLINESTRING(0.5/1 1 + 0.7/2 2 + 1.0/4 4)

Fuzzy MultiLineString FUZZYMULTILINESTRING((0.3/1 1 + 0.5/2 2), (0.7/3 3 + 1.0/4 4))

Journal of Information and Data Management, Vol. 6, No. 1, June 2015.

12 · A. C. Carniel, R. R. Ciferri, and C. D. A. Ciferri

(i) endianess + id(A) + binary(u) + binary(x) + binary(y)

(ii) endianess + id(A) + binary(n) +
∑n
pi∈A(binary(u)pi + binary(x)pi + binary(y)pi)

(iii) endianess + id(A) + binary(n) +
∑n
pi∈A(binary(u)pi + binary(x)pi + binary(y)pi)

(iv) endianess + id(A) + binary(l) +
∑l
li∈A FWKB of Ali

The signs of sum are used to denote the union between binary data and do not perform the arithmetic
sum. Further, endianess indicates the way in which the bytes are organized in main memory (that is,
either big-endian or little-endian).

4.3 Fuzzy Spatial Operations of the FuzzyGeometry

FuzzyGeometry ADT provides support to input and output operations, fuzzy geometric set operations,
and fuzzy spatial operations based on the fuzzy set theory. The following subsections detail these
operations by providing examples and their SQL signatures.

4.3.1 Input and Output Operations. The input operations transform a FuzzyGeometry object rep-
resented in the FWKT and FWKB representations into the internal (main memory) format. This kind
of operations are mainly employed to insert new FuzzyGeometry objects in a PostgreSQL relational
table. The output operations yield the FWKT and FWKB representations of a FuzzyGeometry object,
which is mainly employed to retrieve FuzzyGeometry objects in SQL queries. The SQL signatures for
input and output operations are de�ned as follows, respectively.

(i) FG_FuzzyGeomFromText(text FWKT , integer SRID) → FuzzyGeometry

(ii) FG_FuzzyGeomFromBinary(bytea FWKB , integer SRID) → FuzzyGeometry

(iii) FG_AsText(FuzzyGeometry fg) → text

(iv) FG_AsFWKB(FuzzyGeometry fg) → bytea

Operation (i) is the input operation for the FWKT representation, while operation (ii) is the input
operation for the FWKB representation. These operations also receive the SRID as parameter. Oper-
ations (iii) and (iv) are the output operations for the FWKT and FWKB representations, respectively.

4.3.2 Fuzzy Geometric Set Operations. FuzzyGeometry provides support for the following fuzzy
geometric set operations: union, intersection, and di�erence. In general, we used the formal de�nition
provided by fuzzy models that de�ne fuzzy spatial data (Section 3.1) to implement them. We de�ne
the following SQL signatures.

(i) FG_Union(FuzzyGeometry fg1 , FuzzyGeometry fg2 , text s) → FuzzyGeometry

(ii) FG_Union(FuzzyGeometry fg) → FuzzyGeometry

(iii) FG_Intersection(FuzzyGeometry fg1 , FuzzyGeometry fg2 , text t) → FuzzyGeometry

(iv) FG_Di�erence(FuzzyGeometry fg1 , FuzzyGeometry fg2 , text d) → FuzzyGeometry

Operation (i) is the union operation between FuzzyGeometry objects, which is performed by the
spatial union and the fuzzy union to calculate the membership degree of intersecting points. The
fuzzy union can be executed by using a speci�c s-norm s, which can be the default union (max
operator), drastic union, probabilistic sum, and bounded sum (Section 3.2). In addition, the union
is only executed for FuzzyGeometry objects of same data type. For instance, the union of two fuzzy
linestring objects yields other fuzzy linestring object. In addition, the union operation can be used as
an aggregation operator, that is, the operation (ii). This means that, given a set of FuzzyGeometry
objects, this operation yields the union among all the objects contained in this set. The strategy to
compute this aggregation is to perform the union operation (i) incrementally for each FuzzyGeometry

Journal of Information and Data Management, Vol. 6, No. 1, June 2015.

FuzzyGeometry Abstract Data Type · 13

Dilatação r = 0.5 Concentração p = 2

0.2/-2 1 + 1/-1 2 + 1/1 1 + 0.4/1 2
+ 0.6/2 2

0.447/-2 1 + 1/-1 2 + 1/1 1 +
0.632/1 2 + 0.774/2 2

0.04/-2 1 + 1/-1 2 + 1/1 1 + 0.16/1
2 + 0.36/2 2

a. União b. Intersecção c. Diferença fuzzy

0.68/-2 1 + 1/-1 2 + 1/-1 1 + 1/1 1
+ 0.4/1 2 + 0.84/2 2 + 1/3 1

0.08/-2 1 + 0.8/1 1 + 0.36/2 2 0.2/-2 1 + 1/-1 1 + 0.2/1 1 + 0.4/1 2 +
0.4/2 2

0.2/-2 1 + 1/-1 2 + 1/1 1 + 0.4/1 2
+ 0.6/2 2

0.4/-2 1 + 1/-1 1 + 0.8/1 1 + 0.6/2 2 +
1/3 1

Soma probabilistica
a+b-a*b

produto
a+b-a*b

a. União b. Intersecção c. Diferença fuzzy

0.68/-2 1 + 1/-1 2 + 1/-1 1 + 1/1 1
+ 0.4/1 2 + 0.84/2 2 + 1/3 1

0.08/-2 1 + 0.8/1 1 + 0.36/2 2 0.2/-2 1 + 1/-1 1 + 0.2/1 1 + 0.4/1 2 +
0.4/2 2

0.2/-2 1 + 1/-1 2 + 1/1 1 + 0.4/1 2
+ 0.6/2 2

0.4/-2 1 + 1/-1 1 + 0.8/1 1 + 0.6/2 2 +
1/3 1

Soma probabilistica
a+b-a*b

produto
a+b-a*b

a. União b. Intersecção c. Diferença fuzzy

0.68/-2 1 + 1/-1 2 + 1/-1 1 + 1/1 1
+ 0.4/1 2 + 0.84/2 2 + 1/3 1

0.08/-2 1 + 0.8/1 1 + 0.36/2 2 0.2/-2 1 + 1/-1 1 + 0.2/1 1 + 0.4/1 2 +
0.4/2 2

0.2/-2 1 + 1/-1 2 + 1/1 1 + 0.4/1 2
+ 0.6/2 2

0.4/-2 1 + 1/-1 1 + 0.8/1 1 + 0.6/2 2 +
1/3 1

Soma probabilistica
a+b-a*b

produto
a+b-a*b

a. União b. Intersecção c. Diferença fuzzy

0.68/-2 1 + 1/-1 2 + 1/-1 1 + 1/1 1
+ 0.4/1 2 + 0.84/2 2 + 1/3 1

0.08/-2 1 + 0.8/1 1 + 0.36/2 2 0.2/-2 1 + 1/-1 1 + 0.2/1 1 + 0.4/1 2 +
0.4/2 2

0.2/-2 1 + 1/-1 2 + 1/1 1 + 0.4/1 2
+ 0.6/2 2

0.4/-2 1 + 1/-1 1 + 0.8/1 1 + 0.6/2 2 +
1/3 1

Soma probabilistica
a+b-a*b

produto
a+b-a*b

FUZZYMULTIPOINT(
0.2/-2 1 + 1/-1 2 + 1/1
1 + 0.4/1 2 + 0.6/2 2)

FUZZYMULTIPOINT(
0.4/-2 1 + 1/-1 1 +
0.8/1 1 + 0.6/2 2 + 1/3
1)

FUZZYMULTIPOINT(
0.68/-2 1 + 1/-1 2 +
1/-1 1 + 1/1 1 + 0.4/1
2 + 0.84/2 2 + 1/3 1)

FUZZYMULTIPOINT(
0.08/-2 1 + 0.8/1 1 +
0.36/2 2)

FUZZYMULTIPOINT(
0.2/-2 1 + 1/-1 1 +
0.2/1 1 + 0.4/1 2 +
0.4/2 2)

(a) (b) (c) (d) (e)

Fig. 3. Result of the fuzzy geometric set operations on two FuzzyGeometry objects (a) and (b): (c) union opera-
tion, (d) intersection operation, and (e) di�erence operation. Each FuzzyGeometry object has its respective FWKT
representation.

object contained in the set by considering the default union to calculate the membership degree of
intersecting points. Figure 3c shows the result of the union operation between two fuzzy multipoint
objects (Figures 3a and 3b) that applied the probabilistic sum as s-norm.

Operation (iii) is the intersection operation between FuzzyGeometry objects, which is performed by
the spatial intersection and the fuzzy intersection to calculate the membership degree of intersecting
points. The fuzzy intersection can be executed by using a speci�c t-norm t, which can be the default
t-norm (min operator), drastic intersection, product t-norm, and Lukasiewicz t-norm (Section 3.2).
The intersection can be executed between FuzzyGeometry objects of di�erent types, and the resulting
FuzzyGeometry object is the lower data type by considering the hierarchy: fuzzy linestring > fuzzy

point. For instance, the intersection between fuzzy linestring objects and fuzzy point objects yields a
fuzzy point or a fuzzy multipoint object composed by the commons points with membership degrees
calculated by using a t-norm t. Figure 3d shows the result of the intersection operation between two
fuzzy multipoint objects (Figures 3a and 3b) that applied the product t-norm as t-norm.

Operation (iv) is the di�erence operation between FuzzyGeometry objects, which is performed
by the spatial di�erence and the membership degrees of intersecting points are calculated by using
a di�erence operator. The supported di�erence operators are the fuzzy di�erence (Section 3.2) and
arithmetic di�erence. The arithmetic di�erence is de�ned by diff (a, b) = a−b if a > b and 0 otherwise.
The di�erence is only performed between FuzzyGeometry objects of same data type. For instance, the
di�erence between fuzzy linestring objects yields a fuzzy linestring object. Figure 3e shows the result
of the di�erence operation between two fuzzy multipoint objects (Figures 3a and 3b) that applied the
fuzzy di�erence to calculate the membership degrees of intersecting points.

4.3.3 Fuzzy Spatial Operations Based on the Fuzzy Set Theory. FuzzyGeometry provides support
for the following fuzzy spatial operations based on the fuzzy set theory: core, boundary, concentra-
tion, dilation, alpha-cut, height, and normalization. These operations can be applied in any type of
FuzzyGeometry object, and they have the following SQL signatures.

(i) FG_Core(FuzzyGeometry fg) → FuzzyGeometry

(ii) FG_Boundary(FuzzyGeometry fg) → FuzzyGeometry

(iii) FG_Concentration(FuzzyGeometry fg , double p) → FuzzyGeometry

(iv) FG_Dilation(FuzzyGeometry fg , double r) → FuzzyGeometry

(v) FG_Alphacut(FuzzyGeometry fg , double α) → FuzzyGeometry

(vi) FG_Height(FuzzyGeometry fg) → double

(vii) FG_Normalization(FuzzyGeometry fg) → FuzzyGeometry

Operations (i) and (ii) correspond to the core and boundary operations, which return the locations
that have exact locations (locations with membership degree equal to 1) and vague locations (locations

Journal of Information and Data Management, Vol. 6, No. 1, June 2015.

14 · A. C. Carniel, R. R. Ciferri, and C. D. A. Ciferri

0.2/-2 1 + 1/-1 2 + 1/1 1 + 0.4/1 2
+ 0.6/2 2

core boundary0.2/-2 1 + 1/-1 2 + 1/1 1 + 0.4/1 2
+ 0.6/2 2

core boundary

Dilatação r = 0.5 Concentração p = 2

0.2/-2 1 + 1/-1 2 + 1/1 1 + 0.4/1 2
+ 0.6/2 2

0.447/-2 1 + 1/-1 2 + 1/1 1 +
0.632/1 2 + 0.774/2 2

0.04/-2 1 + 1/-1 2 + 1/1 1 + 0.16/1
2 + 0.36/2 2

Dilatação r = 0.5 Concentração p = 2

0.2/-2 1 + 1/-1 2 + 1/1 1 + 0.4/1 2
+ 0.6/2 2

0.447/-2 1 + 1/-1 2 + 1/1 1 +
0.632/1 2 + 0.774/2 2

0.04/-2 1 + 1/-1 2 + 1/1 1 + 0.16/1
2 + 0.36/2 2

FUZZYMULTIPOINT(
1/-1 2 + 1/1 1)

FUZZYMULTIPOINT(
0.2/-2 1 + 0.4/1 2 + 0.6/2
2)

FUZZYMULTIPOINT(
0.04/-2 1 + 1/-1 2 + 1/1 1
+ 0.16/1 2 + 0.36/2 2)

FUZZYMULTIPOINT(
0.447/-2 1 + 1/-1 2 + 1/1
1 + 0.632/1 2 + 0.774/2
2)

(a) (b) (c) (d)

Fig. 4. Result of the core (a), boundary (b), concentration (c), and dilation (d) operations on the FuzzyGeometry object
of Figure 3a, with their respective FWKT representations.

with membership degree less than 1 and greater than 0), respectively. Figures 4a and 4b depict the
result of the core and boundary operations on the fuzzy multipoint object of Figure 3a.

Operations (iii) and (iv) correspond to the fuzzy concentration (iii) and dilation (iv) operations
(Section 3.2), which decrease and increase the membership degrees of the locations according to a p
and r, respectively. These operations are useful to analyze or edit locations in order to intensify or
smooth the spatial vagueness. Figures 4c and 4d depicts the result of the concentration and dilation
operations on the fuzzy multipoint object of Figure 3a.

Operation (v) performs the fuzzy alpha-cut (Section 3.2), which �lters the locations that have mem-
bership degree equal to or greater to an α value. This means that, this operation identi�es locations
that contain speci�cs membership degrees. Operation (vi) corresponds to the fuzzy spatial height that
returns the higher membership degree of a FuzzyGeometry object. This operation is necessary for the
fuzzy spatial normalization operation (operation (vii)). If the height of a FuzzyGeometry object is 1,
than it has a core (for instance, the multipoint object in Figure 3a). Otherwise, the normalization
can be used to create a core, which will be the locations with the higher membership degree.

5. RUNNING EXAMPLE

This section provides a running example to illustrate the functionalities of FuzzyGeometry ADT by
using the SQL language. The context of this running example is to manage plagues and animal routes
in an ecological application. Hence, we consider the following relational table schemas plague and
animal. Each table has an attribute id as primary key and an attribute geo to store FuzzyGeometry
objects. While plagues are represented by fuzzy multipoint objects, animal routes are represented
by fuzzy multilinestring objects. The following SQL command exempli�es the creation of the table
plague. Note that the FuzzyGeometry data type is speci�ed between parentheses in the attribute geo.

CREATE TABLE plague(

id INTEGER PRIMARY KEY,

geo FUZZYGEOMETRY(FUZZYMULTIPOINT));

Similarly, we are able to create the animal table. By using textual and binary representations
(Section 3), we are able to insert FuzzyGeometry objects in tables. The next SQL command shows
the insertion of the fuzzymultipoint object of Figure 3a in the plague table.

INSERT INTO plague VALUES (1,

FG_FuzzyGeomFromText('FUZZYMULTIPOINT(0.2/-2 1 + 1/-1 2 + 1/1 1 + 0.4/1 2 +

0.6/2 2)', 4326))

Journal of Information and Data Management, Vol. 6, No. 1, June 2015.

FuzzyGeometry Abstract Data Type · 15

Once we have inserted FuzzyGeometry objects in the tables, we are able to perform SQL queries on
them. The following query returns the intersecting parts among all animal routes. This query shows
the result of the intersection operation between distinct FuzzyGeometry objects of the animal table
by using the FWKT representation.

SELECT FG_AsText(FG_Intersection(A.geo, B.geo, 'default t-norm'))

FROM animal as A, animal as B

WHERE A.id <> B.id

The next SQL query returns the intersecting points between the animal route with id equal to 5 and
all the plagues of the environment. Hence, we employ the union operation as an aggregation function
on the plagues, and then, we compute the intersection between this object and the animal route.

SELECT FG_AsText(FG_Intersection(P.all, A.geo))

FROM (SELECT FG_Union(geo) as all FROM plague) as P, animal as A

WHERE A.id = 5

The next SQL query returns the plagues with membership degrees greater than 0.8. This means
that these plagues need some treatment of the decision makers since they possibly exist due to their
high level of membership degrees.

SELECT FG_AsText(FG_Alphacut(P.geo, 0.8))

FROM plague as P

The next query changes the meaning of spatial vagueness in an animal route (id equal to 10) by
decreasing its membership degrees. This means that, due to some factors (for instance, a strong rain),
the imprecision of this animal route is higher than the original.

SELECT FG_AsText(FG_Concentration(A.geo, 2))

FROM animal as A

WHERE id = 10

On the other hand, the �nal SQL query employs the dilation to increase the membership degrees
of another animal route (id equal to 11). As a result, this query returns an animal route with lesser
imprecision than the original.

SELECT FG_AsText(FG_Dilation(A.geo, 0.5))

FROM animal as A

WHERE id = 11

6. CONCLUSIONS AND FUTURE WORK

This article proposes a novel abstract data type, called FuzzyGeometry, to handle vague (fuzzy)
spatial objects based on the fuzzy model in the PostgreSQL. More speci�cally, it handles simple and
complex fuzzy points and fuzzy lines. Fuzzy spatial data are an important representation of real-
world phenomena that have vague characteristics, that is, inexact location or uncertain boundaries
and interiors. Although it can be adequately used to represent spatial vagueness, implementations
based on the fuzzy model are limited and have not been incorporated into spatial DBMS. Hence,
FuzzyGeometry ADT advances in the state of art to handle vague spatial objects in a spatial DBMS.

Several operations have been proposed and implemented to handle FuzzyGeometry objects, such
as input and output operations, fuzzy geometric set operations, and fuzzy spatial operations based

Journal of Information and Data Management, Vol. 6, No. 1, June 2015.

16 · A. C. Carniel, R. R. Ciferri, and C. D. A. Ciferri

on the fuzzy set theory. To deal with input and output operations, we propose textual and binary
representations in order to insert and retrieve FuzzyGeometry objects in a spatial database. Future
work will deal with the implementation of the fuzzy region data type.

REFERENCES

Beaubouef, T., Ladner, R., and Petry, F. Rough set spatial data modeling for data mining. International Journal
of Intelligent Systems 19 (7): 567�584, 2004.

Bejaoui, L., Pinet, F., Bedard, Y., and Schneider, M. Quali�ed topological relations between spatial objects
with possible vague shape. International Journal of Geographical Information Science 23 (7): 877�921, 2009.

Carniel, A. C., Ciferri, R. R., and Ciferri, C. D. A. An abstract data type to handle vague spatial objects
based on the fuzzy model. In Proceedings of the Brazilian Symposium on GeoInformatics. Campos do Jordão, SP,
Brazil, pp. 210�221, 2015a.

Carniel, A. C., Ciferri, R. R., and Ciferri, C. D. A. Embedding vague spatial objects into spatial databases
using the vaguegeometry abstract data type. In Proceedings of the Brazilian Symposium on GeoInformatics. Campos
do Jordão, SP, Brazil, pp. 233�244, 2015b.

Carniel, A. C., Schneider, M., Ciferri, R. R., and Ciferri, C. D. A. Modeling fuzzy topological predicates
for fuzzy regions. In Proceedings of the ACM International Symposium on Advances in Geographic Information

Systems. ACM, New York, NY, USA, pp. 529�532, 2014.

Cheng, R., Kalashnikov, D. V., and Prabhakar, S. Evaluating probabilistic queries over imprecise data. In
Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, New York, NY, USA,
pp. 551�562, 2003.

Cohn, A. and Gotts, N. The `egg-yolk' representation of regions with indeterminate boundaries. In Geographic

objects with indeterminate boundaries. Francis Taylor, pp. 171�187, 1995.

Dilo, A., Bos, P., Kraipeerapun, P., and de By, R. A. Storage and manipulation of vague spatial objects using
existing GIS functionality. In Flexible Databases Supporting Imprecision and Uncertainty, G. Bordogna and G. Psaila
(Eds.). Vol. 203. Springer Berlin Heidelberg, pp. 293�321, 2006.

Dilo, A., de By, R. A., and Stein, A. A system of types and operators for handling vague spatial objects.
International Journal of Geographical Information Science 21 (4): 397�426, 2007.

Güting, R. H. An introduction to spatial database systems. The VLDB Journal 3 (4): 357�399, 1994.

Jamshidi, M., Vadiee, N., and Ross, T. J. Fuzzy Logic and Control. Prentice-Hall, 1993.

Klement, E. P., Mesiar, R., and Pap, E. Triangular Norms. Springer, 2000.

Kraipeerapun, P. Implementation of vague spatial objects. M.S. thesis, International Institute for Geo-Information
Science and Earth Observation, 2004.

Li, R., Bhanu, B., Ravishankar, C., Kurth, M., and Ni, J. Uncertain spatial data handling: Modeling, indexing
and query. Computers & Geosciences 33 (1): 42�61, 2007.

Pauly, A. and Schneider, M. Querying vague spatial objects in databases with VASA. In A. Stein, W. Shi, and
W. Bijker (Eds.), Quality Aspects in Spatial Data Mining. CRC Press, USA, pp. 3�14, 2008.

Pauly, A. and Schneider, M. VASA: An algebra for vague spatial data in databases. Information Systems 35 (1):
111�138, 2010.

Pawlak, Z. Rough sets. International Journal of Computer & Information Sciences 11 (5): 341�356, 1982.

Schneider, M. Fuzzy spatial data types for spatial uncertainty management in databases. In Handbook of Research

on Fuzzy Information Processing in Databases, J. Galindo (Ed.). IGI Global, pp. 490�515, 2008.

Schneider, M. Spatial Plateau Algebra for implementing fuzzy spatial objects in databases and gis: Spatial Plateau
data types and operations. Applied Soft Computing 16 (3): 148�170, 2014.

Schneider, M. and Behr, T. Topological relationships between complex spatial objects. ACM Transactions on

Database Systems 31 (1): 39�81, 2006.

Siqueira, T. L., Ciferri, C. D. A., Times, V. C., and Ciferri, R. R. Modeling vague spatial data warehouses
using the VSCube conceptual model. Geoinformatica 18 (2): 313�356, 2014.

Somodevilla, M. J. and Petry, F. E. Indexing mechanisms to query fmbrs. In IEEE Annual Meeting of the Fuzzy

Information. pp. 198�202 Vol.1, 2004.

Zadeh, L. A. Fuzzy sets. Information and Control vol. 8, pp. 338�353, 1965.

Zinn, D., Bosch, J., and Gertz, M. Modeling and querying vague spatial objects using shapelets. In Proceedings of

the International Conference on Very Large Data Bases. Vienna, Austria, pp. 567�578, 2007.

Journal of Information and Data Management, Vol. 6, No. 1, June 2015.

