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Abstract. Feature subset selection (FSS) is an important preprocessing step for the classification task, especially in
the case of datasets with high dimensionality, i.e., thousands of potentially predictive attributes. There is an extensive
literature on methods for performing FSS, but most of them do not apply to datasets with high dimensionality because of
the prohibitive computational cost. In this work, we propose a simple feature subset selection algorithm which is suitable
for datasets with high dimensionality. Our proposal is based on the execution of a constructive procedure followed
by a local search strategy, in just one iteration. We also evaluate a multi-iteration version of our algorithm (which
characterizes a GRASP implementation). The experiments were conducted over a variety of high-dimensional datasets,
showing that the proposed method can reach, in most cases, better accuracies – with a much lower computational cost
– than some well-known algorithms.

Categories and Subject Descriptors: I.5.2 [Pattern Recognition]: Feature evaluation and selection

Keywords: classification, feature selection, high-dimensional datasets

1. INTRODUCTION

One of the most studied and applied tasks in data mining is the classification task, which aims at
estimating the class of an instance based on the available set of attributes. One method to improve
the performance of the classification process is to perform a feature subset selection (FSS) procedure,
an important step in the data mining process, which aims at choosing a subset of attributes that can
represent the relevant information within the data, based on some criteria [Liu and Motoda 1998].
The use of this procedure is strongly recommended, especially if the dataset has a huge dimensionality,
because most of the data mining algorithms may require a large computational effort if a huge number
of attributes is used. The use of an FSS procedure can provide: (a) improvement in classification
performance, eliminating useless attributes and those that can deteriorate the results, (b) simpler
classification models, reducing the computational cost of executing these models and providing a
better understanding of the obtained results, and (c) smaller datasets to be handled.

Because of the exponential (2n) search space in terms of the number n of attributes, performing
FSS through exhaustive search is intractable. For this reason, several approximation strategies were
proposed to solve this problem. FSS algorithms are composed of a search method and a strategy to
evaluate the candidate solution [Liu and Yu 2005]. There are a number of different search strategies
such as ranker, sequential search, incremental search and meta-heuristics, which are reviewed in the
next section. The evaluation of candidates can be performed in two ways: the filter approach, which
uses a relevance measure to estimate the quality of attributes or sets of attributes, and the wrapper
approach, which estimates the merit of candidates by the accuracy values obtained using a classifier.
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This article is an extension of the work presented in [Tasca et al. 2015]. We propose a feature subset
selection algorithm – called Local Search Based (LSB) strategy – which combines a construction phase
followed by a local search, in only one iteration. Because of the reduced number of evaluations of
candidate solutions, this strategy is well-suited to high-dimensional datasets, where some of the most
popular FSS methods cannot be applied because of prohibitive computational costs. The information
gain of individual attributes is used in the first phase of LSB to produce a ranking of attributes. Based
on this ranking, an initial candidate solution is generated and, in the next step, its neighborhood is
explored in order to find better solutions.

We compare our algorithm with another FSS approaches developed to high-dimensional datasets
and we also evaluate a multi-iteration version of LSB (which characterizes a GRASP implementation)
aiming at verifying if a more deeply search through the search space could generate better quality
solutions.

This article is organized as follows: Section 2 presents previous work on FSS. Section 3 describes
some well-known feature subset selection algorithms that we compare experimentally with our proposal
in this work. Section 4 describes the proposed algorithm and a multi-iteration version of the basic
heuristic. In Section 5, the experiments conducted over nine datasets are shown, and an analysis of the
results is presented as follows: Subsection 5.1 shows an evaluation of LSB versus some WEKA baseline
algorithms; Subsection 5.2 presents a comparison between LSB and a GRASP-based algorithm for
FSS; and in Subsection 5.3 we evaluate the multi-iteration version of the proposed algorithm. Finally,
the conclusions from this work and some ideas for the future are discussed in Section 6.

2. PREVIOUS WORK ON FEATURE SELECTION

There are some different types of strategies in the literature which can be applied to the feature subset
selection purpose. Some of these types are described below.

Ranker approaches take into account the individual merit of attributes (with respect to their ca-
pacity of identifying the class) to create a ranking of attributes [Blum and Langley 1997; Guyon and
Elisseeff 2003]. The first k attributes of the resulting ranking are selected to compose the candidate
solution. These algorithms are very fast (linear complexity in terms of dataset dimensionality), but
because interactions between attributes are not considered, the quality of candidates may be degraded.
Moreover, it may be difficult to select an ideal value for k.

Sequential search algorithms are very simple: at each iteration, the inclusion/exclusion of each
attribute is evaluated and those that generate the highest improvement in the solution quality are
added/removed. Thus, the complexity of worst case is O(n2). The most common sequential strategies
are Sequential Forward Selection (SFS) – which starts with an empty solution and adds attributes
one by one – and Sequential Backward Selection (SBS) – which starts with all attributes and removes
one by one [Kittler 1978].

Incremental search strategies also add one attribute per iteration. However, these algorithms use
an initial ranking of the attributes, based on their individual merit. Thus, at each iteration, the
attribute at the top of the ranking is selected to be added in the candidate solution, and only this
new candidate is evaluated (O(n) complexity) [Ruiz et al. 2006; Bermejo et al. 2010].

Meta-heuristics like GRASP [Feo and Resende 1995; Resende and Ribeiro 2014], Tabu Search
[Glover and Laguna 1997], Genetic [Goldberg 1989] and Memetic algorithms [Moscato 2003] have
been used in the FSS context. For many optimization problems, meta-heuristic techniques have proved
to be very effective and feasible. However, their computational cost may be extremely high in the
context of high-dimensional datasets. Some FSS algorithms that employ meta-heuristic approaches
can be found in [Inza et al. 2000; Yusta 2009; Esseghir 2010]. Despite the good results achieved, those
approaches were applied to low-dimensional datasets (less than 100 attributes).
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Some of the most popular FSS methods cannot be applied to high-dimensional datasets because
of prohibitive computational costs. For example, for methods that are based on wrapper approaches,
which require execution of the classifier for each candidate evaluation, it may become infeasible to
execute a large number of evaluation steps.

In the last few years, some hybrid algorithms which combine filter and wrapper approaches have
been proposed with the idea of reducing the number of attributes before the wrapper evaluation. Some
of these approaches can be found in [Ruiz et al. 2006; Flores et al. 2008], which incrementally explore
the attributes by following the ranking obtained by a filter measure; [Gutlein et al. 2009], which apply
a wrapper sequential forward search but only over the first k attributes in the filter ranking; [Ruiz
et al. 2008; Bermejo et al. 2010], which use the filter -based ranking for a better organization of the
search process; [Bermejo et al. 2011], which present a GRASP with the main goal of speeding up
the FSS process, by reducing the number of wrapper evaluations to carry out; [Bermejo et al. 2014],
which propose to embed the classifier into the FSS algorithm instead of using it as a black-box only
for evaluating the candidate solutions; and [Moshki et al. 2015], which propose a GRASP with an
extended version of a simulated annealing algorithm for local search. Our strategy also follows a filter-
wrapper approach in the sense that we use a filter in the constructive phase (to rank the attributes
and than proceed a pruning on the original list) and we use the wrapper strategy to evaluate the
candidate solutions (both in construction phase and in the local search).

3. BASELINE FSS ALGORITHMS EMPLOYED IN THE EXPERIMENTS

WEKA (Waikato Environment for Knowledge Analysis) [Hall et al. 2009] is a powerful open-source
Java-based machine learning workbench. Among the techniques available within WEKA, we selected
four feature subset selection algorithms to make a comparison with LSB: GreedyStepwise (GS), Best-
First (BF), LinearForwardSelection (LF) and SubsetSizeForwardSelection (SS). The aim of the first
experiment is to compare LSB with some well-known available algorithms for feature selection.

The greedy hill climbing search strategy considers local changes to the current feature subset. Often,
a local change is simply the addition or deletion of a single feature from the subset. GreedyStepwise is
an algorithm that performs a greedy forward/backward search through the space of attribute subsets.
It may start with no/all attributes or from an arbitrary point in the space. It stops when the
addition/deletion of any remaining attributes results in a decrease in evaluation [Hall et al. 2009].

Best-first [Ginsberg 1994; Russell and Norvig 2003] searches the space of attribute subsets by
greedy hill-climbing augmented with a backtracking facility. The idea is to select the most promising
candidate generated that has not already been expanded. The backtracking level is controlled by a
parameter which defines the number of non-improving candidates allowed. Best-first may start with
the empty set of attributes and search forward, or start with the full set of attributes and search
backward. It is also possible to start at any point and search in both directions (by considering all
possible single attribute additions and deletions at a given point).

In the classical Sequential Forward Selection approach, the number of evaluations grows quadrat-
ically with the number of attributes: the number of evaluations in each step is equal to the number
of remaining attributes that are not in the currently selected subset. This quadratic growth can be
problematic for datasets with a large number of attributes. Trying to mitigate this problem, Gutlein
et al. [2009] propose a technique to reduce the number of attribute expansions in each forward se-
lection step: the LinearForwardSelection, which is an extension of BestFirst. In this proposal, they
limit the number of attributes that are considered in each step so that it does not exceed a certain
user-specified constant. This drastically reduces the number of evaluations, and therefore improves
the runtime performance of the algorithm.

SubsetSizeForwardSelection is an extension of LinearForwardSelection. The algorithm determines
the subset size to be reached in forward selection to combat overfitting, where the search is forced
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to stop at a precomputed subset size. The search performs an internal cross-validation (seed and
number of folds can be specified). A LinearForwardSelection is performed on each fold to determine
the optimal subset size m (using the given SubsetSizeEvaluator). Finally, a LinearForwardSelection
up tom is performed on the whole data. In [Gutlein et al. 2009], they show that this technique reduces
subset size while maintaining comparable accuracy with the LinearForwardSelection approach.

In [Bermejo et al. 2011], they propose a stochastic algorithm based on the GRASP meta-heuristic,
with the main goal of speeding up the feature subset selection process, basically by reducing the
number of wrapper evaluations to carry out. The algorithm is a filter-wrapper approach, since in the
initialization they use the Symmetrical Uncertainty measure to make a ranking of the attributes and
in constructive phase this ranking is pruned so that only a fixed number of attributes are considered in
the next steps. They maintain a set (NDS) of the best solutions found during each search performed
in the constructive phase and create a pool with the attributes contained in this set. This way, the
local search step will be limited to the use of only attributes contained in this set, which presents a
much lower cardinality than the original set of attributes.

4. THE PROPOSED ALGORITHM

The proposed heuristic – Local Search Based (LSB) – is a combination of a construction procedure
and a local search. As initialization, two steps are performed: (i) the list of attributes E from the
dataset is ranked by an individual relevance measure and (ii) the generated ranking is pruned so that
only the first k attributes from the ranking (represented by R) are considered in the next phases. The
value of k is defined by a parameter p which represents the percentage of attributes from E that will
be considered. This pruning step is important in the context of high-dimensional datasets, because
the evaluation of the whole set of attributes may be impracticable.

The construction phase produces a viable solution S from the pruned ranking R. S is represented
by a vector S[i], 1 ≤ i ≤ |R|, where if S[i]=0, it means that the i-th attribute from R does not belong
to S; on the other hand, if S[i]=1, the i-th attribute belongs to the solution S. Then the local search
phase tries to improve the quality of S by searching for better neighbors in the N(S) neighborhood.
This combination of construction plus local search is executed only once and the final solution is the
best neighbor found in the local search procedure. Pseudocode of LSB is presented in Figure 1.

In line 01, a ranking E′ of the attributes from E is generated. The measure used to evaluate the
individual attributes was Information Gain [Quinlan 1993], since it is a well-known measure in the
context of feature selection. In line 02, the number k of attributes that will be considered for the
algorithm is calculated as p% of the total number of attributes in the dataset. Line 03 represents the
pruning step. R is composed of the first k attributes from E′. This step speeds up the algorithm since
a reduced number of attributes (k) are considered in the constructive and local search phases.

In line 04, S is initialized with the empty subset. The loop represented in lines 06 to 15 performs
the construction of a solution by traversing all the elements of R.

In line 07, a restricted candidate list (RCL) is generated. The RCL is a list of attributes whose
fitness belongs to the range [max − α ∗ (max − min),max], where min and max are the lowest
and highest fitness values from R, respectively, and α is a parameter in the real interval [0,1] which
controls the size of this restricted list. In line 08, one attribute e is randomly selected from RCL to
be incorporated, in line 09, into the current solution S. In line 10, the current solution is evaluated
by a wrapper strategy, using the Naive Bayes classifier, with internal 5-fold cross-validation.

In lines 11 to 13, the fitness of the new solution S′ is compared to the fitness of S. If S′ outperforms
S, it becomes the current solution S. The last step of the iteration is presented in line 14, when the
evaluated attribute e is removed from R.

In the local search procedure, lines 16 to 24, the solution S generated by the constructive phase
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procedure LSB(E, dataset, p, α)
//Initialization
01. E′ ← ranking of attributes from E;
02. k ← |E|*p/100;
03. R← first k attributes from E′ //(pruning step);
//Constructive phase
04. S ← φ;
05. f(S)← 0;
06. while R <> φ do
07. Generates RCL from R based on α;
08. e← randomly selected attribute from RCL;
09. S′ ← S∪{e};
10. f(S′)← fitness of solution S′;
11. if f(S′) > f(S) then
12. S ← S′;
13. end if ;
14. R← R−{e};
15. end while;
//Local search phase
16. do
17. LS-improvement ← false;
18. for each Si ∈ N(S) do
19. if f(Si) > f(S) then
20. S ← Si;
21. LS-improvement ← true;
22. end if
23. end for
24. while LS-improvement is true;
25. return S;

Fig. 1. Pseudo-code of the proposed feature subset selection heuristic

is taken as starting point. A complete iteration of the local search tries to find the best neighbor
Si ∈ N(S) which outperforms S. A new iteration is performed by taking the best neighbor S′′ better
than S as the current solution S. The neighborhood N(S) used is made up of all the n subsets
{S1,S2,...Sn}, n=|R|, where the i-th bit Si[i], 1 ≤ i ≤ n, is inverted. In other words, if S[i]=0, then
Si[i]=1 and vice versa. This type of neighborhood takes into account insertions (when S[i] is inverted
from 0 to 1) and removals (when S[i] is inverted from 1 to 0) of attributes in S. When none of the
neighbors Si ∈ N(S) outperforms f(S), the local search ends and the LSB returns, in line 25, the
best-fitness solution found.

IS ONE ITERATION ENOUGH?

In order to explore the search space more broadly, we evaluated an extension of the LSB strategy,
called LSB-Nx, which represents the execution of the LSB iteration x times. LSB-Nx is a GRASP-
based strategy, since the execution of a construction phase followed by a local search a number of
times characterizes the GRASP meta-heuristic [Feo and Resende 1995; Resende and Ribeiro 2014].

The idea of this extension is based on the random aspect of LSB. By running many iterations of the
algorithm, the strategy has the opportunity to generate different solutions in the constructive phase,
which represent different starting points for the local search. In this case, the final solution returned
by the algorithm is the best solution found among the x iterations.

5. EXPERIMENTS AND RESULTS

The datasets used in the experiments were obtained from public repositories and have hundreds or
thousands of attributes. Table I presents these datasets showing their dimensionality and the number
of instances. Datasets are split in 10 folds to enable an external 10-fold cross-validation. Thus,
accuracy values for each experiment represent the average of 10 executions of the algorithm for the
same dataset.
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Table I. High-dimensional datasets used in the experiments
Dataset # of attributes # of instances Dataset # of attributes # of instances
Leukemia 7130 72 Dexter 19999 600
Dlbcl 4027 47 Lung 12534 181
Lymphoma 4027 96 Prostate 12600 136
Madelon 500 2600 Gisette 5000 6000
Colon 2001 62

Since LSB uses a random function during the constructive phase to select an attribute from the
RCL, it is important to define an initial seed value for its execution. We conducted 10 independent
executions of each experiment, with 10 different initial seeds. Thus, the presented values in the next
sections represent the average of 10 independent executions on each dataset, each of them using a
10-fold cross-validation.

We proceeded some experiments to calibrate the α and p parameters. Initially, we evaluated the p
parameter, which is responsible to define the pruning phase. We tried the values 2, 5, 10, and 20% for
p. The last value presented an extremely high computational cost in some cases, so it was considered
prohibitive to be applied in high-dimensional datasets. We considered the algorithm without the
pruning phase as the baseline version of this analysis. Thus, for each p value, we compared the
computational cost and the accuracy values regarding the baseline version. Obviously, the lower the
number of attributes considered for the algorithm, the lower the computational cost. But the aim of
this analysis was to verify if the pruning would not compromise the quality of the generated solutions.
We performed a ranking which compares the three evaluated p values, for each dataset, and the best
results regarding accuracy values were obtained with the value 5% for p.

Regarding the α parameter, we tried the following values: 0 (totally greedy behavior), 0.1, 0.2,
0.3, and 1.0 (totally random behavior). The first and last values were used just to analyze how the
algorithm would behave totally greedy or random. Computational cost and accuracy values generated
by each version were compared in the same way as we did for the p parameter, and the best results
were obtained with the value 0.2 for α. The complete results and analysis of these experiments can
be found in [Tasca 2015].

5.1 LSB versus WEKA Baseline Algorithms

We experimented different parameter combinations for each algorithm selected from the WEKA tool.
The combination with the best performance (regarding the solution quality) for each one was used
in the comparison with LSB. For GreedyStepwise (GS), BestFirst (BF) and LinearForwardSelection
(LF) algorithms, the best accuracy values were obtained with the default parameters from WEKA.
For SubsetSizeForwardSelection (SS), the best accuracies were obtained when we performed a ranking
using the wrapper with Naive Bayes and considered 100 attributes from this ranking.

At first, we analyzed the accuracy values obtained with the Naive Bayes (NB) classifier [Duda et al.
2001], by submitting the subset selected by each FSS algorithm. NB is a probabilistic classifier based
on the assumption of conditional independence among the predictive attributes given the class. In
spite of this hard independence assumption, NB is a competitive classifier, working quite well in many
classification tasks [Fang 2013]. We have chosen Naive Bayes because we would like to compare our
algorithm with other proposals in the literature, which also used it.

Table II presents the accuracy values obtained in this experiment. Values in brackets represent the
position in the ranking that compares the five algorithms, for each dataset. The best accuracy value
in each line is marked in bold. The last row in the table presents the sum of the ranking positions
(SRP ) for each strategy. Considering that position 1.0 represents the best accuracy for the given
dataset and position 5.0 represents the worst result, the optimum value for SRP would be 9.0 (when
the algorithm is at the top of the ranking for all datasets) and the worst value would be 45.0 (when
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Table II. Accuracy values obtained by each evaluated algorithm (using NB Classifier)
Datasets GS BF LF SS LSB
Leukemia 88.57 (4.5) 88.57 (4.5) 91.61 (2.0) 90.00 (3.0) 95.94 (1.0)
Dlbcl 77.50 (5.0) 80.00 (4.0) 88.00 (2.5) 88.00 (2.5) 89.50 (1.0)
Lymphoma 79.11 (2.0) 78.00 (3.0) 74.89 (4.0) 70.67 (5.0) 80.25 (1.0)
Madelon 61.27 (2.0) 61.19 (4.0) 60.12 (5.0) 61.23 (3.0) 61.41 (1.0)
Colon 80.48 (4.5) 80.48 (4.5) 83.81 (1.0) 83.81 (2.0) 82.62 (3.0)
Dexter 81.33 (5.0) 81.67 (4.0) 84.33 (3.0) 85.17 (2.0) 88.69 (1.0)
Lung 94.53 (4.5) 94.53 (4.5) 97.25 (2.0) 95.58 (3.0) 99.13 (1.0)
Prostate 70.55 (5.0) 71.92 (3.0) 73.46 (2.0) 70.60 (4.0) 81.07 (1.0)
Gisette 93.83 (1.0) 93.80 (2.0) 88.25 (5.0) 89.03 (4.0) 92.33 (3.0)
Sum of Ranking Positions (SRP ) 33.50 33.50 26.50 28.50 13.00

the algorithm gets the fifth position for all datasets). LSB presented the best behavior among the
evaluated algorithms, as it obtained the lowest SRP .

To analyze if the results are statistically significant, we applied the non-parametric Friedman test
[Friedman 1937], which enables a multi-algorithm multi-dataset comparison. The null-hypothesis for
the Friedman test is that there are no differences between the algorithms. If the null-hypothesis is
rejected, we can conclude that at least two of the algorithms are significantly different from each
other, and the Nemenyi post-hoc test can be applied to identify these differences [Demšar 2006].
According to the Nemenyi test, the performances of both algorithms are significantly different if their
corresponding average of ranking positions has a difference of at least a determined critical value.

Obtaining a p-value equal to 0.0336, the Friedman test execution rejected the null-hypothesis with
a significance level of 5%, so the Nemenyi test was performed (critical value=1.5634) and detected
a significant difference between LSB and GS and also between LSB and BF, which shows that LSB
outperformed those algorithms with statistical significance.

We also ranked the computational costs of the strategies based on the CPU time. Table III presents
the values obtained (in minutes) and the sum of the ranking positions for each evaluated strategy.
LSB also obtained the best result regarding computational time. Considering the nine datasets, LSB
obtained the first position for seven of them, taking the shortest CPU time to perform the FSS.

With respect to the size of selected subsets, LSB proved to be very effective in reducing the datasets’
dimensionality, in the same manner as the other evaluated algorithms. The subsets selected by the
LSB represent, on average, 0.43% of all attributes. GS, BF, LF and SS generated, respectively,
solutions with an average size of 0.28%, 0.37%, 0.49% and 0.19% of all attributes.

We also validated LSB using the Random Forest (RF) classifier rather than Naive Bayes to evaluate
the subsets generated by the FSS algorithms. Because of the Law of Large Numbers, RF tends not
to overfit and it is considered an effective tool in prediction [Breiman 2001]. We used the default
parameters from WEKA to execute this classifier.

Table III. CPU time obtained by each evaluated algorithm (using NB Classifier)
Datasets GS BF LF SS LSB
Leukemia 1.419 (4.0) 2.722 (5.0) 0.344 (3.0) 0.306 (2.0) 0.037 (1.0)
Dlbcl 0.615 (4.0) 1.149 (5.0) 0.134 (2.0) 0.140 (3.0) 0.015 (1.0)
Lymphoma 3.881 (4.0) 7.925 (5.0) 0.298 (2.0) 0.542 (3.0) 0.249 (1.0)
Madelon 2.085 (4.0) 7.911 (5.0) 1.232 (3.0) 0.939 (2.0) 0.074 (1.0)
Colon 0.392 (4.0) 1.184 (5.0) 0.075 (2.0) 0.081 (3.0) 0.017 (1.0)
Dexter 267.951 (4.0) 431.58 (5.0) 3.260 (1.0) 4.119 (2.0) 4.941 (3.0)
Lung 3.647 (4.0) 8.905 (5.0) 1.149 (3.0) 0.982 (2.0) 0.146 (1.0)
Prostate 10.726 (4.0) 28.604 (5.0) 1.036 (2.0) 1.044 (3.0) 0.500 (1.0)
Gisette 504.668 (4.0) 808.300 (5.0) 3.575 (2.0) 3.243 (1.0) 13.286 (3.0)
Sum of Ranking Positions (SRP ) 36.00 45.00 20.00 21.00 13.00
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Table IV. Accuracy, AUC and F-Measure values obtained by each evaluated algorithm (using RF classifier)
Datasets Acc AUC F-Measure

LF SS LSB LF SS LSB LF SS LSB
Leukemia 88.75 (3) 90.00 (2) 92.28 (1) 97.50 (1) 95.00 (3) 95.40 (2) 88.14 (3) 89.50 (2) 91.49 (1)
Dlbcl 91.00 (1) 86.00 (3) 89.38 (2) 97.50 (1) 95.83 (2) 92.50 (3) 89.33 (1) 84.00 (3) 89.12 (2)
Lymphoma 82.33 (3) 83.44 (2) 84.56 (1) 95.91 (2) 95.91 (3) 97.88 (1) 78.73 (3) 78.86 (2) 79.48 (1)
Madelon 83.62 (3) 85.77 (2) 88.05 (1) 91.66 (3) 93.25 (2) 94.54 (1) 83.60 (3) 85.76 (2) 88.16 (1)
Colon 77.38 (2) 70.95 (3) 80.60 (1) 81.67 (2) 76.25 (3) 83.18 (1) 76.96 (2) 70.29 (3) 80.10 (1)
Dexter 92.67 (1) 89.33 (3) 92.14 (2) 96.64 (2) 94.59 (3) 97.40 (1) 92.66 (1) 89.29 (3) 92.13 (2)
Lung 97.78 (2) 96.11 (3) 98.63 (1) 97.78 (2) 97.44 (3) 99.98 (1) 97.76 (2) 96.03 (3) 98.55 (1)
Prostate 89.18 (2) 86.10 (3) 91.61 (1) 94.85 (2) 94.11 (3) 96.07 (1) 89.09 (2) 86.05 (3) 91.61 (1)
(SRP ) 17 21 10 15 22 11 17 21 10

Besides accuracy values, we computed also other measures available in WEKA tool (Weighted
Average AUC and F-Measure [Powers 2011]) to compare the evaluated approaches, since simple clas-
sification accuracy is a limited metric for measuring performance [Provost and Fawcett 1997]. For
the sake of simplicity, we selected the two baseline algorithms from WEKA which presented the best
results in the previous experiments, i.e., LF and SS.

Table IV shows the accuracy, AUC and F-Measure values obtained from each evaluated algorithm
using RF classifier. As we presented in the previous experiments, values in brackets represent the
position in the ranking that compares the three algorithms, for each dataset. Each measure (Acc,
AUC and F-Measure) has its individually ranking. As we can observe, LSB obtained the lowest sum
of ranking positions (SRP) for all the three measures.

In order to analyze if the results are statistically significant, we applied the Friedman test obtaining
p-value equal to 0.02075 for Acc, 0.03020 for AUC and 0.02075 for F-Measure. The Friedman test
rejected the null-hypothesis in all cases with significance level of 5%. In this way, Nemenyi test was
performed (critical value=1.6567) and it detected a significant difference between SS and LSB, so we
can conclude that LSB outperforms SS with statistical significance. Regarding computational time,
we can see in Table V that LSB presented a much lower computational cost in the majority of the
available datasets.

5.2 LSB versus HC*

Besides the algorithms from the WEKA tool, we also compared our proposal with the GRASP pre-
sented in [Bermejo et al. 2011], identified as HC*. This strategy was compared in the referred work
to the state-of-the-art feature subset selection algorithms, and the results show that this proposal is
competitive both in accuracy and in cardinality of the selected subset in important algorithms, but
requires significantly less computational cost.

At first, we analyzed the accuracy values obtained from the Naive Bayes classifier, considering
the selected subset obtained by each evaluated algorithm (LSB and HC*). Accuracy values of HC*

Table V. CPU time obtained by each evaluated algorithm (using RF Classifier)
Datasets LF SS LSB
Leukemia 26.485 24.139 2.037
Dlbcl 11.055 9.532 0.861
Lymphoma 35.968 32.339 5.868
Madelon 227.499 282.760 31.188
Colon 8.657 7.188 0.990
Dexter 101.866 93.347 200.490
Lung 110.005 99.713 7.725
Prostate 91.279 77.867 13.662
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Table VI. Comparison between HC* and LSB
Acc # of wrapper evaluations

Datasets HC* LSB HC* LSB % of LSB with respect to HC*
Leukemia 92.64 95.94 5472.00 1513.60 28%
Dlbcl 86.17 89.50 5206.10 890.30 17%
Lymphoma 74.90 80.25 5608.60 1467.20 26%
Madelon 60.85 61.41 5076.80 205.90 4%
Colon 81.13 82.62 5065.20 509.80 10%
Dexter 83.47 88.69 5543.20 7063.00 127%
Lung 95.69 99.13 5940.10 2585.20 44%
Prostate 77.87 81.07 5252.40 6825.90 130%
Gisette 93.06 92.33 7206.20 6767.50 94%

were obtained from [Bermejo et al. 2011], because the source code of HC* was not available and we
could not execute it under the same conditions as LSB. The experiment for the LSB algorithm was
performed using the same datasets and the same 10 folds than those used in [Bermejo et al. 2011].
Table VI shows the results for the two evaluated algorithms over the nine datasets. The best accuracy
value in each line is marked in bold.

To analyze if the results are statistically significant, we applied the Wilcoxon test [Wilcoxon 1945],
which is a non-parametric test used to determine whether two dependent groups of data are different.
The null-hypothesis for the Wilcoxon test is that the two groups of data are not different. Based on
the W statistic, which is calculated from the data, we determine whether to accept or reject the null-
hypothesis. The Wilcoxon test execution for the evaluated algorithms rejected the null-hypothesis,
because the critical W for 5% level is 6, and the W statistic obtained was 2. This means that LSB
outperforms HC* with statistical significance.

The comparison between LSB and HC* in terms of computational cost was made through the
number of wrapper evaluations, because we could not run the HC*, for the reason mentioned before,
to register the CPU time for both algorithms under the same conditions. We know that the highest
cost step in both algorithms is the wrapper evaluation. So algorithms which execute fewer wrapper
evaluations have, consequently, lower computational cost.

LSB presents lower computational cost (in terms of number of wrapper evaluations) in seven out
of nine datasets. For Dexter and Prostate datasets, HC* was faster. The reason for the different
behavior is related to the pruning step. Both of them are based on an initial ranking and only the
first k attributes are considered in the construction and local search phases. However, HC* considers a
fixed number (100), no matter the dataset dimensionality. But LSB uses a percentage of attributes, set
as 5% for these experiments. Thus, since Dexter and Prostate datasets have a very high dimensionality
(19999 and 12600 attributes, respectively), the number of candidates to be evaluated for LSB was much
higher than for HC* algorithm.

With respect to the size of the selected subsets, both of the strategies showed to be very effective
to reduce the datasets dimensionality. HC* generated solutions with an average size of 0.26% of all
attributes while LSB produced solutions with an average size of 0.43%, as we mentioned before.

5.3 LSB-Nx

We also evaluated different values for the x parameter in the LSB-Nx: 1 (which corresponds to the
LSB strategy), 2, 5, 10, 30, and 50. Table VII presents the comparison of these executions. In
the first column, the datasets are identified. The column labeled as LSB-N1 shows the accuracy
values obtained with only one iteration. This strategy was defined as the baseline of the experiment.
The remaining columns present the accuracy values (Acc%) obtained with different values of x and
the percentage difference (Diff%) of the respective strategy regarding the accuracy obtained by the
baseline algorithm. For Leukemia dataset, for example, the LSB-N2 represents an accuracy reduction
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Table VII. Accuracy values obtained by the LSB-Nx algorithm
LSB-N1 LSB-N2 LSB-N5 LSB-N10 LSB-N30 LSB-N50

Datasets Acc% Acc% Diff% Acc% Diff% Acc% Diff% Acc% Diff% Acc% Diff%
Leukemia 94.89 93.07 -1.92 93.39 -1.58 93.39 -1.58 93.39 -1.58 94.46 -0.45
Dlbcl 88.20 84.60 -4.08 83.80 -4.99 83.40 -5.44 83.40 -5.44 83.33 -5.52
Lymphoma 80.47 80.13 -0.42 80.60 0.17 81.02 0.69 81.24 0.96 80.18 -0.35
Madelon 60.86 59.96 -1.48 60.02 -1.39 60.26 -0.99 60.24 -1.01 60.26 -0.99
Colon 80.52 79.52 -1.24 80.14 -0.47 81.09 0.71 80.43 -0.12 78.09 -3.02
Dexter 87.92 87.84 -0.09 88.17 0.28 88.21 0.33 90.21 2.61 88.31 0.45
Lung 98.57 96.91 -1.68 96.59 -2.01 96.59 -2.01 96.59 -2.01 96.70 -1.90
Prostate 79.85 82.70 3.57 81.63 2.23 82.37 3.17 84.93 6.37 84.94 6.38
Gisette 92.21 92.32 0.12 92.60 0.42 92.65 0.47 92.44 0.25 92.83 0.67
Mean Diff% -0.80 -0.82 -0.52 0.00 -0.53

of 1.92% regarding LSB-N1. For Prostate dataset, the LSB-N2 represents an accuracy increase of
3.57% regarding the baseline.

In contradiction to what would be expected, the execution of more LSB more iterations did not
improve the quality of solutions for all datasets. When some heuristic is executed iteratively, better
solutions found replace previous ones. Thus, we expect that the quality of the final solution from
an experiment with several iterations is at least the same as the solution produced by an experiment
with only one iteration. However, in the context of FSS, it is possible to observe different behaviors
in the results obtained from the training and the test datasets. The FSS algorithm searches for the
best feature subset that maximizes the accuracy, taking into consideration the training dataset. When
the subset solution is defined, the final accuracy reported in the experiment is calculated in the test
dataset. So, when several iterations are executed in the training dataset, it is possible to observe an
improvement in terms of solution quality. But when the subset solution is submitted to the classifier
using the test dataset, the generated accuracy may be worse than that generated in the training
dataset. For this reason, it is possible that increasing the number of iterations does not improve the
quality of solutions. In the training dataset, we could observe this expected quality improvement in
all datasets. But since this quality improvement did not occur in the test dataset for all databases,
we will analyze them separately.

Colon, Leukemia, Dlbcl and Lymphoma datasets have a small number of instances (62, 72, 47, and
96, respectively). When these datasets are split into 10 folds to enable cross-validation, each fold
in test dataset is very small (less than 10 instances). Thus, when the prediction for one instance is
incorrect, this mistake represents a significant percentage of the final accuracy. For this reason, if, by
chance, the classifier misses more predictions when considering the solutions generated by the LSB-Nx
with x > 1, the accuracy values will be worse than the values generated by LSB-N1. This fact makes
it seems that increasing x does not contribute to the improvement in solutions quality. However, in
the training datasets this improvement can be observed for the mentioned datasets.

In spite of the fact that Madelon dataset has many instances (2600), it has 500 attributes and, as
we perform a 5% pruning, only 25 attributes are considered by the feature subset selection algorithm.
This reduced number of attributes limits the search space, which does not cause quality improvement
when several iterations are executed.

Lung and Prostate datasets have 181 and 136 instances, respectively, and about 12500 attributes
both. Lung dataset does not present improvement in solutions quality because the quality obtained
with only one iteration is already very high (it reaches accuracy of 100% is some folds). Therefore,
it would not be recommended to perform several iterations of LSB for this dataset. Prostate dataset
does not reach very high accuracies with one iteration and, since it has many attributes, we can see
an improvement in the solution quality when we increase the number of iterations.

Dexter and Gisette datasets have a high number of attributes (19999 and 5000, respectively) and
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many instances (600 and 6000). For these datasets we can see a quality solution improvement when
more than one iteration are performed.

The computational cost of performing many iterations of LSB is very high. LSB-N2, for example,
takes on average 87.50% more time than LSB-N1 to generate a feature subset solution. LSB-N5,
LSB-N10, LSB-N30 and LSB-N50 take on average 310.82, 702.85, 2575.47 and 4815.83% more time
than LSB-N1, respectively.

As we observed previously, the gain in terms of solution quality is short for most of datasets. In this
way, the decision of performing a broader search depends on the dataset properties and how crucial
is the matter of computational time for executing the algorithm. In the data mining context, where
FSS is usually a preprocessing step, it may be worth to wait during an extra time to obtain better
quality solutions.

6. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we proposed a feature subset selection algorithm, based on a simple combination of
a construction procedure and a local search phase. Our focus is on the context of high-dimensional
datasets, since the most popular FSS methods are not suitable for this context, especially if the
method of evaluating candidates is based on wrapper approaches. Our proposal aims at simplicity
and efficiency, generating solutions which produce good accuracies and reducing significantly the
number of attributes in the dataset, with a low computational cost.

We have compared LSB with some important FSS algorithms available in WEKA over nine high-
dimensional datasets, using two different classifiers. A comparative study between our algorithm and
the one proposed in [Bermejo et al. 2011] was also presented. Results showed that LSB is a very
competitive proposal. It produces, in most cases, better accuracies with a lower computational cost.

A variation of LSB algorithm was evaluated. The new version, called LSB-Nx, corresponds to
the execution of the LSB iteration x times, which characterizes the GRASP meta-heuristic. Results
showed that increasing the number of iterations does not necessarily increase the quality of solutions
in the context of FSS. It depends on the characteristics of the dataset.

For future work, one idea is to investigate some modifications in the LSB strategy, like changing the
relevance measure for generating the initial ranking of attributes and trying different neighborhood
strategies for the local search. Another idea is to perform experiments with other classifiers in addition
to Naive Bayes and Random Forest. We also consider important to compare LSB with some recent
approaches, like the one proposed in [Moshki et al. 2015], which uses the simulated annealing strategy
for the local search.

Besides the evaluation of specific variations, new challenges are emerging in the FSS area. The
concept of high dimensionality itself is also changing with datasets containing trillions of attributes
being used nowadays [Bolón-Canedo et al. 2015].
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