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Abstract. Effective manipulation of string data is of fundamental importance to modern database applications. Very
often, textual inconsistencies render equality comparisons meaningless and strings have to be matched in terms of their
similarity. Previous work has proposed techniques to express similarity operations using declarative SQL statements.
However, the non-trivial issue of embedding similarity support into object-oriented applications has received little
attention. Particularly, declarative similarity matching requires maintenance of a number of auxiliary tables for each
combination of similarity function and string attribute in query predicates. As a result, persistence of application objects
is severely complicated, thereby leading to excessively intricate and hardly reusable application code. In this article, we
present SimDataMapper, an architectural pattern to provide easy and flexible integration of similarity matching with
applications and programming environments. We developed an efficient implementation largely based on standard SQL,
experimentally evaluate its performance, and compare it with alternative approaches.

Categories and Subject Descriptors: H.2.4 [Database Management|: Systems

Keywords: advanced query processing, architectural patterns, object persistence, similarity matching, string databases

1. INTRODUCTION

Virtually all modern database applications deal with string data. Indeed, important information stored
in databases such as people names, addresses, and product descriptions are represented as strings.
Very often, string data have inconsistencies owing to a variety of reasons, such as misspellings and
different naming conventions. Querying such inconsistent data is problematic because the traditional
query paradigm based on exact matching in equality comparisons is meaningless. As a result, users are
unable to find desired information in the database; even worse, the same information can be reinserted
into the database with a different representation, thereby leading to even more inconsistency.

A better approach would be to apply the more general paradigm of similarity matching, where
strings are matched in terms of their similarity. A similarity function is used to quantify the underlying
notion of similarity and two strings are considered similar if the value returned by the similarity
function for them is not less than a threshold. Considering that tuples are represented by a descriptive
string attribute, a similarity selection returns tuples that are similar to a given query string [Koudas
et al. 2007], whereas a similarity join returns pairs of similar tuples from two input tables [Gravano
et al. 2001]. Such operations are instrumental in dealing with inconsistent string data. For example,

We thank the anonymous reviewers for their helpful comments. This research was partially supported by FAPEMIG,
FAPESC, CNPq, and INCT INCoD.

Copyright(©2016 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computagao.

Journal of Information and Data Management, Vol. 7, No. 3, December 2016, Pages 217-232.



218 . Leonardo A. Ribeiro et al.

Ad-hoc, declarative similarity matching Proposed solution

(simplified)
database application

)

reduced set of tatbles

[ database application

Fig. 1. Proposed software architecture for declarative similarity matching.

we can use similarity selections to find misspelled variants of patient names in a medical database
and, likewise, similarity joins to identify tuples from two tables referring to the same patient.

Unfortunately, similarity matching is not directly supported by conventional Relational Database
Management Systems (RDBMSs). The direct approach of implementing similarity functions as user
defined functions (UDFs) can be very expensive. In similarity selections, the UDF would be evaluated
over all tuples of the input table, even those bearing no similarity to the query string. In similarity
joins, the situation is much worse as the UDF would be applied over the cross-product of two input
tables. Over the last years, several proposals addressed this problem by expressing similarity functions
declaratively in SQL [Gravano et al. 2001; Gravano et al. 2003; Koudas et al. 2007]. Besides covering
a wide range of notions of similarity, these works employ a number of filters and index tables to reduce
the comparison space, thus achieving significant performance gains.

However, the above approaches are largely ad-hoc, which complicates their integration with appli-
cation programs. For example, enabling similarity operations over a string field on the application
side requires creation and maintenance of several auxiliary tables on the database side. As a di-
rect consequence, the well-known “impedance mismatch” problem [Cook and Ibrahim 2006], i.e., the
problem caused by differences between programming language abstractions and persistent storage, is
markedly exacerbated. The problem is much more severe when using similarity functions based on
statistics, because these statistics need to be propagated to the indexes after updates on the original
data [Koudas et al. 2007]. Moreover, similarity-aware database applications are likely to demand
support of a variety of similarity functions. Such applications are thus faced with the daunting task
of managing a huge number of indexes for each string attribute considered. We believe that these
issues significantly hinder the widespread adoption of declarative similarity matching by applications
beyond those for ad-hoc analysis over read-only data.

In this article, we present SimDataMapper, an architectural pattern to facilitate integration of
declarative similarity matching into object-oriented database applications. SimDataMapper provides
a general solution for loading in-memory objects based on similarity operations, while completely
isolating the application from all details of the underlying similarity matching processing. Figure 1
illustrates our proposal. Instead of directly maintaining a number of auxiliary tables, a similarity-
aware database application can delegate this task to the SimDataMapper. While our solution is based
on auxiliary tables as previous work, those tables are now hidden from application programs, which
can thus be greatly simplified. Furthermore, previous work used a different set of auxiliary tables
for each similarity function under consideration. In contrast, SimDataMapper uniformly supports
a variety of similarity functions using a common set of tables. In this context, additional index
tables can be flexibly created or dropped at any time based on the query/update ratio in the current
workload. We present an implementation of the SimDataMapper, which largely based on pure SQL.
As a result, we can flexibly express various notions of similarity in a declarative way and easily reuse
this implementation across different RDBMS platforms. We experimentally evaluate the performance
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of our proposal on real-world datasets obtained from a production database and a publicly available
repository and compare it with alternative approaches.

This article is an extended and revised version of an earlier conference paper [Schneider et al. 2015].
As part of the new material, we include support to similarity functions on unweighted sets and declara-
tive statements for updating auxiliary tables after modification on the source tables. Furthermore, we
provide a comprehensive set of new experiments covering several aspects not discussed in [Schneider
et al. 2015] and including a comparison with alternative approaches.

The rest of the article is organized as follows. In Section 2, we provide necessary background. In
Section 3, we present our architectural pattern and describe its implementation details. Performance
results are reported in Section 4. We discuss related work in Section 5, before we wrap up with the
conclusions in Section 6.

2. PRELIMINARIES
2.1 Mapping Strings to Sets

We map strings to sets of tokens using the popular concept of g-grams, i.e., substrings of length ¢
obtained by “sliding” a window over the characters of an input string s. We extend s by prefixing and
suffixing it with ¢ — 1 occurrences of a special character “$” not appearing in any string. Thus, all
characters of s participate in exact ¢ ¢g-grams. For example, the string “¢oken” can be mapped to the
set of 2-gram tokens {$t, to, ok, ke, en, n§}. As the result can be a multi-set, we append the symbol
of a sequential ordinal number to each occurrence of a token to convert multi-sets into sets, e.g, the
multi-set {a,b,b} is converted to {aol, bol, bo2}. Given a string s, we denote by Q, (s) its token set
of substrings with length g¢.

We associate a weight with each token to obtain weighted sets. A widely adopted weighting scheme
is the Inverse Document Frequency (IDF'), which associates a weight w (tk) with a token tk as follows:
w (tk)=In (N/df (tk)), where df (tk) is the document frequency, i.e., the number of strings a token tk
appears in a database of N strings. The intuition behind using IDF is that rare tokens are more
discriminative and thus more important for similarity assessment. The weight of a set =, denoted by
w (), is given by weight summation of its tokens, i.e., w(x) = >, ., w(tk). Note that we obtain
unweighted sets by simply associating the value of 1 to each token; in such case, we have w (z) = |z|.
For ease of notation, given a string s, we use simply w (s) instead of w (Qq (s)) to denote its weighted
(or unweighted) token set. Similarly, w (r Us) and w (r Ns) denotes, respectively, the union and
overlap of the tokens sets derived from strings r and s. Finally, |s| denotes the length of string s (i.e.,
number of characters).

2.2 Similarity Functions

We focus on two classes of similarity functions, namely, token-based and edit-based functions. The
reasons for this choice are threefold: token-based and edit-distance similarity functions 1) have been
extensively used in many database applications (e.g., [Chaudhuri et al. 2006; Koudas et al. 2007]),
2) can be declaratively expressed, and 3) share some common underlying principles that allow their
support in a unified way.

The key idea behind token-based similarity functions is that most of the tokens derived from two
significantly similar strings should agree accordingly. Thus, the token sets of these strings would have
a large overlap, which, in turn, results in a high similarity value. Popular token-based similarity
functions are defined as follows.

Definition 2.1. Let r and s be two strings. We have:
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—Jaccard similarity: J (r,s) = ZE:G?;
—Dice similarity: D (r,s) = %
w(rns)

—Cosine similarity: C (r,s) =

Vw(r)yxw(s)

Note that the above definitions as well as following definitions in Section 2.4 uniformly apply for un-
weighted and weighted sets. Accordingly, we refer to token-based similarity functions on (un)weighted
sets as (un)weighted similarity functions. Such distinction is nevertheless omitted whenever unimpor-
tant for the discussion.

EXAMPLE 2.1. Consider two strings r and s and their corresponding weighted token sets
w(r) ={(e, 9).(b, 7).(d, 7).(e, 7),(h, 5),(i, 5)} and
w(s) :{<a’: 10>’<c7 9>;<b) 7>}<d1 7>¢<e7 7>:<f: 5>’<h7 5>}

Note the token-weight association (tk,w (tk)), where tokens are represented by single characters.

Then, we have J (r,s) = mgﬁ ~ 0.64; D (r,s) =2 x % ~ 0.78; and C (r,s) = \/% ~0.79.

The dual notion of similarity is distance that quantifies the degree to which two entities are “differ-
ent” or “far away”. A popular distance measure is the edit distance, which is defined by the minimum
number of character-editing operations to make two strings equal [Navarro 2001]. Often, similarity
and distance values can be easily converted into one another.

Definition 2.2. Let r and s be two strings. We have:

—FEdit distance: ED (r,s) is the least number of operations (i.e, character insertion, deletion, and
substitution) to transform r into s.

o . o _ 1 __ _ED(rs)

Edit similarity: ES (r,s) =1 Taz(rh]sD

EXAMPLE 2.2. Consider the strings r =“oen” and s =“token”. Then, we have ED (r,s) = 1,
obtained by inserting the character “k” into r, and ES (r,s) =1 — % =0.8.

2.3 Similarity Selection and Join

We are now ready to define similarity selection and join queries.

Definition 2.3 Similarity Selection. Given a table T with a string attribute T.A, a query string s,
a similarity function Sim, and a threshold 7, retrieve all tuples ¢ € T such that Sim (t.A,s) > 7.

Definition 2.4 Similarity Join. Given two tables T7 and T3 with string attributes 77.4; and 1.4,
respectively, a similarity function Sim, and a threshold 7, retrieve all pairs tuples (t1,t2) € T1 X Ts
such that Sim (t1.4;,t2.4;) > 7.

The Similarity Selection and Join can be easily expressed in SQL using UDFs. For example, consider
a UDF Sim (r, s, 7) implementing a similarity function and returning true if the similarity of the string
arguments r and s according to the similarity function is not less than 7. Thus, given a query string
s, a Similarity Selection can be declaratively performed as follows (the adaption of the query below
to Similarity Join is obvious):

SELECT T.tid

FROM T
WHERE Sim (T'A, s, T)

Journal of Information and Data Management, Vol. 7, No. 3, December 2016.



Bridging Database Applications and Declarative Similarity Matching . 221

Table I. Overlap and size bounds.

Function 0 (r,s) \ [min (r) , maz (r)] \
Jaccard W [7 % w (), 0]
Cosine 7w () X w (s) [ xw(r), 2P

ED maz (|r|,[s]) —1—(r—1) X ¢q (Ir| =7 Ir| +7]

ES maz (|r],[s]) =1 = ((1 = 7) x maz (|r],[s])) x ¢ (Ir] x 7 |r| x (2= 7)]

2.4  Filtering Techniques

A nailve approach, solely based on UDFs, would evaluate the similarity operations in the previous
section by computing the similarity function for all input tuples. Obviously, the computational cost
of this strategy is prohibitively high for large tables, particularly for joins where the time complexity
would be quadratic in the size of the input tables. Next, we present filtering techniques that can
substantially reduce the comparison space.

2.4.1  Owerlap and Size Bounds. All similarity functions considered are closely related to the over-
lap measure between the token sets derived from the two input strings. For token-based similarity
functions, such connection is straightforward: predicates involving these functions can often be equiv-
alently represented in terms of an overlap bound [Chaudhuri et al. 2006]. Formally, the overlap bound
between token sets derived from strings r and s, denoted by O (r, s), is a function that maps a threshold
7 and the token set weights to a real value, s.t. sim (r,s) > 7 iff w (rNs) > O (r,s)".

Similarity operations using token-based functions can be reduced to the problem of identifying pairs
r and s whose overlap of the corresponding token sets is not less than O (r, s). For edit-based functions,
we can employ overlap bound to prune string pairs that cannot satisfy the similarity predicate, since
it can be shown that if ED (r,s) < 7, then Q4 (r) N Q4 (s) > O (r,s) [Gravano et al. 2001]. Table I
shows the overlap bounds of the previous functions.

Further, similar strings have, in general, roughly similar sizes. (Here, we loosely use the term size to
refer to both token set weights and string length; the former is used on token-based functions, whereas
the latter on edit-based ones.) We can derive bounds for immediate pruning of candidate pairs whose
sizes differ enough [Sarawagi and Kirpal 2004|. Formally, the size bounds of r, denoted by min (r)
and maz (r), are functions that map 7 and w (r) or |r| to a real value s.t. Vs, where s is a string, if
sim (r,s) > 7, then min (r) < w (s) < mazx (r).

Given a string r, we can safely ignore all strings whose sizes do not fall within the interval
[min (r), max (r)]. Table I shows size bounds of all similarity functions considered in this article.

2.4.2 Prefix Filtering. We can prune a large share of the comparison space by exploiting the
prefix filtering principle [Sarawagi and Kirpal 2004; Chaudhuri et al. 2006]. Prefixes allow selecting
or discarding candidate pairs by examining only a fraction of the original sets. First, fix a global
ordering O; tokens of all sets are then sorted according to this ordering. A set ' C x is a prefix of
x if 2’ contains the first |z’| tokens of . Further, prefs (x) is the shortest prefix of x, the weights of
whose tokens add up to more than 5. The prefix filtering principle is formally defined as follows.

1For ease of notation, the parameter 7 is omitted in the functions defined in this section.
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Fig. 2. The SimDataMapper architectural pattern.

Definition 2.5 Prefiz Filtering Principle. Let r and s be two strings and « be an overlap threshold.
If w(rNs) > «, then prefs, (1) Nprefs, (r) # @, where 5, = w (r) —a and 85 = w (s) — a, respectively.

Note that prefix overlap is a condition necessary, but not sufficient to satisfy the original overlap
constraint: an additional verification must be performed on the candidate pairs. Finally, the number of
candidates can be reduced by using document frequency ordering, Oqy, as global token order to obtain
sets ordered by increasing token frequency in the database. The idea is to minimize the number of
sets agreeing on prefix elements and, in turn, candidate pairs by shifting lower frequency tokens to
the prefix positions.

EXAMPLE 2.3. Consider again the weighted sets w (r) and w (s) in Example 2.1 and assume that
both sets are already sorted. For the Jaccard similarity and 7 = 0.6, we have O (r,s) = 33.75,
[min (r), maz (r)] = [24,66.7], [min (s), maz (s)] = [30,83.3], prefs, (r) = (¢, 9) and prefs, (s)={(a,
10),(c, 9}, for B, = Bs = O(r,s).

3. THE SIMDATAMAPPER PATTERN
3.1 General Overview

The SimDataMapper pattern is essentially a specialization of the well-known Data Mapper pattern
[Fowler 2003| and, as such, inherits its fundamental features. Basically, it is a layer of software that
insulates in-memory domain objects and the database from each other and handles the data transfer
between them. SimDataMapper extends the Data Mapper pattern with the support of retrieval op-
erations based on similarity matching on string attributes, while transparently handling modification
operations on these attributes. Figure 2 illustrates the SimDataMapper pattern and its interfaces for
Create, Retrieve, Update, and Delete (CRUD) operations and administrative tasks.

The method enableSim takes the specification of a string-valued attribute T.A of table T as input
and creates a token table based on the values in this attribute; also, a number of index tables are
created depending on the selected processing stage using the setStage method. Higher stages imply
more index tables being used to support processing of similarity queries. The administrative operations
are depicted in Figure 3(a). Afterwards, one or more application objects whose corresponding class is
mapped to T can be loaded by invoking a special find method, which results in a similarity selection
query against the corresponding auxiliary tables (i.e., token and index tables). Figure 3(b) illustrates
the similarity operations within SimDataMapper over original and auxiliary tables.

Similarity matching requires adaption of all CRUD operations. For Retrieve operations, find
methods take a query string s, a threshold, and a similarity function identifier as input. Figure 4(a)
shows a sequence diagram capturing the behavior of such operations. Besides similarity selections,
Retrieve also comprises similarity joins, in which case auxiliary tables for all attributes involved in
the join condition must be available. Further, Update operations affecting T.A as well as any Create
and Delete operations translate into updates to the auxiliary tables. Figure 4(b) shows a general
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Fig. 3. Details of the SimDataMapper methods.
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(a) Sequence diagram for retrieving. (b) Sequence diagram for modification.
Fig. 4. Sequence diagrams for CRUD operations based on similarity matching.

sequence diagram for those modification operations. In the modify method, either 0ldObj or newObj
can be null for Create and Delete operations, respectively, or none of them for Update operations.
Finally, SimDataMapper pattern acts as a regular Data Mapper for Retrieve operations based on
exact matching or Update not involving any attribute considered for similarity matching.

3.2 Implementation Details

The integration of similarity matching functionality into a database mapping layer can be realized in
different ways. In our implementation, procedural code is used to generate token sets from strings and
calculate the edit distance between two strings. All other operations are performed using standard,
declarative SQL statements.

3.2.1 Creation of Auxiliary Tables. For simplicity, consider a simple table T(tid, A), where tid
is the key attribute of T and A is a string-valued attribute. Given T.A as input, the method enableSim
creates the token table TTokens(tid, token), where for each tuple ¢ of T, the ¢-grams in Q, (t.4)
are represented as a separated tuple associated with t.tid (recall Figure 3(a)) —the population of
TTokens can be accelerated by using bulk loading functionality available in virtually all RDBMSs.
The token table represents a “common ground” to the declarative specification of all similarity functions
considered in Section 2.2. The storage overhead of TTokens is moderated for reasonable values of ¢
[Gravano et al. 2001]. Formally, the storage size of TTokens, denoted by S (T'Tokens), is given by:

S (TTokens) =n(q—1)(g+C) + (g +C) >_ [t;.Al,

j=1
where n is the number of tuples in T, g the g-gram size, and C the size of the attribute T.tid.

We can further identify a clear staged evaluation strategy for weighted token-based similarity func-
tions, which lends itself to the definition of index tables to improve query performance. Figure 5
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Stage 1 Stage 2 Stage 3
INSERT INTO TDF (token, df) INSERT INTO TTokenDF (tid, token, df) INSERT INTO TSetWeight (tid, sw)
SELECT token, COUNT (%) SELECT TT.tid, TT.token, TDF.df SELECT TR.tid, (LOG (TS.N)*TR.s1-TR.s2)
FROM TTokens FROM TTokens TT, TDF FROM TRawSetWeight TR, TSize TS
GROUPBY token WHERE TT.token=TDF.token
(a) Table storing df values for each token. (c) Table storing token and df values for each tuple. (e) Table storing set weight values.
Stage 4
INSERT INTO TSize (N) INSERT INTO TRawSetWeight (tid, sl, s2) INSERT INTO TWeights (tid, token, sw)
SELECT COUNT(*) SELECT tid, COUNT (), SUM (LOG (df)) SELECT TT.tid, TT.token, TW.sw
FROM T FROM TTokenDF FROM TTokens TT, TSetWeight TW
GROUPBY tid WHERE TT.tid=TW.tid
(b) Table storing the number of tuples in T. (d) Table storing terms for set weight calculation. (f) Table storing token and set weight values.

Fig. 5. SQL statements to enable similarity matching on table T.

illustrates several index tables organized into 4 stages—tables T and TTokens constitute the Stage 0.
In this context, the tables at Stage 1 help to calculate token weights: TDF (token, df) (Figure 5(a))
associates each token with its df value, whereas TSize (N) (Figure 5(b)) is a dummy table storing the
number of tuples of T. On the other extreme, we have table TWeights(tid, token, sw) at Stage
4 (Figure 5(f)), where sw represents the token set weight. We do not need to store token weights,
because they are calculated at query processing time, as we will see shortly.

While the TWeights table speeds up query evaluation, its maintenance can slow down update
queries. In fact, TWeights would need to be recreated anew after any insertion or deletion on T
because the weight of token sets change with the number of tuples of T. To mitigate this problem, we
follow the approach of Koudas et al. [2007], where new terms independent of the number tuples of the
original table were defined for the vector length —the similarity function considered by Koudas et al.
[2007] is the Cosine similarity in the vector space model. We adapt this strategy to our context by
rewriting the token set weight formula as follows:

w(z) = Z w (tk)

tkex
=" log (N) — log (df (tk))
tkex
=1log(N) > 1= log (df (tk))
tkex tkex
= log (N) x |z| = Y log (df (tk)).
thkEx

We can define Stage 2 containing two tables: TTokenDF (tid, token, df) (Figure 5(c)), which is
simply the join result between TTToken and TDF, and TRawSetWeight (tid, s1, s2) (Figure 5(d)),
where s1 represents |z| and s2 represents ), .. log (df (tk)) in the above formula; the attribute s1
can also be used for evaluation of unweighted similarity functions. From Stage 2, we can easily define
Stage 3 containing the table TRawSetWeight (tid, sw) (Figure 5(e)), which associates each tid with
the corresponding token set weight. We end up with a variety of alternative processing stages: higher
stages favor query processing, whereas lower stages favor updates. Applications can flexibly specify
the best stage to the query-update ratio of an anticipated workload using the setStage method. The
storage overhead of index table TDF is within a constant factor of the number of distinct tokens (TSize
is negligible) and the index tables in Stages 2—4 are within a constant factor of either S (T Tokens)
(TTokenDF and TWeights) or the number of tuples in T (TRawSetWeight and TSetWeight).
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INSERT INTO sCards (tid, token, sc) INSERT INTO STokenIDF (tid, token, tw)
SELECT ST.tid, ST.token, SC.card SELECT ST.tid, ST.token, LOG (TS.N/TDF.df)
FROM STokens ST, (SELECT COUNT (*) card FROM Stokens) SC [ FROM STokens ST, TTokenDF TDF, TSize TS
WHERE ST.token = TDF.token
(a) Search table population for unweighted similarity functions. UNION ALL
SELECT ST.tid, ST.token, LOG (TS.N)

SELECT  TT.tid, SC.tid FROM STokens ST, TSize TS
FROM TTokens TT, TRawSetWeight TR, Scards SC WHERE  ST.token NOTIN (SELECT token FROM TTokenDF)
WHERE TT.token=SC.token AND TT.tid=TR.tid AND

TR.sl >=(SC.card*t) AND TR.sl <=(SC.card/T) INSERT INTO Sweights (tid, token, tw, sw)
GROUPBY TT.tid, SC.tid, TR.sl, SC.card SELECT SI.tid, SI.token, SI.tw, SW.sw
HAVING COUNT (*) = (t/(14 1) *(TR.s1 + SC.card) FROM STokenIDF ST, (SELECT SUM (tw)sw FROM STokenIDF) SW
(b) Query for unweighted Jaccard. (c) Search table population for weighted similarity functions.
SELECT TT.tid, S.tid SELECT TD.tid, S.tid
FROM TTokens TT, TRawSetWeight TR, TSize TS, SWeights S FROM TTokens TT, TSetWeight TW, SWeights S
WHERE TT.token=S.token AND TT.tid=TR.tid AND WHERE TT.token=S.token AND TT.tid=TW.tid AND

(LOG (TS.N)* TR.s1-TR.s2) >=(S.swxT) AND TW.sw>=(S.swxT) AND TW.sw<=(S.sw /1)

(LOG (TS.N)*TR.s1-TR.s2)<=(S.sw/T) GROUPBY TT.tid, S.tid, TW.sw, S.sw
GROUPBY TT.tid, S.tid, TR.sl, TR.s2, TS.N, S.sw HAVING SUM (S.sw) >=(t/(1+ 1)) * (IW.sw+S.sw)
HAVING SUM (s.tw)2(t/(1+ 1)) *((LOG (TS.N)*TR.s1-TR.s2) +S.sw)
(d) Query for weighted Jaccard at Stage 2. (e) Query for weighted Jaccard at Stage 3.
SELECT T.tid, S.tid SELECT T.tid, S.tid
FROM TWeights T, SWeights S FROM T, TTokens TT, S, STokens ST
WHERE T.token = S.token AND T.sw>=(S.sw+1) AND WHERE TT.token=ST.token AND T.tid = TT.tid AND

T.sw<=(S.sw/T) S.tid=ST.tid AND ABS (LEN(T.A)-LEN (5.2))<=T
GROUPBY T.tid, S.tid, T.sw, S.sw GROUPBY T.tid, T.A, S.tid, S.A
HAVING  SUM(T.tw) 2 (t/(1+ 1)) *(T.sw+S.sw) HAVING COUNT () >=LEN (T.2) -1- (t-1) *\g AND

COUNT (#) >=LEN (5.2) -1~ (1-1) *xg AND ED(T.A, S.A, 1)

() Query for weighted Jaccard at Stage 4. (g) Query for edit distance.

Fig. 6. SQL statements for similarity selection.

3.2.2  Similarity Selection Evaluation. Similarity selections are evaluated by first populating the
table Stokens with the token set generated from the query string. Stokens is then used to create a
search table that is matched against the auxiliary tables derived from table T. For unweighted similarity
functions, the search table is SCards (sid, token, sc), where the attribute sc stores the cardinality
of Stokens. Figure 6(a) shows the SQL query to populate Scards. The SQL query for unweighted
Jaccard is shown in Figure 6(b). Size bounds are checked in the WHERE clause and overlap bounds in
the HAVING clause. Adaption to other similarity functions is straightforward: one basically needs to
change the filters in the WHERE and HAVING clauses to the corresponding definitions shown in Table I.

For weighted similarity similarity functions, the search table SWeights(tid, token, tw, sw) is
created from the query string, where tw and sw represent the token weight and the token set weight, re-
spectively. Figure 6(c) shows the SQL query to populate SWeights. The intermediate table STokenIDF
is used to store the IDF weights of each token (the explicit creation of STokenIDF can be avoided
by using common table expressions). In the SQL expression for populating STokenIDF, tokens in the
query string not appearing in TTokens are treated as rare tokens with a df value of 1. This strategy
results in a decreased similarity value, because these tokens receive maximum IDF weight and will not
match with any token in the auxiliary tables. Of course, other strategies are possible, such as assigning
an average df value to these tokens. Figure 6(d) shows the SQL query for weighted Jaccard at Stage
2. Queries for Stages 3 and 4 are shown in Figures 6(e) and 6(f), respectively; the main difference
from Stage 2 is the simplified calculation of token and set weights. Finally, Figure 6(g) shows the SQL
query for edit distance. The tables involved are the original tables and the token tables—note that
the query string is represented by table S. Again, size and overlap bounds are checked in the WHERE
and HAVING clauses, respectively. The UDF ED is finally applied on the remaining string pairs that
survived the filter steps.
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Prefix table generation Summation table generation

INSERT INTO TlPrefix (tid, token)
INSERTINTO T1T2DF (tid, token)

SELECT tid, token :
FROM (SELECT TT.tid tid, TT.token token, TR.sl sc (RANK() OVER SELECT b.tid, SUM(b.df)
(PARTITION BY TT.tid ORDERBY TD.df ASC, TT.token)) as p | TROM ((SELECT » FROM TLDE)
UNION ALL

FROM T1Tokens TT, T1T2DF TD, T1lRawSetWeight TR
WHERE TT.tid = TFD.tid AND TT.tid = TR.tid) as P
WHERE p <= sc - CEIL(sc * 1) + 1

(SELECT * FROM T2DF)) as D
GROUPBY D.token
() Table storing unweighted Jaccard prefixes. (d) Table storing aggregated df values from two input tables.

INSERT INTO T1Prefix (tid, token)

SELECT tid, token INSERT INTO T1T2Size (N)

FROM (SELECT tid, token, sw, (SUM (tw) OVER SELECT TS1.N + TS2.N
(PARTITION BY tid ORDERBY tw DESC, token)-tw) p FROM T1Size TS1, T2Size TS2
FROM TlJoinWeights) P

WHERE p >= sw-(sw * T) (e) Table storing the total number of tuples in the two input tables .

(b) Table storing weighted Jaccard prefixes.

INSERTINTO T1Prefix (tid, token) Candidate generation

SELECT tid, token
FROM (SELECT TT.tid tid, TT.token token, (RANK() OVER
(PARTITION BY TT.tid ORDERBY TD.df ASC, TT.token)) p

CREATE VIEW CAND AS
SELECT DISTINCT P1.tid, P2.tid

FROM T1lPrefix P1l, T2Prefix P2
FROM T1Tokens TT, T1T2DF TD WHERE TT.tid = TFD.tid) P
WHERE P1l.token=P2.token
WHERE p <= Txq + 1
(c) Table storing edit distance prefixes. (f) View for candidate generation.

Fig. 7. SQL statements for similarity join.

3.2.3  Similarity Join Evaluation. In principle, similarity joins can be implemented using similar
queries as those for selections. However, only the filters based on size and overlap bounds are insuffi-
cient to deal with the high cost of joining two large tables. Thus, a more aggressive pruning approach
based on prefix filtering is needed. To this end, the following sequence of operations is executed: 1)
creation of summation tables; 2) creation of new auxiliary tables (if joining weighted sets); 3) creation
of prefiz tables; 4) generation of candidates; 5) similarity join evaluation over the candidates.

Summation tables store aggregated statistics from the two input tables. Table T1T2DF associates all
tokens in tables T1 and T2 with the corresponding df value; for tokens appearing in both tables, the
summation of each df value is stored (Figure 7(d)). For unweighted similarity functions, the new df
values determine the global token order for prefix creation. Note that we do not to create summation
tables for self-joins. For weighted similarity functions, we also need to derive new IDF weights for each
token and new set weights accordingly. First, the T1T2Size table is created, which stores the sum of
the input table sizes ((Figure 7(d)). Then, textttT1T2Size together with TIT2DF are used to create
the table TiJoinWeights(tid, token, tw, sw) for each input table. The queries for populating
TiJoinWeights are similar to the queries used to create the TWeights table (Figure 6).

The next step is the creation of the prefix tables storing only tokens in the prefix of each token set.
This step can be implemented in pure SQL using window functions. The SQL statements to create
prefix tables for unweighted Jaccard, weighted Jaccard, and edit distance, are respectively shown in
Figures 7(a-c). Previous implementations of prefix filtering in the RDBMS were either procedural
[Chaudhuri et al. 2006] or did not consider token weights [Xiao et al. 2011; Augsten et al. 2014].

After having created the prefix tables, pairs of tuples whose associated prefixes have at least a
token in common can be identified by a simple equi-join. This operation is illustrated by a simple
view definition in Figure 7(f). The similarity join is then performed using queries similar to those
used for selections (Figure 6), with additional join with the CAND view. All tables created for join
processing are deleted upon completion of the operation. Alternatively, if there is no intervening data
update, the TiJoinWeights table can be reused on subsequent similarity join evaluations; the prefix
tables can also be reused in such case for joins with the same or lower threshold values.
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--Stage 0 --Stage 0

INSERT INTO Ttokens (SELECT new_tid, token FROM NewTokens) ; DELETEFROM Ttokens WHERE tid = old_tid;
--Stage 1 --Stage 1

UPDATE TDF SET df = df + 1 UPDATE TDF SET df = df - 1

WHERE token IN (SELECT token FROM NewTokens) ; WHERE token IN (SELECT token FROM 0OldTokens) ;
INSERT INTO TDF DELETEFROM TDF WHERE df = 0;

SELECT token, 1 FROM NewTokens

WHERE token NOT IN (SELECT token FROM TDF) ; UPDATE 15ize SET N = N - 1;

--Stage 2

UPDATE Tsize SET N = N + 1;
DELETEFROM TTokenDF WHERE tid = old tid;

--Stage 2

INSERT INTO AffectedTids DELETE FROM TRawSetWeight WHERE tid = old_tid;
SELECT tid FROM TTokenDF

WHERE token IN (SELECT token FROM NewTokens) ; INSERT INTO AffectedTids

SELECT tid FROM TTokenDF
UPDATE TTokenD SET df = df + 1 WHERE token IN (SELECT token FROM OldTokens);

WHERE tid IN (SELECT token FROM AffectedTids);
UPDATE TTokenDF SET df = df - 1

UPDATE TRawSetWeight TR WHERE tid IN (SELECT tid FROM AffectedTids);

SET s2= (SELECT SUM (LOG (df)) FROM TTokenDF TD WHERETR.tid=TD.tid)
WHERE tid IN (SELECT token FROM AffectedTids); UPDATE TRawSetWeight TR
SET s2-(SELECT SUM (LOG (df)) FROM TTokenDF TD

WHERE TR.tid=TD.tid)
SELECT new_tid, token, df FROM TDF NATURALJOIN NewTokens; WHERE tid IN (SELECT tid FROM AffectedTids);

INSERT INTO TTokenDF

INSERT INTO TRawSetWeigt

SELECT tid, COUNT (*), SUM (LOG (df))FROM TTokenDF TD
WHERE tid = new_tid GROUPBY tid;

(a) Update of the auxiliary tables at Stage 2 after insertion (b) Update of the auxiliary tables at Stage 2 after deletion

Fig. 8. SQL statements for updating the auxiliary tables at Stage 2 after modification on the source table.

3.2.4  Auaziliary Table Updating. Figures 8(a) and 8(b) show the sequence of SQL statements for
updating the auxiliary tables at Stage 2 after Create and Delete operations, respectively. The state-
ments can be encapsulated into a stored procedure and easily extended to handle multiple insertions
and deletions. The token set generated from the inserted (deleted) string in the SimDataMapper is
stored in the temporary table NewTokens (0ldTokens). Alternatively, an array can be used to di-
rectly send the token set to the DBMS. Because insertion and deletion alter the value of TSize.N, the
auxiliary tables at Stage 3 and Stage 4 have to be created anew after these operations. It is possible
to trade accuracy for efficiency on modification operations by using techniques such as blocking and
thresholding to postpone the propagation of updates [Koudas et al. 2007]. The Update operation is
implemented using a combination of the SQL statements for insertion and deletion with the following
differences. The temporary tables NewTokens and 01dTokens store the difference between the token
sets generated from the new and old string values. No tuple needs to be inserted into or deleted from
table TRawSetToken. Finally, because the value of TSize.N is not modified, we do not need to recreate
the auxiliary tables at Stage 3 and Stage 4: only tuples related to tokens in NewTokens and 01dTokens
need to be updated (the ids of these tuples are stored in the temporary table AffectedTids.

4. EXPERIMENTS
4.1 Experimental Setup

We used two real world datasets: Medicine containing medicine names, which were obtained from a
production medical database and DBLP, containing author names of computer science publications
2, We initially extracted 20K strings from each dataset. The average string length is 10 characters for
Medicine and 14 for DBLP; owing to naming variations and misspellings, a large number of strings
in Medicine have similar content referring to a same medicine. We then doubled each dataset to 40K

2dblp.uni-trier.de/xml. Accessed January 19, 2016.
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by producing an erroneous copy of each string, i.e., a copy to which we applied 1-3 character-level
transformations (insertion, deletion, and substitution).

All datasets were stored in relational tables with schema composed of an integer identifier and the
string attribute. We built B-tree indexes on the identifier column of the source and the auxiliary tables
(Figure 5), but not on the temporary tables created for join processing (Figure 7). Index construction
time is not included in the results. We generated g-grams of size 3, which were hashed into four byte
values before being stored in the relational tables. We evaluated selection, join, and modification
operations, the latter formed by insertion and deletion operations. We generated the query workload
for selections and modifications by randomly selecting strings from the datasets —note that the query
workload contains both original strings and erroneous copies. We also used strings not present in any
dataset for insertions or to produce empty results for selections. Example of strings in the workload
for the DBLP dataset are “Robert Sedgewick”, “Gotz Greafe”’, and “no matching author”. For joins,
we generated another dataset containing only erroneous copies. We report the RDBMS processing
cost measured in average runtime over repeated executions. The time required to process application
objects was not considered in the measurements (of course, this time can significantly vary along
different applications). The default threshold and distance values are 0.7 and 1, respectively.

We ran our experiments on an Intel Xeon E3-1240 Quad-core, 3,3 GHz, 8MB CPU cache, and
8 GB of main memory. We used PostgreSQL 9.4 as RDBMS platform, with 2GB of main memory
allocated to shared buffers and 64MB allocated to each internal operation such as sorting and hashing.
SimDataMapper were implemented using Java JDK 8 (Oracle) and JDBC Driver version 4.

We compared our approach with two specialized implementations of string similarity matching
present in additional PostgreSQL modules, namely, fuzzystrmatch® and pg_trmg 4. The fuzzystrmatch
module provides an optimized edit distance implementation, which stops earlier as soon as is identified
that the two input strings cannot meet the distance constraint. We also used this implementation as
the ED UDF in the query statements for edit distance (see Figure 6(g)). The pg trmg module provides
an implementation of the Jaccard similarity based on $-grams (trigrams in their nomenclature). In
contrast to the method described in Section 2.1, pg _trmg eliminates repeated tokens, which results in
smaller token sets—on DBLP, the average token set sizes produced by SimDataMapper and pg_ trmg
are 16,17 and 14,72, respectively. Also, this method actually leads to a different notion of similarity.
For example, all strings matching the regular expression “aaa*” are considered as equal. The pg_trmg
module can be combined with inverted indexes for efficient processing. Here, we used GIN indexes?,
which favors query performance over updates and building time.

4.2  Performance Results for CRUD Operations

We first report performance results of SimDataMapper operations only; comparison with the alterna-
tive approaches is presented in the next section. In the experimental charts, unweighted Jaccard and
edit distance are abbreviated to UJ and ED, respectively. Weighted Jaccard includes the indication
of the processing stage; for example, W.J2 is the abbreviation to weighted Jaccard at Stage 2.

Figure 9 shows results for CRUD operations based on Jaccard and edit distance on both datasets.
All similarity selection queries took less than 100 milliseconds to complete on the Medical dataset
(Figure 9(a)), thereby providing truly interactive response times. As expected, performance increases
with the processing stage for weighted Jaccard. ED is faster than Jaccard, despite the higher cost of
the edit distance calculation, which indicates better effectiveness of the filters based on overlap and size
bounds. For modifications (Figure 9(b)), the results are just the opposite for weighted Jaccard: now
performance decreases at higher stages. Modification timing at Stage 4 is markedly higher owing to

3https:/ /www.postgresql.org/docs/9.4/static/fuzzystrmatch.html. Accessed May 13, 2016.
4https:/ /www.postgresql.org/docs/9.4/static/pgtrgm.html. Accessed May 13, 2016.
Shttps://www.postgresql.org/docs/9.4/static/gin-intro.html. Accessed May 13, 2016.
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Fig. 10. Query results for different token-based similarity functions on Medical and DBLP datasets.

the costly recreation of the TWeights table. Figure 9(c) shows the results for similarity joins. The time
of the actual join largely dominates the overall execution time. WJ is faster than UJ because prefixes
based on unweighted sets typically exhibit worse filtering effectiveness as compared to weighted ones
[Ribeiro and Harder 2011]. As for selections, ED is the best performing join operation. Figures 9(d)—
(f) show the results on the DBLP dataset. The trends are similar to those observed on the Medical
dataset; the timings are overall higher because strings in DBLP are larger in average size.

We note that the above results are significantly better than those previously presented by Schneider
et al. [2015]. We had reimplemented all algorithms and adjusted configuration settings, which led to
much better query execution plans. As a result, we obtained an order of magnitude (or more) better
performance for most operations. The main refinements have already been mentioned: simplification
of query statements (e.g., see Figure 6(f)), use of B-tree indexes, integer representation of g-grams,
adjusted memory settings, and optimized edit distance implementation.

Figures 10(a) and (a) plot the results for queries using different token-based similarity functions on
the Medical dataset. Unweighted (weighted) variants of Dice and Cosine are abbreviated to UD (WD)
and UC (WC), respectively. We considered only the weighted Jaccard (WJ) execution on Stage 2.
Differences are more prominent in the join results. Again, weighted variants perform better owing to
higher prefix filtering effectiveness on weighted sets. Similarly, Jaccard is faster than Dice and Cosine
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Fig. 11. Join results: varying threshold values, dataset sizes, and string lengths.

unweighted and weighted sets because its overlap and size bounds are tighter, which results in better
pruning power. Join results on DBLP exhibit similar trend (Figure 10(c)).

4.3 Comparison with Alternative Approaches and Scalability Experiments

We now compare SimDataMapper with implementations based on pg_ trgm and fuzzystrmatch (abbre-
viated to TRGM and FSM, respectively). We analyze performance with varying thresholds, dataset
sizes and string lengths; for the two latter, we used the default similarity and distance thresholds of 0.7
and 1, respectively. We focus on the heavier join operation to better distinguish intrinsic characteris-
tics of the algorithms under comparison. For TRGM, we built GIN indexes on both input tables and
the optimizer always chose an Indexed Nested Loop Join using one of them; FSM joins were executed
using regular Nested Loop Joins. In the charts, Ai indicates datasets containing strings formed by
the concatenation of ¢ author names. The resulting average string lengths of A2—-A5 are 30.17, 45.94,
61.55, and 77,08, respectively.

We first present results for joins based on Jaccard similarity. Figure 11(a) plots results with varying
threshold values. UJ and WJ are faster than TRGM at higher thresholds. The performance difference
decreases with the threshold and TRGM becomes the fastest for thresholds < 0.6. This result is
expected because the filtering techniques used by UJ and WJ exploit high thresholds. TRGM is
not base on such filters and, thus, its performance exhibits little variation across different threshold
values. Figure 11(b) shows the results on increasing dataset size. WJ is the fastest on all datasets,
whereas UJ is the slowest. Results on increasing string length are shown in Figure 11(c). WJ is still
faster than TRGM on dataset A2, but slower on the following datasets. In fact, the performance of
UJ and WJ severely degrades on larger strings; UJ took more than three hours to complete on A5
and we omit this result from the plot. The explanation lies in the underlying processing model based
on relational, unnested set representation. In particular for larger strings, this model provides less
scope for optimization as compared to the ones based on inverted indexes, thereby leading to slower
processing — the performance gap between the two models can be substantially narrowed by using
optimized merge join algorithms [Rae et al. 2014].

Our final set of experiments compares similarity joins based on edit distance. Figure 11(d) plots
results with varying distance threshold. Our ED operator is faster than FSM on all distances. Fil-
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tering is less effective at higher distance thresholds and the performance advantage of ED decreases
accordingly. With low distance threshold, ED is two order of magnitude faster than FSM on increasing
dataset sizes (Figure 11(e)) and string lengths (Figure 11(f)). Finally, we observe that both ED and
FSM scales well with the string length owing to the optimized edit distance implementation, which
avoids complete comparison between dissimilar strings.

5. RELATED WORK

In recent years, many different approaches have been proposed for string similarity matching, which
fall into three broad, mostly complementary, categories: 1) stand-alone algorithms; 2) integration with
query engines; and 3) declarative matching on top of query engines.

There is a large body of research on stand-alone, specialized algorithms for similarity selection and
join [Sarawagi and Kirpal 2004; Xiao et al. 2011; Ribeiro and Harder 2011]. Numerous techniques have
been proposed, including prefix- and size-based filters, specialized data structures based on inverted
lists, and many others.

Several proposals to integrate string similarity matching into query engines focus on the design of
new physical operators. The SSJoin operator is based on composing regular and similarity-specific
operators into query evaluation plans [Chaudhuri et al. 2006]; SSJoin supports the same class of
similarity functions considered in this article. The work of Augsten et al. [2014] defines a tokenizer
operator to allow evaluation of similarity queries without precomputed tokens and indexes—the idea
of using a tokenizer operator to enable on-the-fly evaluation first appeared in the context of XML
DBMSs [Ribeiro and Héarder 2007]. Tight coupling of such approaches with full-fledged RDBMSs
requires adaptions on all query optimizer components, including algebraic operators, cost models,
cardinality estimates, and index infrastructure. Thus, deep integration of similarity processing into
general-purpose RDBMSs remains a long-term research goal.

Declarative similarity matching through SQL statements permits readily use of existing RDBMS
machinery. Our work builds upon previous efforts in this area [Gravano et al. 2001; Gravano et al.
2003; Koudas et al. 2007]. But, instead of considering each similarity predicate in isolation, we focus
on identifying key data structures and operations and assembling them into an architectural pattern
to provide common support to a variety of similarity predicates.

In some sense, our work can be classified into a new category of approaches to string similarity
matching: 4) integration with object-oriented applications. Popular products offer a data mapping
layer to bridge object-oriented applications and relational databases, such as Hibernate and ADO.Net.
Declarative similarity matching is not directly supported by these solutions. Frameworks such as
Hibernate Search provide similarity matching capability to object domain models via integration with
full-text search engines. In such approaches, data resides in two different and independent systems,
i.e., an RDBMS and a search engine, and the corresponding data models need to be “glued together”
somehow at the application level. In contrast, our solution requires no support of specialized systems.

Finally, there is a long and fruitful line of research on similarity operations over image and other
complex data types (e.g., see [Bedo et al. 2014] and references therein). Most techniques developed
in this area are quite different from the ones considered here for string data. Integration of similarity
matching techniques for image and string data into a single framework is an interesting direction for
future research.

6. CONCLUSION
This article addressed the problem of bridging database applications and string similarity operations
on RDBMSs, which has received very little attention in the existing literature. We proposed the

SimDataMapper, an architectural pattern that facilitates the incorporation of similarity matching
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into database applications by isolating in-memory objects from details of similarity processing in the
RDBMS. A flexible and efficient implementation of SimDataMapper was presented, which supports a
rich variety of similarity functions and employs state-of-the-art optimization techniques. Our imple-
mentation is largely based on standard, declarative SQL statements and, thus, can be easily reused
across different RDBMs platforms.

The current article extends a prior conference paper [Schneider et al. 2015] by including support to
similarity functions on unweighted sets, detailed description of the strategy for handling modifications
on source tables, and a comprehensive set of new experiments covering several aspects not discussed
previously. In this context, we compared our approach with platform-specific solutions based on
customized implementations for particular similarity functions. The results showed that our imple-
mentation is efficient, often substantially faster than the custom implementations. For token-based
similarity functions, the cases where our approach was slower mostly involved lower threshold values
and large strings. The reasons are that the optimization techniques employed are less effective for low
thresholds and the current limitation of the underlying token-set representation and processing model
in dealing with large strings. For edit distance, our approach significantly outperformed the custom
implementation in all settings.

Future work is mainly oriented towards extending SimDataMapper to support complex similarity
operations involving multiple tables and attributes. We also plan to investigate cost models to improve
the quality of the evaluation plans picked by query optimizer and the use of more efficient physical
operators to increase overall performance on large strings.
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