
The VagueGeometry Abstract Data Type

Anderson Chaves Carniel1, Ricardo Rodrigues Ciferri2, Cristina Dutra de Aguiar Ciferri1

1 University of São Paulo, Brazil
accarniel@gmail.com, cdac@icmc.usp.br

2 Federal University of São Carlos, Brazil
ricardo@dc.ufscar.br

Abstract. Spatial vagueness has been increasingly required by geoscientists to handle vague spatial objects, that is,
spatial objects found in real-world phenomena that do not have exact locations, strict boundaries, or sharp interiors.
However, there is a gap in the literature in how to handle spatial vagueness in spatial database management systems
and Geographical Information Systems (GIS) since they mainly provide support to crisp spatial objects, that is, objects
that have well-defined locations, boundaries, and interiors. In this article, we propose VagueGeometry, a novel abstract
data type that allows users to manipulate vague spatial objects in spatial applications and GIS. The main advantages of
our VagueGeometry are that (i) it offers textual and binary representations for vague spatial objects, (ii) it includes an
expressive set of vague spatial operations, (iii) it supports SQL operators, and (iv) its implementation is open source. We
also propose an improvement of VagueGeometry to deal efficiently with the processing of vague topological predicates.
Experimental results show that VagueGeometry improved the performance of spatial queries with vague topological
predicates from 21% up to 98% if compared with functionalities available in current spatial databases.

Categories and Subject Descriptors: H.2.8 [Database Management]: Spatial databases and GIS

Keywords: abstract data types, spatial databases, vague spatial objects, vague topological predicates

1. INTRODUCTION

Spatial Database Management Systems (spatial DBMS) and Geographical Information Systems (GIS)
mainly provide support to handle crisp spatial objects that represent real-world phenomena by us-
ing crisp points, crisp lines, and crisp regions. Crisp spatial objects characterize spatial phenomena
with exact locations and whose shape and boundary are precisely defined [Schneider and Behr 2006].
Examples are cities with their political boundaries. For their handling, spatial operations like geomet-
ric set operations (for instance, union), topological predicates (for instance, overlap), and numerical
operations (for instance, distance) are defined and used in spatial queries.

However, geoscientists are increasingly interested in modeling spatial real-world phenomena that do
not have exact locations, strict boundaries, or sharp interiors. This characterization leads to spatial
vagueness [Bennett 2010]. Several real-world phenomena are characterized by spatial vagueness. An
example refers to species habitats that have uncertain locations. In this case, it could be impossible
to determine the exact location of species due to their constant positional movement, such as feeding
and reproduction activities in different locations. Another example is related to rivers and lakes that
have different volumes of water due to different precipitation levels. Further, air polluted areas are
also phenomena characterized by spatial vagueness. In this case, pollution may by spread to different
boundaries, according to different streams of air. In general, there are a spatial extent that certainly
belongs to the real-world phenomena (that is, the kernel) and a spatial extent that maybe or possibly
belongs to the real-world phenomena (that is, the conjecture) [Siqueira et al. 2014].

Copyright©2016 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 7, No. 1, April 2016, Pages 18–34.

The VagueGeometry Abstract Data Type · 19

Several approaches define models to represent spatial vagueness, which can be classified as proba-
bilistic models [Li et al. 2007; Zinn et al. 2007], fuzzy models [Kraipeerapun 2004; Dilo et al. 2006; Dilo
et al. 2007; Carniel et al. 2014], and exact models [Cohn and Gotts 1996; Clementini and Di Felice
1997; Pauly and Schneider 2008; 2010; Bejaoui et al. 2010]. These models introduce concepts and no-
tions of vague spatial objects by formally defining spatial data types for vague points, vague lines, and
vague regions. They also introduce vague spatial operations to handle them, such as, vague geometric
set operations (for instance, vague geometric union), vague topological predicates (for instance, vague
overlap), and vague numerical operations (for instance, vague distance).

There are several advantages of incorporating vague spatial objects and their operations into spatial
databases, such as to provide a more realistic representation of application environments, to allow
users to manipulate vague spatial objects found in real-world phenomena, and to provide an efficient
processing of operations on vague spatial objects. For instance, in an ecological application, users
aim to manage species habitats and air polluted areas. Species habitats and air polluted areas are
represented by vague regions. By using such data, a user can ask the following query: “Find all
polluted areas of rivers that possibly overlap with habitats of species”. Here, possibly overlap means
that the overlap occurs to some extent, that is, with some degree of uncertainty.

To handle spatial objects in spatial applications, abstract data types (ADT) have been used in
spatial DBMS and GIS. An ADT aids the use of spatial operations in spatial queries by hiding their
complexities from the user. While ADTs for crisp spatial data are deeply implemented in the literature,
this is not the case for vague spatial data. Although there are approaches that provide ADTs for vague
spatial data [Kraipeerapun 2004; Dilo et al. 2006; Zinn et al. 2007; Pauly and Schneider 2008; 2010;
Carniel et al. 2015a], they face several limitations. First, they only provide support for a small
subset of vague spatial operations. Second, they do not support textual and binary representations
of vague spatial objects. Third, they do not support SQL operators to handle results of vague spatial
operations. Finally, a majority of the approaches does not implement vague spatial objects in a spatial
DBMS, or are specifically designed to run on a proprietary DBMS.

In this article, we propose VagueGeometry, a novel ADT to incorporate vague spatial objects
into a spatial DBMS. VagueGeometry is based on the exact model since this model reuses existing
concepts and implementations of crisp spatial data and formally defines a complete set of vague
spatial operations. The main advantage to use implementation of crisp spatial data is that they are
well defined and their efficiency is largely explored in the literature. Among the exact models [Cohn
and Gotts 1996; Clementini and Di Felice 1997; Pauly and Schneider 2008; 2010; Bejaoui et al. 2010],
VagueGeometry is based on the Vague Spatial Algebra (VASA) [Pauly and Schneider 2008; 2010]
since it formally defines simple and complex vague spatial data types, has closure properties of vague
spatial operations resulting in valid results, and introduces an expressive set of operations, such as
vague geometric set operations, vague topological predicates, and vague numerical operations.

VagueGeometry greatly overcomes the aforementioned limitations. It has the following character-
istics:

—It offers textual and binary representations for vague spatial objects, which allow users to insert and
retrieve vague spatial objects. Further, these representations can be used as a way of communication
and interoperability between different spatial applications.

—It implements an expressive set of spatial operations for vague spatial objects. To comply with this
goal, VagueGeometry includes the specification of vague geometric set operations, vague topological
predicates, vague numerical operations, and type-dependent operations. As a result, the use of
VagueGeometry empowers the management of vague spatial objects in spatial applications by users.

—It supports SQL operators that allow users to handle results of vague topological predicates and
vague numerical operations.

—It is open source and implemented in the open source PostgreSQL DBMS with the PostGIS spatial
extension. This means that spatial applications are able to directly access a spatial database con-

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

20 · A. C. Carniel, R. R. Ciferri and C. D. A. Ciferri

taining vague spatial objects and handle these objects by using vague spatial operations accordingly.
A running example is employed in order to show how to use VagueGeometry in SQL queries.

—It includes an improvement to process efficiently vague topological predicates in spatial queries,
such as vague range queries and vague spatial joins.

In this article, we extend our previous work [Carniel et al. 2015b] by including several novel topics.
First, we describe vague spatial objects by using graphical representations. Second, we include several
examples of textual representations of VagueGeometry. Third, we introduce type-dependent vague
spatial operations, such as common border between two vague region objects. Fourth, we define SQL
signatures for all VagueGeometry operations. Fifth, we present a running example that shows how
to use the VagueGeometry in SQL queries. Finally, we include an additional experimental evaluation
that analyzes the performance of VagueGeometry in the query processing of vague spatial joins.

This article is organized as follows. Section 2 surveys related work. Section 3 summarizes the Vague
Spatial Algebra. Section 4 introduces the proposed VagueGeometry ADT, while Section 5 shows how
to use VagueGeometry in SQL queries, Section 6 describes performance tests. Finally, Section 7
concludes the article.

2. RELATED WORK

Few approaches implement ADTs for manipulating vague spatial objects in spatial DBMS and
GIS [Kraipeerapun 2004; Dilo et al. 2006; Zinn et al. 2007; Pauly and Schneider 2008; 2010; Carniel
et al. 2015a]. They mainly differ from our proposed VagueGeometry in the practicable applicability of
the user to handle vague spatial objects in spatial queries. Table I depicts a detailed comparison among
the functionalities provided by related work and VagueGeometry (last column), considering: (i) tex-
tual representation, (ii) binary representation, (iii) spatial operations that return spatial data types
values, that is, vague geometric set operations, (iv) spatial relationships, that is, vague topological
predicates, (v) spatial operations that return numbers, that is, vague numerical operations, (vi) SQL
operators, and (vii) coupling with a spatial DBMS. As can be noted, the proposed VagueGeometry
is the only approach that provides all functionalities. The main highlights about the comparison are
described as follows.

Textual and binary representations are important functionalities that allow users to easily insert
and retrieve vague spatial objects. They also permit interoperability between spatial applications.
Although Pauly and Schneider [2008; 2010] do not include these representations, they allow the
definition of vague spatial objects by using extensive terminal command lines. Kraipeerapun [2004]
and Dilo et al. [2006] support options to represent vague spatial objects by using files in the format
of the GRASS GIS1, which is a widely used open source GIS. As can be noted, these files depend on
a specific system. Further, users are not able to understand them.

Providing an expressive set of vague spatial operations composed by vague geometric set operations,
vague topological predicates, and vague numerical operations, applications are able to improve the
management of vague spatial objects. The vague geometric set operations refer to vague geometric
union, vague geometric intersection, and vague geometric difference between vague points, lines, and
regions. In this case, Kraipeerapun [2004] and Dilo et al. [2006] do not implement the vague geometric
difference between vague lines.

Offering operators in the SQL language is an important functionality since it allows users to in-
tuitively handle results of spatial operations in SQL queries. Although Pauly and Schneider [2008;
2010] propose some operators, they do not implement them. As a result, we fill Table I with “No"
with regard to these approaches and functionality (vi).

1http://grass.osgeo.org/

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

The VagueGeometry Abstract Data Type · 21

Table I. Comparisons of VagueGeometry with related work.

Approaches

Functionality Kraipeerapun [2004];
Dilo et al. [2006]

Zinn
et al.
[2007]

Pauly and
Schneider [2008;
2010]

Carniel
et al.
[2015a]

Proposed
VagueGeometry

(i) Textual Representation Yes No No Yes Yes
(ii) Binary Representation Yes Yes No No Yes
(iii) Vague Geometric Set Yes, but Yes Yes Yes Yes

Operations not all
(iv) Vague Topological Predicates No No Yes No Yes
(v) Vague Numerical Operations No No Yes No Yes
(vi) SQL Operators No No No No Yes
(vii)Coupling with a spatial No Yes, using Yes, using Yes, using Yes, using

DBMS PostgreSQL Oracle PostgreSQL PostgreSQL

Finally, implementing vague spatial objects in a spatial DBMS allows users to apply them during
the development of their applications. Oracle has license restrictions and it can not be properly
compared and evaluated in our performance tests. On the other hand, VagueGeometry is an open
source implementation based on the PostgreSQL DBMS with the PostGIS spatial extension that
allows to be extended with additional functionalities.

3. VAGUE SPATIAL ALGEBRA

Vague Spatial Algebra (VASA) [Pauly and Schneider 2008; 2010] is an exact model that defines
vague spatial objects, which can be simple or complex. A simple vague spatial object consists of
a single component in both kernel and conjecture, while a complex vague spatial object consists of
multiple connected components in both kernel and conjecture. In addition, VASA defines a huge set of
operations to handle these objects, and thus, this model is more extensive than other exact models. A
vague spatial object in VASA is defined as a pair of crisp spatial objects of the same spatial data type,
which must be disjoint or adjacent. The first object represents the kernel part, while the second object
represents the conjecture part. Formally, let α ∈ {crisp point, crisp line, crisp region}. Then, a vague
spatial data type in VASA is defined by v(α) = α × α, such that for an object o = (ok, oc) ∈ v(α),
the property disjoint(ok, oc) ∨ meet(ok, oc) holds. The kernel and conjecture of o are symbolized by
ok and oc, respectively.

VASA defines the following operations to handle vague spatial objects: vague geometric set oper-
ations, vague topological predicates, type-dependent vague spatial operations, and vague numerical
operations. Vague geometric set operations are defined by reusing the crisp geometric set operations,
that is, crisp geometric union, crisp geometric intersection, and crisp geometric difference. Vague
topological predicates are based on the three-valued logic, and thus, can return true, false, or maybe.
Let A and B be two vague spatial objects. A vague topological predicate is evaluated by using
the well-known crisp 9-intersection matrix [Schneider and Behr 2006] for the following combinations:
Ak×Bk, Ak× (Bc⊕Bk), (Ak⊕Ac)×Bk, and (Ak⊕Ac)× (Bc⊕Bk), where ⊕ denotes crisp geometric
union. Type-dependent vague spatial operations deal with a limited subset of possible types of input.
For instance, the common border operation computes the shared boundary between two vague region
objects and yields a vague line object. Finally, vague numerical operations return a pair of numeric
values corresponding to a minimum and a maximum value. For instance, the area of a vague region
object has a minimum value that corresponds to the area of its kernel and a maximum value that
corresponds to the area of the union between its kernel and its conjecture. Details of the formal
definitions for vague spatial operations of VASA are given by Pauly and Schneider [2010].

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

22 · A. C. Carniel, R. R. Ciferri and C. D. A. Ciferri

VagueGeometry

Vague Point

Vague LineString

Vague MultiPoint

Vague MultiLineString

Vague Polygon Vague MultiPolygon

Crisp
LineString

Crisp
LineString

Crisp Point Crisp Point

Crisp PolygonCrisp Polygon

Crisp
MultiLineString

Crisp
MultiLineString

Crisp MultiPoint Crisp MultiPoint

Crisp MultiPolygon Crisp MultiPolygon

Fig. 1. The vague spatial data types of VagueGeometry.

4. THE VAGUEGEOMETRY ABSTRACT DATA TYPE

In this section, we propose VagueGeometry, an ADT to handle vague spatial objects in a spatial
DBMS. VagueGeometry was implemented using the C language and the extensibility provided by the
PostgreSQL internal library. It is based on VASA, and thus, we make use of the spatial operations
provided by PostGIS and GEOS to implement the vague spatial data types and their operations.
GEOS2 is a C/C++ library that implements crisp spatial data types and their crisp spatial operations
according to OGC specifications3. A detailed documentation of VagueGeometry is available at http:
//gbd.dc.ufscar.br/vaguegeometry/.

Section 4.1 details the VagueGeometry data types and their textual and binary representations,
while Section 4.2 summarizes the main vague spatial operations and Section 4.3 introduces the SQL
operators. Finally, Section 4.4 presents an improvement of VagueGeometry to deal efficiently with
the processing of vague topological predicates.

4.1 Representation of Vague Spatial Objects

Figure 1 depicts vague spatial data types of VagueGeometry, which can be simple or complex. Simple
vague spatial data types named vague point, vague linestring, and vague polygon denote simple vague
points, simple vague lines, and simple vague regions, respectively. Complex vague spatial data types
named vague multipoint, vague multilinestring, and vague multipolygon denote complex vague points,
complex vague lines, and complex vague regions, respectively. We employ this notation to follow
the same notation used by the OGC specification for crisp spatial objects. Note that a vague spatial
object of VagueGeometry is composed of a pair of disjoint or adjacent crisp spatial objects of the same
spatial data type, which are shown in gray in Figure 1. Figure 2 shows examples of VagueGeometry
objects, that is, instances of vague spatial data types.

In order to insert and retrieve VagueGeometry objects, we propose textual and binary representa-
tions for vague spatial objects. We present our proposed representations by first detailing the textual
representations. They are: (i) Vague Well-Known Text (VWKT), (ii) Vague Geography Markup Lan-
guage (VGML), (iii) Vague Keyhole Markup Language (VKML), and (iv) Vague Geographic JavaScript
Object Notation (vGeoJSON). These textual representations are based on the OGC specifications that
use the following textual representations for crisp spatial objects: Well-Known Text (WKT), Geogra-
phy Markup Language (GML), Keyhole Markup Language (KML), and Geographic JavaScript Object
Notation (GeoJSON).

The VWKT, VGML, VKML, and vGeoJSON representations are defined as follows. Let A be a
VagueGeometry object, which can assume different data types (Figure 1), formed by the kernel Ak

and the conjecture Ac. Let name be a function that returns a keyword representing the data type of
A. For instance, name(A) returns the keyword VAGUEPOINT if A is a vague point object. Finally, let

2http://trac.osgeo.org/geos/
3http://www.opengeospatial.org/

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

The VagueGeometry Abstract Data Type · 23

(a) (b) (c) (d) (e) (f)

Fig. 2. Examples of VagueGeometry objects according to its data type (Figure 1): a vague point object (a), a vague
linestring object (b), a vague polygon object (c), a vague multipoint object (d), a vague multilinestring object (e), and
a vague multipolygon object (f). Black objects and solid lines denote kernel parts while gray objects and dashed lines
denote conjecture parts.

WKT, GML, KML, and GeoJSON be functions that get a crisp spatial object as input and return
its respective textual representation. The textual representations for a VagueGeometry object A are
defined as follows:

(i) VWKT (A) = name(A)(WKT (Ak);WKT (Ac))
(ii) VGML(A) = <vgml:name(A)><vgml:Kernel>GML(Ak)</vgml:Kernel>

<vgml:Conjecture>GML(Ac)</vgml:Conjecture></vgml:name(A)>
(iii) VKML(A) = <vkml:name(A)><vkml:Kernel>KML(Ak)</vkml:Kernel>

<vkml:Conjecture>KML(Ac)</vkml:Conjecture></vkml:name(A)>
(iv) vGeoJSON (A) = {“type”: “name(A)”, “kernel”: GeoJSON (Ak), “conjecture”: GeoJSON (Ac)}

Additionally, textual representations can contain the spatial reference system identifier (SRID),
which is a unique numerical value that identifies the spatial coordinate system definitions. For the
VWKT representation, the SRID is specified by adding its number at the beginning of its represen-
tation, and thus, an Extended -VWKT format is obtained. For the VGML representation, a SRID is
specified by adding the attribute srsName in the tag that indicates the VagueGeometry data type.
This attribute is the same attribute srsName of the GML representation. Finally, for the vGeoJSON
representation, a SRID is specified by adding the attribute crs, which corresponds to the attribute
crs of the GeoJSON format.

We now move our discussion to the proposed binary representation, called Vague Well-Known
Binary (VWKB). It is based on the Well-Known Binary (WKB) representation for crisp spatial
objects documented in the OGC specification. Our VWKB representation is defined as follows. Let
id be a function that returns an integer in the binary format symbolizing the data type of A. For
instance, id(A) returns 1, in the binary format, if A is a vague point object. Let WKB be a function
that gets a crisp spatial object as input and returns its respective WKB representation. Let endianess
be an flag that indicates the way in which the bytes are organized in main memory (that is, either
big-endian or little-endian). The VWKB representation for a VagueGeometry object A is defined as
follows:

VWKB(A) = endianess + id(A) + WKB(Ak) + WKB(Ac),

where + denotes union between serialized data.

VagueGeometry supports textual and binary representations to allow its use in different spatial ap-
plications. Hence, spatial applications based on XML or web services that use XML as communication
are able to use the VGML and VKML representations. Web applications that utilize JavaScript as
main language are able to use the vGeoJSON representation. Applications that manage binary files
are able to use the VWKB representation. Finally, for general purpose, applications can make use
of the VWKT representation. It is important to note that these representations also provide inter-
operability between applications since a vague spatial object has a unique representation. For each
VagueGeometry data type (Figure 1), Tables II and III show examples of VWKT and vGeoJSON

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

24 · A. C. Carniel, R. R. Ciferri and C. D. A. Ciferri

Table II. Examples of VWKT representations.

VagueGeometry
Data Type VWKT Representation of a Vague Spatial Object

Vague Point VAGUEPOINT(POINT(0 0); POINT(1 1))

Vague LineString VAGUELINESTRING(LINESTRING(0 0, 1 1, 2 2); LINESTRING(2 2, 3 3))

Vague Polygon VAGUEPOLYGON(POLYGON((1 1, 2 1, 2 2, 1 2, 1 1));
POLYGON((1 1, 0 1, 0 2, 1 2, 1 1)))

Vague MultiPoint VAGUEMULTIPOINT(MULTIPOINT(1 1, 3 3); MULTIPOINT(2 2, 5 5))

Vague MultiLineString VAGUEMULTILINESTRING(MULTILINESTRING((1 1, 2 2), (3 3, 4 4));
MULTILINESTRING((2 2, 3 3), (5 5, 6 6)))

Vague MultiPolygon
VAGUEMULTIPOLYGON(MULTIPOLYGON(((1 1, 0 1, 0 2, 1 2, 1 1)), ((10 10, 0 10,
0 20, 10 20, 10 10)));

MULTIPOLYGON(((1 1, 2 1, 2 2, 1 2, 1 1)), ((10 10, 20 10, 20 20, 10 20, 10 10))))

Table III. Examples of vGeoJSON representations.

VagueGeometry
Data Type vGeoJSON Representation of a Vague Spatial Object

Vague Point
{“type”:“VaguePoint”, “crs”:{“type”:“name”, “properties”:{“name”:“EPSG:4326”}},
“kernel”: {“type”: “Point”, “coordinates”: [0,0]},
“conjecture”: {“type”: “Point”, “coordinates”: [1,1]}}

Vague LineString
{“type”:“VagueLineString”, “crs”:{“type”:“name”, “properties”:{“name”:“EPSG:4326”}},
“kernel”: {“type”: “LineString”, “coordinates”: [[0,0],[1,1],[2,2]]},
“conjecture”: {“type”: “LineString”, “coordinates”: [[2,2],[3,3]]}}

Vague Polygon
{“type”:“VaguePolygon”, “crs”:{“type”:“name”, “properties”:{“name”:“EPSG:4326”}},
“kernel”: {“type”: “Polygon”, “coordinates”: [[[1,1],[2,1],[2,2],[1,2],[1,1]]]},
“conjecture”: {“type”: “Polygon”, “coordinates”: [[[1,1],[0,1],[0,2],[1,2],[1,1]]]}}

Vague MultiPoint
{“type”:“VagueMultiPoint”, “crs”:{“type”:“name”, “properties”:{“name”:“EPSG:4326”}},
“kernel”: {“type”: “MultiPoint”, “coordinates”: [[1,1],[3,3]]},
“conjecture”: {“type”: “MultiPoint”, “coordinates”: [[2,2],[5,5]]}}

Vague MultiLineString
{“type”:“VagueMultiLineString”, “crs”:{“type”:“name”, “properties”:{“name”:“EPSG:4326”}},
“kernel”: {“type”: “MultiLineString”, “coordinates”: [[[1,1],[2,2]],[[3,3],[4,4]]]},
“conjecture”: {“type”: “MultiLineString”, “coordinates”: [[[2,2],[3,3]],[[5,5],[6,6]]]}}

Vague MultiPolygon

{“type”:“VagueMultiPolygon”, “crs”:{“type”:“name”, “properties”:{“name”:“EPSG:4326”}},
“kernel”: {“type”: “MultiPolygon”,
“coordinates”: [[[[1,1],[0,1],[0,2],[1,2],[1,1]]],[[[10,10],[0,10],[0,20],[10,20],[10,10]]]]},

“conjecture”: {“type”: “MultiPolygon”,
“coordinates”: [[[[1,1],[2,1],[2,2],[1,2],[1,1]]],[[[10,10],[20,10],[20,20],[10,20],[10,10]]]]}}

representations, respectively. Note that the same VagueGeometry objects are used in these tables in
order to visualize them in different representations. For instance, the same vague point object is used
in the first line of each table.

4.2 Vague Spatial Operations

VagueGeometry provides support to input and output operations, vague geometric set operations,
vague topological predicates, vague numerical operations, and type-dependent vague spatial operations.
While input operations transform textual or binary representations into a VagueGeometry object,

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

The VagueGeometry Abstract Data Type · 25

output operations transform a VagueGeometry object into a textual or binary representation. The
SQL signatures for input operations, that consider VWKT, VGML, VKML, vGeoJSON, and VWKB
representations as input, are defined as follows, respectively:

(i) VG_VagueGeomFromText(text VWKT , integer SRID) → VagueGeometry
(ii) VG_VagueGeomFromVGML(text VGML) → VagueGeometry
(iii) VG_VagueGeomFromVKML(text VKML) → VagueGeometry
(iv) VG_VagueGeomFromvGeoJSON (text vGeoJSON) → VagueGeometry
(v) VG_VagueGeomFromVWKB(bytea VWKB , integer SRID) → VagueGeometry

The SQL signatures for output operations that return VWKT, VGML, VKML, vGeoJSON, and
VWKB representations of a vague spatial object are defined as follows, respectively:

(i) VG_AsText(VagueGeometry vg) → text
(ii) VG_AsVGML(VagueGeometry vg) → text
(iii) VG_AsVKML(VagueGeometry vg) → text
(iv) VG_AsVGeoJSON (VagueGeometry vg) → text
(v) VG_AsVWKB(VagueGeometry vg) → bytea

Vague geometric set operations get two VagueGeometry objects as input and yield another Vague-
Geometry object. VagueGeometry implements vague geometric union, vague geometric intersection,
and vague geometric difference. Note that we are able to use the vague geometric union as an aggre-
gate function (operation (ii) below), which computes the union of a set of objects stored in rows of
data. These operations have the following SQL signatures:

(i) VG_Union(VagueGeometry vg1 , VagueGeometry vg2) → VagueGeometry
(ii) VG_Union(VagueGeometry set vg_field) → VagueGeometry
(iii) VG_Intersection(VagueGeometry vg1 , VagueGeometry vg2) → VagueGeometry
(iv) VG_Difference(VagueGeometry vg1 , VagueGeometry vg2) → VagueGeometry

Regarding the vague topological predicates, VagueGeometry supports vague contains, vague cov-
eredBy, vague covers, vague crosses, vague disjoint, vague equals, vague inside, vague intersects, vague
meets, and vague overlap. These predicates are based on the three-valued logic, and can return true,
false, or maybe. A predicate returns true if a relationship certainly occurs, false if a relationship cer-
tainly does not occur, and maybe if a relationship possibly occurs. To deal with this three-valued logic,
VagueGeometry also includes the VagueBool data type. As a result, a VagueBool object can assume
true, false, or maybe as value, which correspond to the possible return values of vague topological
predicates. In addition, it is possible to use crisp spatial objects as input, which is handled as a vague
spatial object containing only the kernel part. The vague topological predicates have the following
SQL signatures:

(i) VG_Contains(VagueGeometry vg1 , VagueGeometry vg2) → VagueBool
(ii) VG_CoveredBy(VagueGeometry vg1 , VagueGeometry vg2) → VagueBool
(iii) VG_Covers(VagueGeometry vg1 , VagueGeometry vg2) → VagueBool
(iv) VG_Crosses(VagueGeometry vg1 , VagueGeometry vg2) → VagueBool
(v) VG_Disjoint(VagueGeometry vg1 , VagueGeometry vg2) → VagueBool
(vi) VG_Equals(VagueGeometry vg1 , VagueGeometry vg2) → VagueBool
(vii) VG_Inside(VagueGeometry vg1 , VagueGeometry vg2) → VagueBool
(viii) VG_Intersects(VagueGeometry vg1 , VagueGeometry vg2) → VagueBool

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

26 · A. C. Carniel, R. R. Ciferri and C. D. A. Ciferri

Table IV. Truth tables of the three-valued logic. The logical operators and (&&) and or (||) are commutative and
depicted in (a) while the operator not (!) is depicted in (b).

VagueBool a VagueBool b a && b a || b

true true true true
true false false true
true maybe maybe true
false false false false
maybe maybe maybe maybe

VagueBool a !a

true false
false true
maybe maybe

(a) (b)

(ix) VG_Meets(VagueGeometry vg1 , VagueGeometry vg2) → VagueBool
(x) VG_Overlap(VagueGeometry vg1 , VagueGeometry vg2) → VagueBool

Vague numerical operations supported by VagueGeometry are: vague area of a vague region object,
vague length of a vague line object, and farthest and nearest distance between two vague spatial objects.
These operations return two numeric values, which symbolize the minimum and the maximum values
of an operation. To deal with it, VagueGeometry also includes the VagueNumeric data type. As
a result, a VagueNumeric object is composed of a pair of double values, which correspond to the
minimum and the maximum values returned by vague numerical operations. The vague numerical
operations have the following SQL signatures:

(i) VG_Area(VagueGeometry r) → VagueNumeric
(ii) VG_Length(VagueGeometry l) → VagueNumeric
(iii) VG_NearestDistance(VagueGeometry vg1 , VagueGeometry vg2) → VagueNumeric
(iv) VG_FarthestDistance(VagueGeometry vg1 , VagueGeometry vg2) → VagueNumeric

Finally, VagueGeometry supports the following type-dependent vague spatial operations: common
border between two vague region objects and common points between two vague line objects. They have
the following SQL signatures:

(i) VG_CommonBorder(VagueGeometry r , VagueGeometry r) → VagueGeometry
(ii) VG_CommonPoints(VagueGeometry l , VagueGeometry l) → VagueGeometry

As can be noted, our proposed VagueGeometry implements an expressive set of vague spatial opera-
tions, which includes the specification of vague geometric set operations, vague topological predicates,
vague numerical operations, and type-dependent vague spatial operations.

4.3 SQL Operators

We propose SQL operators to handle VagueBool and VagueNumeric objects, that is, the result of vague
topological predicates and vague numerical operations, respectively. For vague topological predicates,
we propose the logical operators and (&&), or (||), and not (!), and the boolean operators ∼, ∼∼, and
&. Logical operators employ the three-valued logic, which is shown in Table IV. They get VagueBool
objects as input and yield another VagueBool object.

Boolean operators are unary operators that get a VagueBool object as input and have true or false
as possible return values. Hence, a boolean operator transforms a vague topological predicate into a
boolean condition. Let a be a VagueBool object. The operator ∼ yields true if the a is true or maybe,
and false otherwise. The operator ∼∼ yields true if a is maybe, and false otherwise. The operator &
yields true if a is true, and false otherwise.

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

The VagueGeometry Abstract Data Type · 27

(a) (b)

Fig. 3. Examples of the situations where the MBRVP improvement is applied: (a) the disjointness between MBRs and
(b) the set containment between MBRs. Black regions represent the kernel, while gray regions represent the conjecture.

By using logical and boolean operators, we are able to restrict the returning values of vague topolog-
ical predicates in SQL queries. For instance, we can evaluate if two VagueGeometry objects possibly
overlap by specifying the condition “∼∼VG_Overlap(vg1, vg2)”. We can even combine logical and
boolean operators in a unique condition. For instance, the condition “∼(VG_Meets(vg1, vg2) ||
VG_Overlap(vg1, vg2))” indicates that the VagueGeometry objects vg1 and vg2 possibly meet or
overlap.

Regarding the vague numerical operations, we propose the binary operators = and ∼, which get a
VagueNumeric object and a numeric value as inputs and yield true or false. Let v be a VagueNumeric
object. Let n be a numeric value. The operator = yields true if n is equal to the minimum value of
v, and false otherwise. The operator ∼ yields true if n is between the minimum and the maximum
value of v, and false otherwise. For instance, users can use this operator to specify the condition
“VG_Area(r) ∼ 800” in a SQL query to restrict vague region objects in the attribute r that have
approximately 800 of area.

4.4 Efficient Processing of Vague Topological Predicates

In this section, we propose an improvement of VagueGeometry to deal efficiently with the processing
of vague topological predicates. The proposed improvement, called MBRs for Vague Topological
Predicates (or MBRVP for short), makes use of Minimum Boundary Rectangles (MBR) of the kernel
and conjecture parts of vague spatial objects to return the results of vague topological predicates
in some situations. In these situations, MBRVP can avoid the computation of crisp 9-intersection
matrices of a vague topological predicate. As a result, the time to process spatial queries is reduced.

We consider two situations, named disjointness between MBRs and set containment between MBRs.
The disjointness between MBRs encompasses two specific cases, as depicted in Figure 3a. The first
case is whether MBRs of the union between the kernel and the conjecture of two vague spatial objects
are disjoint. The second case is whether MBRs of the kernel and the conjecture of two vague spatial
objects are disjoint. Note that the second case can happen even if the first case holds. Further, since
we cannot guarantee that the conjecture parts intersect due to the dead spaces of MBRs, we cannot
return maybe. Let A and B two vague spatial objects. Let also MBRo be a MBR of a crisp spatial
object o. We define the disjointness between MBRs Sd(A,B) as follows:

Sd(A,B) =

true if ((MBRAk

∪MBRAc
) ∩ (MBRBk

∪MBRBc
) = ∅) ∨

(MBRAk
∩MBRBk

= ∅ ∧MBRAk
∩MBRBc

= ∅ ∧
MBRAc

∩MBRBk
= ∅ ∧MBRAc

∩MBRBc
= ∅)

false otherwise

By using this definition, we are able to return true for vague disjoint if Sd(A,B) = true holds, and
return false for vague meets, vague intersects, vague overlap, and vague equals if Sd(A,B) = false
holds. Otherwise, the predicate is evaluated with the computation of crisp 9-intersection matrices.

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

28 · A. C. Carniel, R. R. Ciferri and C. D. A. Ciferri

Regarding the set containment between MBRs, it also encompasses two specific cases (Figure 3b).
The first case is whether the MBR of the kernel of the first vague spatial object is not inside the MBR
of the union between the kernel and the conjecture of the second vague spatial object. The second
case is whether the MBR of the kernel of the first vague spatial object and MBRs of the kernel and the
conjecture of the second vague spatial object are disjoint. Let A and B be two vague spatial objects.
Let also MBRo be a MBR of a crisp spatial object o. We define the set containment between MBRs
Ssc(A,B) as follows:

Ssc(A,B) =

true if (MBRAk

* (MBRBk
∪MBRBc

)) ∨
(MBRAk

∩MBRBk
= ∅ ∧MBRAk

∩MBRBc
= ∅)

false otherwise

By using this definition, we are able to return false for vague inside and vague coveredBy if
Ssc(A,B) = true holds. Otherwise, the respective predicate is evaluated. Similarly, if Ssc(B,A) = true
holds, then we can return false for vague contains and vague covers, and evaluate the respective pred-
icates otherwise.

5. EMPLOYING VAGUEGEOMETRY IN A SPATIAL APPLICATION

In this section, we show how to employ the VagueGeometry ADT in a spatial application. Figure 4
depicts our example of application, which is based on an agriculture environment. This application
manages soil textures, farms, lakes, animal routes, and plagues that are represented by the relational
table schemas texture, farm, lake, animal, and plague, respectively. Soil textures, farms, and lakes are
represented by complex vague region objects, while animal routes are represented by complex vague
line objects and plagues are represented by complex vague point objects. Each table has an attribute
id as primary key and an attribute geo to store its VagueGeometry object. In the following, we show
the SQL command to create the table plague. Note that the data type of the attribute geo is vague
multipoint since a plague is represented by a complex vague point object. We specify this by using
the name of the VagueGeometry data type between parentheses.

CREATE TABLE plague (
id INTEGER PRIMARY KEY,
geo VAGUEGEOMETRY(VAGUEMULTIPOINT))

We are able to similarly define the other tables, that is, texture, farm, lake, and animal. Once we
have defined all these tables, we are able to insert VagueGeometry objects by using textual or binary

Soil Texture Farm Lake Plague Animal Route

Fig. 4. Example based on an agriculture environment. Darker colors and solid lines denote kernel parts while lighter
colors and dashed lines denote conjecture parts.

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

The VagueGeometry Abstract Data Type · 29

representations (Section 4.1) in SQL INSERT INTO commands. For instance, in the following SQL
command, we insert the vague multipoint object from Table II in the plague table.

INSERT INTO plague VALUES(1, VG_VagueGeomFromText(
’VAGUEMULTIPOINT(MULTIPOINT(1 1, 3 3); MULTIPOINT(2 2, 5 5))’, 4326))

Once we have inserted VagueGeometry objects, we are able to handle them in SQL queries. The
first query asks for all points in each farm threatened by plagues. This query employs the vague
geometric union as an aggregate function on all plagues. Then, we perform the intersection between
this result and each farm. Finally, we show the result by using VWKT representation.

SELECT VG_AsText(VG_Intersection(U.mp, F.geo)), F.id
FROM (SELECT VG_Union(geo) as mp FROM plague) as U, farm as F

The following query returns the common borders and intersection parts between farms and lakes.
This means that the common border operation yields lines, while the vague geometric intersection
yields regions. The result of these operations are represented by the vGeoJSON representation and
indicate critical places for farms since the water of a lake can invade them.

SELECT VG_AsVGeoJSON(VG_CommonBorder(F.geo, L.geo)),
VG_AsVGeoJSON(VG_Intersection(F.geo, L.geo))

FROM farm as F, lake as L

The next query asks for all farms that could be threatened by animal routes since the nearest
distance between them is approximately 500. To restrict this, we make use of the operator ∼.

SELECT F.id, A.id
FROM farm as F, animal as A
WHERE VG_NearestDistance(F.geo, A.geo) ~ 500

The next query is a vague spatial range query that returns the soil textures that possibly or certainly
intersect a window query QW . The window query QW is a VagueGeometry object composed of one
or more objects in the kernel part and one or more objects in the conjecture part. Further, they are
rectangular shaped. Aiming to restrict the returning value of the predicate, we employ the boolean
operator ∼.

SELECT T.id
FROM texture as T
WHERE ~VG_Intersects(T.texture, QW)

The final query is a vague spatial join that returns all pairs of farms and animal routes that certainly
overlap. This means that these farms and animals need to be carefully examined. For this query, we
employ the boolean operator &.

SELECT F.id, A.id
FROM farm as F, animal as A
WHERE &VG_Overlap(F.geo, A.route)

6. PERFORMANCE EVALUATION

The advantages of VagueGeometry were analyzed through experimental tests that processed spatial
queries with vague topological predicates. We analyzed topological predicates since they incur high
costs of processing and they are very common in spatial applications. Section 6.1 introduces the
experimental setup used in the performance evaluation. Section 6.2 and Section 6.3 discusses the
performance results for processing vague spatial range queries and vague spatial joins, respectively.

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

30 · A. C. Carniel, R. R. Ciferri and C. D. A. Ciferri

6.1 Experimental Setup

To the best of our knowledge, there is no a consensus in the spatial database community in how
to extract vague spatial objects from real-world phenomena. Due to this and aiming to explore
the geometric complexity of vague regions, we considered two synthetic datasets D1 and D2. D1

was composed of 100,000 vague region objects generated as follows. First, we constructed a Voronoi
diagram of 200,000 crisp points randomly generated, which produced the same number of crisp regions.
Second, for each crisp region, we added points to increase its complexity. As a result, each crisp region
was formed by averagely 313 points. Third, we created pairs of crisp regions that were disjoint or
adjacent. To create a pair, we randomly selected a crisp region and then we selected the nearest crisp
region that was disjoint or adjacent to the first one. We randomly assigned a crisp region as kernel
and the other crisp region as conjecture in order to form a vague region object. After creating a pair,
we discarded the used regions, such that these regions were not used to create another pair. In the
total, we generated 100,000 vague region objects to be stored in D1. The same process was used to
create the dataset D2; but, instead of 100,000 vague region objects, two sets of 10,000 vague region
objects were created.

We computed two types of spatial queries: vague spatial range queries and vague spatial joins. For
the vague spatial range queries, we considered the following predicates: vague disjoint, vague overlap,
vague inside, vague intersects, vague coveredBy, and vague meets. The workload was composed of 100
vague spatial range queries for each vague topological predicate. We also defined a query window for
each vague spatial range query, which was composed of a vague region object that had the rectangular
format for the kernel and the conjecture. Therefore, we randomly generated 100 different query
windows. For the vague spatial joins, we considered the following predicates: vague disjoint, vague
overlap, vague inside, vague coveredBy, and vague meets.

We defined the following configurations: (i) baseline that used current functionalities provided
by the PostgreSQL with the PostGIS spatial extension; (ii) VGwithoutMBRVP that used VagueGe-
ometry without the MBRVP improvement described in Section 4.4; and (iii) VGwithMBRVP that
used VagueGeometry improved with MBRVP. For baseline, we implemented vague topological predi-
cates by using the Procedural Language/PostgreSQL (PL/pgSQL), which had “TRUE”, “FALSE”, or
“MAYBE” as possible return textual values. For their use, we stored the kernel and the conjecture of
each vague spatial object in separated columns in a relational table. We defined two configurations to
our proposal due to the following reasons. First, we are able to show that VagueGeometry improves
query processing even if its implementation does not encompass MBRVP. Second, we are also able
to show that VagueGeometry extended with MBRVP always produces better performance results.
Third, we can isolate the improvement introduced by MBRVP in the analysis of query processing,
which represents an important research result.

Note that we did not employ the approaches surveyed in Section 2 here due to the following limi-
tations. While the approaches proposed by Zinn et al. [2007], Kraipeerapun [2004], Dilo et al. [2006],
and Carniel et al. [2015a] do not provide support for vague topological predicates, the approaches de-
scribed by Pauly and Schneider [2008; 2010]4 are specifically implemented in Oracle, which has license
restrictions. Further, we used PostgreSQL in the performance tests to isolate the effects of the DBMS,
and thus providing a fair comparison.

Table V depicts the SQL templates of the vague spatial range queries and vague spatial joins used
in the three configurations. Consider baseline. baselineTable, baselineTable1, and baselineTable2 are
tables composed of three attributes: (i) id that is the primary key, (ii) kernel_geo that represents
the kernel of a vague region object, and (iii) conjecture_geo that represents the conjecture of a vague
region object. Further, R is the textual return value that may contain “TRUE”, “FALSE”, or “MAYBE”
and P is the vague topological predicate. For vague spatial range queries, QW is the query window.

4http://www.cise.ufl.edu/research/SpaceTimeUncertainty/

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

The VagueGeometry Abstract Data Type · 31

Table V. SQL templates of the vague spatial range queries and vague spatial joins.

SQL Template
Configuration Vague Spatial Range Query Vague Spatial Join

baseline

SELECT id
FROM baselineTable
WHERE R = P (kernel_geo,
conjecture_geo, QWk, QWc)

SELECT A.id, B.id
FROM baselineTable1 as A, baselineTable2 as B
WHERE R = P (A.kernel_geo, A.conjecture_geo,
B.kernel_geo, B.conjecture_geo)

VGwithoutMBRVP
VGwithMBRVP

SELECT id
FROM vaguegeom
WHERE O P (vg, QW)

SELECT A.id, B.id
FROM vaguegeom1 as A, vaguegeom2 as B
WHERE O P (A.vg, B.vg)

0

1.000

2.000

3.000

4.000

5.000

6.000

To
ta

l e
la

p
se

d
 t

im
e

(s
)

Returning equal to TRUE

baseline VGwithoutMBRVP VGwithMBRVP

0

1.000

2.000

3.000

4.000

5.000

6.000

To
ta

l e
la

p
se

d
 t

im
e

(s
)

Returning equal to FALSE

baseline VGwithoutMBRVP VGwithMBRVP

0

1.000

2.000

3.000

4.000

5.000

6.000

To
ta

l e
la

p
se

d
 t

im
e

(s
)

Returning equal to MAYBE

baseline VGwithoutMBRVP VGwithMBRVP

(a) (b) (c)

Fig. 5. Performance results of the execution of vague spatial range queries for each vague topological predicate consid-
ering the returning values of true (a), false (b), and maybe (c).

Regarding VGwithoutMBRVP and VGwithMBRVP , vaguegeom, vaguegeom1, and vaguegeom2 are
tables that stored vague region objects in the attribute vg by using our proposed VagueGeometry. In
addition, O corresponds to the use of SQL operators introduced in Section 4.3. This means that the
operator ∼∼ was used to specify that P returned maybe, the operator & was used to specify that P
returned true, and the combination of the operator & with the operator ! (that is, &!) was used to
specify that P returned false. Note that the SQL templates are equivalent for each type of query, that
is, they generate the same result, but using the specific functionalities provided by the corresponding
configurations. It is worth noticing that the query optimizer generated the same query execution
plans for each type of query since they are simple queries and spatial indexes were not employed in
baseline.

The experiments were conducted on a computer with an Intelr CoreTM i7-4770 processor with
frequency of 3.40GHz, 2 TB SATA hard drive with 7200 RPM, and 32 GB of main memory. The
operating system was CentOS 6.5 with Kernel Version 2.6.32-431.el6.x86 64. We employed PostgreSQL
9.3.3, PostGIS 2.2.0, and GEOS 3.4.2.

We collected the elapsed time in seconds. In detail, we executed 100 vague spatial range queries for
each vague topological predicate and each value of return. Further, we executed each vague spatial
range query and vague spatial join 10 times and calculated their average elapsed time. Furthermore,
we performed the tests locally to avoid network latency and we flushed the system cache after the
execution of each query.

6.2 Execution of Vague Spatial Range Queries

This experimental evaluation was conducted on dataset D1 and its results are reported in Figure 5.
For each configuration and each return value of the three-valued logic (that is, true, false, and maybe),
we gathered similar elapsed times for processing the spatial queries.

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

32 · A. C. Carniel, R. R. Ciferri and C. D. A. Ciferri

1

10

100

1.000

10.000

100.000

1.000.000

To
ta

l e
la

p
se

d
 t

im
e

(s
)

Returning equal to TRUE

baseline VGwithoutMBRVP VGwithMBRVP

1

10

100

1.000

10.000

100.000

1.000.000

To
ta

l e
la

p
se

d
 t

im
e

(s
)

Returning equal to FALSE

baseline VGwithoutMBRVP VGwithMBRVP

1

10

100

1.000

10.000

100.000

1.000.000

To
ta

l e
la

p
se

d
 t

im
e

(s
)

Returning equal to MAYBE

baseline VGwithoutMBRVP VGwithMBRVP

(a) (b) (c)

Fig. 6. Performance results of the execution of vague spatial joins for each vague topological predicate considering the
returning values of true (a), false (b), and maybe (c).

Clearly, the performance of VGwithoutMBRVP overcame baseline. These results demonstrate that
implementing VagueGeometry by using the extensibility provided by PostgreSQL guaranteed more
efficiency than the implementation of vague topological predicates by using the PL/pgSQL functions
together with current functionalities of the PostGIS spatial extension. The performance gain imposed
by VGwithoutMBRVP over baseline ranged from 23% up to 53%, where the performance gain is
calculated as the percentage that determines how much more efficient one configuration was than
another configuration.

Despite the expressive performance gains obtained by VGwithoutMBRVP , we gathered yet better
results with the improvement proposed in Section 4.4. VGwithMBRVP leaded to a performance gain
that ranged from 72% up to 84% if compared with baseline. Further, VGwithMBRVP provided a
performance gain against VGwithoutMBRVP that ranged from 63% up to 66%. The results demon-
strate that the MBRVP improvement drastically reduced the time spent to process crisp 9-intersection
matrices in vague topological predicates.

Regarding storage space, baseline required 961 MB, VGwithoutMBRVP required 960 MB, and
VGwithMBRVP required 963 MB. We can conclude that the storage costs were almost the same in
the three configurations. In addition, the storage of MBRs of the kernel and the conjecture of each
VagueGeometry object in VGwithMBRVP did not introduce overhead in the execution of the spatial
queries.

6.3 Execution of Vague Spatial Joins

This experimental evaluation was conducted on dataset D2 that stored two sets of 10,000 vague region
objects. Figure 6 depicts the performance results. We also obtained here similar elapsed times for
processing the spatial queries for each return value (that is, true, false, and maybe).

Again, VGwithoutMBRVP greatly overcame baseline, providing performance gains that ranged from
21% up to 58%. Further, the improvement proposed in Section 4.4 guaranteed to VGwithMBRVP a
performance gain of at least 98% over baseline. Comparing VGwithoutMBRVP and VGwithMBRVP ,
the latter provided a performance gain that ranged from 96% up to 97% over the former. Moreover,
each configuration required approximately 194 MB to store the data set D2, which indicates that
VGwithMBRVP did not introduce overhead in the storage and it guaranteed the best obtained results.

Due to the performance results to execute vague spatial range queries and vague spatial joins, the
implementation of VagueGeometry available at http://gbd.dc.ufscar.br/vaguegeometry/ includes
the MBRVP improvement by default.

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

The VagueGeometry Abstract Data Type · 33

7. CONCLUSIONS AND FUTURE WORK

In this article, we propose VagueGeometry, a novel abstract data type to handle vague spatial objects
in the PostgreSQL with the PostGIS spatial extension. VagueGeometry empowers the management
of spatial applications by offering textual and binary representations for vague spatial objects and
by providing an expressive set of spatial operations, including vague geometric set operations, vague
topological predicates, vague numerical operations, and type-dependent vague spatial operations. As
facilities, VagueGeometry introduces SQL operators to handle results of vague topological predicates
and vague numerical operations. We also introduce MBRVP, an improvement to VagueGeometry to
speed up the performance of spatial queries to process vague topological predicates.

Comparisons of VagueGeometry with current functionalities available on PostgreSQL showed that
VagueGeometry provided better performance results for spatial queries with vague topological predi-
cates. The performance gain of VagueGeometry varied from 21% up to 58%. Improved with MBRVP,
VagueGeometry provided even better results, which varied from 72% up to 98%.

Future work will analyze the performance of VagueGeometry varying query selectivity and dataset
sizes. Further, we aim to extend VagueGeometry in order to provide index structures that minimize
the processing of crisp 9-intersection matrices since such functionality can negatively affect the time
processing of vague spatial queries. Finally, we will also store statistical data about vague spatial
objects to be used by the PostgreSQL query optimizer.

Acknowledgments. This work has been supported by the Brazilian federal research agencies CAPES
and CNPq as well as by the São Paulo Research Foundation (FAPESP). A. C. Carniel has been sup-
ported by the grants #2012/12299-8 and #2015/26687-8, FAPESP. R. R. Ciferri has been supported
by the grant #311868/2015-0, CNPq. C. D. A. Ciferri has been supported by the grant #2016/04990-
3, FAPESP.

REFERENCES

Bejaoui, L., Pinet, F., Schneider, M., and Bédard, Y. OCL for Formal Modelling of Topological Constraints
Involving Regions with Broad Boundaries. GeoInformatica 14 (3): 353–378, 2010.

Bennett, B. Spatial Vagueness. In R. Jeansoulin, O. Papini, H. Prade, and S. Schockaert (Eds.), Methods for Handling
Imperfect Spatial Information. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 15–47, 2010.

Carniel, A. C., Ciferri, R. R., and Ciferri, C. D. A. An Abstract Data Type to Handle Vague Spatial Objects
Based on the Fuzzy Model. In Proceedings of the Brazilian Symposium on GeoInformatics. Campos do Jordão,
Brazil, pp. 210–221, 2015a.

Carniel, A. C., Ciferri, R. R., and Ciferri, C. D. A. Embedding Vague Spatial Objects into Spatial Databases
using the VagueGeometry Abstract Data Type. In Proceedings of the Brazilian Symposium on GeoInformatics.
Campos do Jordão, Brazil, pp. 233–244, 2015b.

Carniel, A. C., Schneider, M., Ciferri, R. R., and Ciferri, C. D. A. Modeling Fuzzy Topological Predicates
for Fuzzy Regions. In Proceedings of the ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems. New York, USA, pp. 529–532, 2014.

Clementini, E. and Di Felice, P. Approximate Topological Relations. International Journal of Approximate
Reasoning 16 (2): 173–204, 1997.

Cohn, A. G. and Gotts, N. M. The ‘Egg-Yolk’ Representation of Regions with Indeterminate Boundaries. In P. A.
Burrough and A. U. Frank (Eds.), Geographic Objects with Indeterminate Boundaries. Taylor & Francis, Great
Britain, pp. 171–187, 1996.

Dilo, A., Bos, P., Kraipeerapun, P., and de By, R. Storage and Manipulation of Vague Spatial Objects Using Ex-
isting GIS Functionality. In Flexible Databases Supporting Imprecision and Uncertainty, G. Bordogna and G. Psaila
(Eds.). Vol. 203. Springer Berlin Heidelberg, pp. 293–321, 2006.

Dilo, A., de By, R. A., and Stein, A. A System of Types and Operators for Handling Vague Spatial Objects.
International Journal of Geographical Information Science 21 (4): 397–426, 2007.

Kraipeerapun, P. Implementation of Vague Spatial Objects. M.S. thesis, International Institute for Geo-Information
Science and Earth Observation, The Netherlands, 2004.

Li, R., Bhanu, B., Ravishankar, C., Kurth, M., and Ni, J. Uncertain Spatial Data Handling: modeling, indexing
and query. Computers & Geosciences 33 (1): 42–61, 2007.

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

34 · A. C. Carniel, R. R. Ciferri and C. D. A. Ciferri

Pauly, A. and Schneider, M. Querying Vague Spatial Objects in Databases with VASA. In A. Stein, W. Shi, and
W. Bijker (Eds.), Quality Aspects in Spatial Data Mining. CRC Press, USA, pp. 3–14, 2008.

Pauly, A. and Schneider, M. VASA: An Algebra for Vague Spatial Data in Databases. Information Systems 35 (1):
111–138, 2010.

Schneider, M. and Behr, T. Topological Relationships between Complex Spatial Objects. ACM Transactions on
Database Systems 31 (1): 39–81, 2006.

Siqueira, T. L., Ciferri, C. D. A., Times, V. C., and Ciferri, R. R. Modeling Vague Spatial Data Warehouses
Using the VSCube Conceptual Model. Geoinformatica 18 (2): 313–356, 2014.

Zinn, D., Bosch, J., and Gertz, M. Modeling and Querying Vague Spatial Objects Using Shapelets. In Proceedings
of the International Conference on Very Large Data Bases. Vienna, Austria, pp. 567–578, 2007.

Journal of Information and Data Management, Vol. 7, No. 1, April 2016.

