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Abstract. An effective approach for learning Bayesian network structures is to perform a local search on the space of
topological orderings, followed by a systematic search of compatible parent sets. Typically, the local search is initialized
with an ordering generated uniformly at random. This can lead to poor local optima, slow down convergence and hurt
the performance of the method. In this work we develop two informed heuristics for generating initial solutions to
order-based structure learning. Both heuristics rely on the solution of a relaxed version of the problem in which cycles
are permitted. The heuristics remove less relevant arcs of the relaxed solution in order to produce a directed acyclic
graph, which is then used to produce topological orderings. Experiments with a large collection of real-world data sets
demonstrate that our heuristics increase the quality of the solutions found with a negligible overhead.

Categories and Subject Descriptors: I.2.6 [Artificial Intelligence]: Learning

Keywords: Bayesian Networks, Model Selection, Local Search, Parent Set Selection

1. INTRODUCTION

Bayesian Networks are space-efficient representations of multivariate probability distributions [Pearl
1988]. They are defined by two components: an acyclic directed graph (DAG) encoding the inde-
pendences among the variables, and a collection of local conditional probability distributions for each
variable given its parents.

Manually specifying a Bayesian network is a difficult task, and practitioners often resort to learning
the model from data, that is, to inferring a DAG and the necessary conditional probabilities from a
dataset of observations. Bayesian network learning is usually decomposed into two steps: first a DAG
is obtained (structure learning), and then the numerical parameters (i.e., the conditional probabilities)
are estimated for a fixed DAG (parameter learning). In this work, we focus on structure learning with
complete data (i.e., the dataset does not contain missing or corrupted values).

A common approach to structure learning consists in associating every DAG with a polynomial-time
computable score value, and optimizing over the space of DAGs [Cooper and Dietterich 1992; Lam and
Bacchus 1994; Margaritis 2003; Tessyer and Koller 2005]. Typical score functions reward DAGs with
high probability of generating the dataset (i.e., the data likelihood) while penalizing the complexity
of the model (i.e., the number of parameters). Some examples are the Bayesian Information Criterion
(BIC) [Schwarz 1978], the Akaike Information Criterion (AIC) [Akaike 1974], Minimum Description
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Length (MDL) [Suzuki 1996] and the Bayesian Dirichlet score (BD) [Heckerman et al. 1995]. An
alternative approach is to learn the DAG by performing multiple conditional independence tests while
enforcing acyclicity [Spirtes and Meek 1995; Cheng et al. 2002]. Although both approaches are con-
sistent (for common score functions) in that they recover the “true” DAG (if one exists) given infinite
data and computational resources, testing for independence can be computationally demanding, is
highly sensitive to the significance level used, and often generates many false correlations; this last
problem is particularly important in small-sample or high-dimensional datasets [Heckerman et al.
1999]. There are also hybrid approaches that employ statistical testing to generate good initial solu-
tions for a score-based approach [Tsamardinos et al. 2006]. This hybrid approach alleviates the false
positive problem at an increased computational cost.

Chickering [1996] showed that score-based structure learning is NP-hard for a wide class of score
functions. This result was later strengthened to show NP-hardness for large-sample domains [Chick-
ering et al. 2004]. Note that the latter includes the case of hybrid learning methods. Those results
support the development of approximate methods that can scale for large domains.

There is vast literature on combinatorial optimization techniques to solve structure learning. The
most successful approaches include integer- and constraint-programming [Bartlett and Cussens 2015],
systematic search [de Campos and Ji 2011; Yuan and Malone 2013], and evolutionary algorithms
[Larranaga et al. 1996; Larranaga et al. 2013]. While these approaches generate high quality solutions,
they are computationally expensive in time and memory requirements.

An effective approach to structure learning in large domains is to perform a local search, for ex-
ample, in the space of DAG structures or score-equivalent graphs [Friedman et al. 1999; Chickering
2002]. Based on a common observation that score-based structure learning decomposes into smaller
independent problems when a topological ordering is imposed [Buntine 1991], Tessyer and Koller
[2005] developed a local search method that continues to be the state-of-the-art in structure learning
for large domains [Scanagatta et al. 2015]. The method performs a 1-neighborhood local search in
the space of topological orderings, where two orderings are neighbors if they differ in at most one
position.

As with most local search approaches, a good initialization of order-based structure learning is
crucial to the quality of the solution found. Typically, the search is initialized with an ordering
sampled uniformly at random. While this allows good coverage of the search space, it can lead to
poor local optimal and slow down convergence. Although this issue can be alleviated by employing
more sophisticate techniques for escaping local optima [Glover 1989; Granville et al. 1994; Elidan
et al. 2002], this usually adds a significant computational overhead, and reduces scalability. An
alternative, less demanding remedy is to initialize the search in high-scoring regions.

In this work we develop two new initialization heuristics for order-based Bayesian network structure
learning with complete data. The heuristics rely on the (cyclic) graph obtained as the solution of the
relaxed version of the problem where cycles are permitted. The first heuristic generates orderings by
performing a depth-first traversal of that graph, adopting the in-degree of children as tie breaking
criterion. Although this heuristic biases the search away from regions which may be sub-optimal, it
ignores important information available at the score of the relaxed solution. Our second heuristic
refines the first one by selecting high scoring orderings among the ones that are consistent with
the relaxed version solution. We do this by reducing the problem to a minimum-cost feedback arc
set problem, which is the problem of transforming a weighted cyclic directed graph into a DAG by
removing the minimum weight of edges [Demetrescu and Finocchi 2003]. Experiments with real-world
high-dimensional datasets show that our heuristics improve the quality of state-of-the-art order-based
local search at an almost negligible additional computational cost, even when the relaxed problem is
solved only approximately.

This work extends our previous work on initialization heuristics [Perez and Mauá 2015] with an
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improved variant of the first heuristic, and a deeper empirical analysis that includes more and larger
datasets and an investigation of the effects of approximately solving the relaxed problem.

The rest of this document is structured as follows: we begin in Section 2 explaining the basic concepts
of score-based Bayesian network structure learning. Then in Section 3 we describe the methods for
parent set selection, which is a necessary sub-step of local search approaches. Order-based structure
learning is reviewed in Section 4. In Section 5 we describe our heuristics for generating initial solutions.
Section 6 contains the experimental results. Finally, in Section 7, we state some conclusions of the
main results and a discussion on future work.

2. LEARNING BAYESIAN NETWORKS

A Bayesian network specification contains a DAG G = (V,E), where V = {X1, X2, . . . , Xn} is the
set of (categorical) random variables, and a collection of conditional probability distributions P (Xi |
PaGi ), i = 1, . . . , n, where PaGi are the parents ofXi inG and P (Xi|∅) = P (Xi). The Bayesian network
is assumed to induce a joint probability distribution over all the variables through the equation

P (X1, . . . , Xn) =

n∏
i=1

P (Xi | PaGi ) ,

The number of parameters required to specify a Bayesian network with DAG G is size(G) =
∑n
i=1(ri−

1)
∏
Xj∈PaGi

rj , where rk denotes the number of states variable Xk can assume.

A score function sc(G) assigns a real-value to any DAG G indicating its goodness in representing
a given dataset.1 For example, the BIC score function (which we use in our experiments), is given by

BIC(G) = LL(G)− logN

2
size(G),

where LL(G) =
∑n
i=1

∑
k

∑
j Nijk log

Nijk

Nij
is the data loglikelihood, Nijk the number of instances

where variable Xi takes its kth value and its parents take the jth configuration (for some arbitrary
fixed ordering of the configurations of the parents’ values), and similarly for Nij . We require that
the score function be decomposable, meaning that it can be written as sc(G) =

∑n
i=1 sci(Pa

G
i ). Most

score functions used, including BIC, are decomposable [Chickering and Meek 2002].

Given a score function, the score-based Bayesian network structure learning problem is to find an
optimal DAG G∗ such that

sc(G∗) = max
<

n∑
i=1

max
Y∈{Xj<Xi}

sci(Y) , (1)

where the first optimization is performed over complete orderings < of the variables. The constraint
that parents of a variable be strictly smaller than a variable in a given ordering ensures the graph is
a DAG.

The structure learning problem is usually performed in two steps: first, an exact or approximate
technique is used to obtain a list of candidate parent sets Ci for each variable Xi (parent set selection);
then, these candidate parent sets are used to search for a graph G̃ such that

sc(G̃) = max
<

n∑
i=1

max
Y∈C<

i

sci(Y) , (2)

1The dependence of the scoring function on the dataset is left implicitly, as for most of this explanation we can assume
a fixed dataset. We assume here that the dataset contains no missing values.
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Fig. 1: Parental graph of a variable X with respect to domain X,Y, Z,W .

where C<
i = {S ∈ Ci | ∀Xj ∈ S,Xj < Xi} are the parent sets in Ci consistent with the order <. The

quality of the learned structure depends on the quality of both steps [Yuan and Malone 2013; Bartlett
and Cussens 2015; Scanagatta et al. 2015].

Under the BIC and MDL score functions, the best parent set of any variable has at most logN
variables (where N is the size of the dataset) [de Campos and Ji 2011]. Thus, parent set selection can
be solved in time O(n1+logN ). This naive approach however is impractical even for moderately large
domains and datasets [Scanagatta et al. 2015]. Koivisto [2006] showed that finding the best parent
set of a variable is LOGSNP-hard even to approximate for the MDL, BIC and AIC score functions.2

3. PARENT SET SELECTION

The theoretical hardness of parent set selection justifies the use of approximate techniques. We now
review the two most commonly used procedures for selecting parents sets (sequential selection and
greedy selection), as well as a recently developed procedure by Scanagatta et al. [2015].

These techniques can all be seen as heuristic search in the parental graph (lattice diagram) of
a variable Xi, which is the graph where each node is a subset of V \ {Xi}, and an arc connects a
subset/nodeY to a subset/node Z if Z = Y∪{Xi} for some variableXi [Yuan and Malone 2013]. Each
node X in the parental graph of Xi is associated with a score sci(X). Figure 1 depicts the parental
graph of variable X in a small domain containing variables X,Y, Z,W . Note that the parental graph of
an n-dimensional domain has 2n−1 nodes; thus, exhaustive search is impracticable for large domains.

Algorithm 1 shows a pseudo-code for a general search procedure on the parental graph. The
functions hi and gi denote the heuristic and actual score of a parent set; open is a list of parent sets
to be explored sorted by the values hi(Y), and closed is a list of parent sets already explored (those
for which gi(Y) has been computed). The techniques differ in terms of the initialization of open and
closed (line 1), and in the definitions of hi and gi.

3.1 Sequential Selection

Sequential Selection is adopted by the state-of-the-art exact learning algorithms [Yuan and Malone
2013; Bartlett and Cussens 2015]. This technique consists in performing a breadth-first search in the
parental graph up to a given depth k. The list closed is initialized empty, and open is initialized
containing the empty set (hence not empty). The function gi is set as the local score function sci, and
hi(Y) = −|Y|. Pruning rules can be applied to detect suboptimal paths while conducting the search
[de Campos and Ji 2011]. The worst-case running time of the procedure is O(nk). Sequential selection

2The class LOGSNP contains problems that are believed to exhibit runtime O(slog s), where s is the size of the input,
yet are thought not be NP-hard (note that (n1+logN ) is sub-exponential).
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Algorithm 1: Parent Set Selection
Input : Variable Xi, domain V \ {Xi}
Output: Score cache closed

1 Initialize closed and open
2 while open is not empty do
3 Find Y ← argmaxY∈open hi(Y)
4 for Xj ∈ V \ {Xi} do
5 if Y ∪ {Xj} is not in open and closed then
6 Calculate hi(Y ∪ {Xj})
7 Add Y ∪ {Xj} to open
8 end
9 end

10 Calculate gi(Y)
11 Remove Y from open
12 Add Y to closed
13 end

is optimal given a sufficiently large k; however, when working with large datasets (e.g., n > 100), it
is necessary to set k to low values (e.g. k = 2), which can severely hurt the quality of the produced
parent sets [Bartlett and Cussens 2015].

3.2 Greedy Selection

A faster approach is to perform a greedy search that selects the best node to expand at each iteration
[Cooper and Dietterich 1992]. This is accomplished by setting hi = gi = sci as the local score
function, and defining open and closed as before. The algorithm can in fact be made simpler as it
is unnecessary to store the values of gi for explored nodes. The time efficiency of this method often
comes at a decreased quality of the parent sets found.

3.3 Independence Selection

Independence selection attempts at improving the quality of the parent sets without compromising
much the time efficiency [Scanagatta et al. 2015]. The technique can be seen as an A∗ search with
an inadmissible heuristic. The heuristic function is the BIC∗i defined as:

BIC∗i (Y,Z) = BICi(Y) + BICi(Z) + interi(Y,Z) , (3)

whereY and Z are two non-empty disjoint sets of variables and interi(Y,Z) = logN
2 (ri−1)(

∏
Xj∈Y rj+∏

Xj∈Z rj −
∏
Xj∈Y∪Z rj − 1) − BICi(∅). This approximate scoring function can be calculated in

constant time (i.e., O(1) complexity) if BICi(Y) and BICi(Z) are cached. Additionally, the local
score BICi can also be efficiently computed from the BIC∗i scores as

BICi(Y ∪ Z) = BIC∗i (Y,Z) +N · Ii(Y,Z), (4)

where Ii is the Interaction Information estimated from data.

The approach uses hi(Y ∪ Z) = BIC∗i (Y,Z) and gi(Y) = BICi(Y). The list closed is initialized
containing all the parent sets with cardinality at most one (including the empty set), and open is
initialized with all the parent sets of cardinality two.

Since the scores are calculated for increasingly larger parent set sizes, pruning rules can be used to
detect unnecessary computations [de Campos and Ji 2011]; also the BIC∗i are available from cached
scores at each iteration, and BICi score values can be obtained efficiently by computing Ii(Y,Z).

Journal of Information and Data Management, Vol. 7, No. 2, August 2016.



186 · W. Perez and D. D. Mauá

4. ORDER-BASED STRUCTURE LEARNING

As discussed in the introduction, local-search in the space of orderings continues to be one of the
most competitive approximate methods for structure learning with high-dimensional datasets. The
method described in Algorithm 2 receives a list of candidate sets with their pre-computed scores and
performs a search over the space of orderings < represented as a list of variables L. The search starts
with an initial ordering (line 1), and, for a maximum number of iterations K, attempts to improve
the incumbent solution by exchanging two adjacent variables in L (this is the neighborhood of the
search space). The score of an ordering is the maximum value of the score of a DAG consistent with
the ordering and the candidate parent sets selected:

sc(L) =

n∑
i=1

max
Y∈CL

i

sci(Y) . (5)

The choice of neighborhood makes the relative difference of scores of the incumbent and proposed
solutions efficiently computable. Additionally, an early stop condition verifies whether a local optimum
has been reached. The optimal DAG consistent with ordering L and the candidate parents sets Ci

is computed and returned in line 12. Usually, several re-starts are performed in order to escape poor
local optima.

Algorithm 2: Order-Based Greedy Search
Input : Candidate sets Ci with their scores pre-computed
Output: A DAG G

1 initialize L
2 for j = 1 to K do
3 Lj ← L
4 for i = 1 to n− 1 do
5 swap Lj [i] and Lj [i+ 1]
6 if sc(Lj) > sc(L) then
7 L← Lj
8 end
9 swap Lj [i] and Lj [i+ 1]

10 end
11 end
12 obtain DAG G consistent with ordering L

5. GENERATING INFORMED INITIAL SOLUTIONS

As with most local search approaches, the selection of a good initial solution is crucial for avoiding
convergence to poor local maxima in order-based structure learning. Typically, this is attempted by
randomly generating initial orderings. While this guarantees a good coverage of the search space
when sufficiently many restarts are performed, in large domains it can lead to poor solutions and
require many iterations until a local optimum is reached. In this section, we devise heuristics that
take advantage of the structure of the problem to produce better initial solutions. Our heuristics rely
on a relaxed solution H∗ of the structure learning problem satisfying

sc(H∗) =
∑
i

max
Y⊆V \{Xi}

sci(Y) . (6)

The sets PaH
∗

i that maximize each local score are called the best parent sets (for Xi), and the
corresponding graph H∗ is the best parent set graph. Note that H∗ usually contains cycles, and it
is thus not a solution to Eq. 1. In practice, obtaining the graph H∗ can be difficult, and we often
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Fig. 2: An example of a parent set graph.

resort to an approximate solution H where the parents PaHi are obtained using one of the parent set
selection methods described in Section 3.

5.1 DFS-Based Approach

We can exploit the information provided by the best parent set graph (Eq. 6) or an approximation of
it to bias the generation of topological orderings towards high-scoring regions. To see this, consider
a(n approximation of the) best parent set graph with nodes Xi and Xj such that Xi is the single
parent of Xj and has no parents. Then, there is an optimal ordering starting with Xi (this can easily
be shown by contradiction). We can delete Xi from the graph and repeat the argument to conclude
the existence of an optimal ordering starting with Xi, Xj . Now consider a case when there are two
or more selectable nodes (by the previous explanation) in graph H. Instead of picking a random
selectable node we can define the goodness of a node by:

goodness(Xi) =
∏

Xj∈ChH
i ∩unvisited

|PaHj ∩ unvisited| (7)

where ChHi is the set of Xi’s children and unvisited the set of unvisited nodes. Small values of
goodness mean that removing Xi from the graph will make more nodes to be selectable. Ties are
resolved by picking one of the best selectable nodes uniformly at random.

For example, in the (best parent set) graph in Figure 2, we can safely constrain the orderings to
start with A, since it has no parents, and remove it from the graph. At this time, we have three
selectable nodes B, C and F , each one with same in-degree, but with different goodness value. Since
F has the least goodness value, we select it. Performing previous steps repeatedly we get that the
candidate optimal orderings are A,F,C,E,B,D and A,F,C,E,D,B. Note that this is a significant
decrease from the full space of 6! = 720 possible orderings. This difference is likely to increase as the
number of variables increases, and as the best parent set becomes sparser (the sparsity of the best
parent set is related to the score function used, and the ratio between the domain dimension and the
dataset size).

Motivated by the previous argument, we propose the DFS-Based initialization heuristic described
in Algorithm 3 which takes a (best parent set) graph H as input. The algorithm starts with all
nodes labeled as unvisited and repeatedly selects an unvisited node using as criterias the in-degree
and goodness of the node in increasing order. At each step, it marks the node as visited and consider
it as removed from H. The algorithm returns the ordering when all nodes were visited.

5.2 FAS-Based Approach

The DFS-based approach can be seen as removing edges from a graph H so as to make it a DAG (more
specifically, a tree), and then extracting a consistent topological ordering. The selection of an edge to
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Algorithm 3: DFS-Based ordering generation.
Function: DFS( Graph H )

1 unvisited← all nodes
2 L← ∅
3 while unvisited is not empty do
4 O ← unvisited nodes ordered by unvisited in-degree and goodness
5 B ← best nodes from O
6 if B has more than one node then
7 select a node Xr from B uniformly at random
8 else
9 select the unique node Xr from B

10 end
11 L← L ∪ {Xr}
12 unvisited← unvisited \ {Xr}
13 end
14 return L

remove is often performed locally (among the children of a node), and considers only the qualitative
information of the graph (i.e., the parent relationships). An arguably better approach is to use the
score function to assess the relevance of each edge, and to consider the removal of edges globally (not
only in a local neighborhood). We estimate the relevance of an edge Xj → Xi in a graph H by

Wji = sci(Pa
H
i )− sci(PaHi \ {Xj}), (8)

The weight Wji represents the cost of removing Xj from the set PaHi , and it is always a positive
number if H is the best parent set graph since PaHi maximizes the score for Xi. A small value of
Wji suggests that the parent Xj is not very relevant to Xi. For instance, in the weighted graph in
Figure 2, the edge C → D is less relevant than the edge B → D, which in turn is less relevant than
the edge A→ D.

The main idea of our second heuristic is to penalize orderings which violate an edge Xi → Xj in H
by their associated cost Wij . We then wish to find a topological ordering of H that violates the least
cost of edges. Given a directed graph H = (V,E), a set F ⊆ E is called a Feedback Arc Set (FAS)
if every (directed) cycle of H contains at least one edge in F . In other words, F is an edge set that
if removed makes the graph H acyclic [Demetrescu and Finocchi 2003]. If we assume that the cost
of an ordering of H is the sum of the weights of the violated (or removed) edges, we can formulate
the problem of finding a minimum cost ordering of H as a Minimum Cost Feedback Arc Set Problem
(min-cost FAS): given the weighted directed graph H with weights Wij , find a min-cost FAS F such
that

F = arg min
H−F is a DAG

∑
Xi→Xj∈E

Wij . (9)

The min-cost FAS problem have been proved to be NP-complete for directed graphs [Gavril 1977],
but there are efficient and effective approximation algorithms [Eades et al. 1993; Eades and Lin 1995;
Demetrescu and Finocchi 2003] like the one shown in Algorithm 4 with complexity O(nm), where m
is the number of edges on the graph.

We can now describe our second heuristic for generating initial solutions, based on the min-cost
FAS problem: take the weighted graph H with weights Wij as input, and find a min-cost FAS F ;
remove the edges in F from H and return a topological order of the DAG H − F (this can be done
by performing a depth-first search traversal starting at root nodes).
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Algorithm 4: Minimum Cost FAS approximation
Input : Graph H
Output: Feedback Arc Set F

1 F ← ∅
2 while there is a cycle C on H do
3 Wmin ← argmin(u,v)∈CWuv

4 for (u, v) ∈ C do
5 Wuv =Wuv −Wmin

6 if Wuv = 0 then
7 F = F + {(u, v)}
8 end
9 end

10 end
11 for (u, v) ∈ F do
12 if (u, v) does not build a cycle then
13 H = H + (u, v)
14 F = F \ {(u, v)}
15 end
16 end

6. EXPERIMENTS, RESULTS AND DISCUSSION

We compare the performance of order-based local search with different parent set selection procedures
and different initialization heuristics on a selected set of real-world datasets listed in Table I.3 One can
see that these datasets range from small domains (with a few tens of variables) to large domains (with
thousands of variables). Our experiments aim at evaluating the performance of structure learning
for given initial orderings. The algorithms were implemented in C++, using a few utilities from the
URLearning package for learning Bayesian networks.4 All experiments were performed in a 20-node
computer cluster; each computer has an Intel Xeon CPU 2.40GHz processor and 512 GB RAM.

For each dataset we ran sequential, greedy and independence selection with no limit on the maximum
parent set size k, but using a time limit of two minutes per variable. After that, we performed 1000
re-starts of order-based local search, each taking at most 500 iterations (K = 500), and using the
candidate parent sets obtained from the previous step. For the sake of readability, we report the
quality of a DAG found by its relative score given by RC(G) = sc(G)−sc(∅)

|sc(∅)| , where sc(∅) is the score
of an empty DAG.

We refer to the variant of the order-based structure learning algorithm with random initializa-
tion, depth-first based initialization and min-cost FAS-based initialization as RND, DFS and FAS,
respectively.

6.1 Evaluation of Parent Set Selection Approaches

We evaluate the effect the different initialization heuristics have on the quality of the solutions gener-
ated by order-based local search for the three parent set selection techniques described. Tables I and
II contain relevant statistics about the parent sets selected for each method. The columns Npsx and
Mx represent, respectively, the number of candidate parent sets and maximum in-degree in the best
parent set graph using method x. We see from these results that the maximum degree using greedy or

3We used the same datasets used in [Scanagatta et al. 2015].
4Available at http://urlearning.org/.
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Table I: Datasets characteristics: number of variables (n), number of instances (N), number of candidate parent sets
(Npsx) and maximum in-degree (Mx) using parent set selection method x

Dataset n N Npsseq Mseq Npsgre Mgre Npsind Mind

Nltcs 16 21574 365.1K 6 13.6K 5 365.1K 6
Msnbc 17 388434 712.0K 9 16.7K 6 243.2K 11
Kdd 64 234954 4.8M 4 1.4M 5 593.0K 6
Plants 69 23215 47.2M 4 11.9M 5 1.6M 7
Baudio 100 20000 65.8M 4 17.1M 6 2.2M 6
Bnetflix 100 20000 59.6M 4 16.3M 6 2.3M 6
Jester 100 14116 74.3M 4 21.4M 5 3.8M 5
Accidents 111 17009 47.0M 4 20.9M 7 3.4M 7
Tretail 135 29387 1.9M 4 4.8M 7 1.2M 4
Pumsb_star 163 16349 95.5M 3 38.8M 5 4.9M 6
Dna 180 3186 9.0M 3 62.5M 4 7.1M 4
Kosarek 190 44500 62.6M 3 14.2M 6 3.3M 6
Msweb 294 37711 6.9M 3 14.0M 7 3.8M 8
Book 500 11598 85.3M 3 71.1M 4 4.1M 4
Tmovie 500 6117 96.2M 3 64.8M 5 4.8M 5
Cwebkb 839 4199 43.6M 2 81.2M 5 5.9M 5
Cr52 889 9100 40.3M 2 66.5M 5 6.6M 5
C20ng 910 18821 99.0M 2 55.5M 5 8.3M 5
Bbc 1058 2225 11.8M 2 50.4M 4 4.7M 4
Ad 1556 3279 4.0M 2 78.6M 4 3.2M 4
Average 42.6M 3.5 30.6M 4.9 3.2M 5.3

independence selection is, in average, greater than sequential selection, while the amount of candidate
parent sets is considerably smaller. Some exceptions are the datasets Nltcs and Msnbc whereM using
greedy selection is the lowest from all procedures probably caused by their small number of variables.

The columns labeled H∗seq, H∗greedy and H∗ind in Table II contain the scores of the best parent set
graph obtained for the sequential, greedy and independence selection, respectively, while the columns
D(H∗) report the average number of parents in the graph H∗. It can be noticed that the difference of
D values is greater while the number of variables increases. Also, on average, graphs H∗ have not only
higher score values when used greedy and independence selection, but also higher average in-degree.

6.2 Results Using Sequential Selection

We first analyze the performance of the different heuristics when sequential parent set selection is
used. Notice that without the time limit, sequential selection generates the optimal best parent sets.
Looking at the results in Table III we can notice that DFS and FAS obtain better results under any
criteria in almost all datasets. An special case is Kdd dataset where the maximum number of iterations
K is almost reached using any of the initialization heuristics due to its huge number of instances.

To verify whether the performance differences are statistically significant, we performed Friedman
Test [Demsar 2006]. In this and all following experiments, we adopt the statistical significance level
α = 0.05. The computed p-values are 0.0078, 0.0005, 0.0863 and 0.1423 for best score, average best
score, average initial score and average iterations, respectively. Hence, there are statistically significant
difference between the heuristics in all criteria except with respect to average number of iterations.

We also performed the post-hoc Nemenyi Test for the criteria with statistically significant differences
in order to decide which pairwise comparisons were significant; this was carried out by calculating
the average ranking of each heuristic considering all datasets. Then, we compute the critical distance

CD = qα

√
k(k+1)

6m , where k is the number of models to compare (i.e. heuristics), m the number of
datasets used and qα, the penalization factor for multiple comparison, was taken from [Demsar 2006].
The results are presented graphically in Figure 3. Each point represents the average ranking of the
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Table II: Score sc(Hx) and average in-degree D(Hx) of the best parent set graph obtained by using parent set selection
method x

Dataset sc(H∗
seq) D(H∗

seq) sc(H∗
gre) D(H∗

gre) sc(H∗
ind) D(H∗

ind)

Nltcs 0.4515 4.750 0.4359 3.812 0.4515 4.750
Msnbc 0.1660 8.412 0.0867 4.941 0.1752 9.235
Kdd 0.1806 3.422 0.1759 3.672 0.1820 4.047
Plants 0.6828 3.884 0.6685 3.971 0.6871 4.928
Baudio 0.1877 3.590 0.1914 4.520 0.1978 4.940
Bnetflix 0.1336 3.550 0.1343 4.420 0.1433 4.970
Jester 0.1672 3.680 0.1690 4.490 0.1726 4.830
Accidents 0.5761 3.126 0.6314 3.847 0.5285 3.739
Tretail 0.0746 2.111 0.0793 2.081 0.0765 2.089
Pumsb_star 0.8194 2.325 0.7890 2.528 0.7684 2.595
Dna 0.4062 2.844 0.4004 2.806 0.4004 2.600
Kosarek 0.2303 2.668 0.2332 2.979 0.2374 3.300
Msweb 0.1852 2.031 0.1870 3.463 0.1888 3.367
Book 0.1435 2.118 0.1513 2.790 0.1523 2.866
Tmovie 0.3249 2.068 0.3610 2.954 0.3640 3.072
Cwebkb 0.1471 1.896 0.1692 2.777 0.1702 2.900
Cr52 0.1775 1.900 0.2139 2.955 0.2143 3.100
C20ng 0.0843 1.902 0.1111 3.489 0.1118 3.680
Bbc 0.0865 1.863 0.0979 2.403 0.0984 2.483
Ad 0.8012 1.075 0.8251 1.223 0.8208 1.220
Average 0.3013 2.9607 0.3056 3.3060 0.3071 3.7355

corresponding approach, and the intervals indicate the critical distance. A method A is considered
statistically significant better than a method B (w.r.t. to a specific criterion) if A has a smaller
average ranking and their intervals do not overlap.

We see from the figure that FAS outperforms RND under the two criteria and that sequential
selection leads to significantly better results for FAS, but there is no statistically significant difference
between RND and DFS in any criteria.

6.3 Results Using Greedy Selection

Table IV shows the results for similar experiments using greedy selection. Again, the search takes
few iterations except for the Kdd dataset, where it often takes the maximum before it is aborted. We
performed the same statistical analysis as before and obtained p-values of 0.1572, 0.5488, 0.7047 and
0.6376. In this case, there is no significant difference between the heuristics under any criteria; thus,
they are not analyzed with the Nemenyi test. Although greedy selection obtains larger candidate
parent sets, the results show that it considerably hurts the performance obtained by our heuristics
compared to RND because of the poor quality of the parent sets processed. Finally, experiments show
that the quality of candidate parent sets obtained are important for the performance of our heuristics
used for the structure learning problem.
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Fig. 3: Visualiation of the Nemenyi post-hoc analysis using sequential selection.
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Table III: Best score obtained, Average best score obtained, Average initial score generated, Average number of iterations
(Avg. It.) using Sequential selection (best values in bold)

Dataset Approach Best Score Avg. Best Score Avg. Initial Score Avg. It.

Nltcs
RND 0.4079 0.3851 ± 0.009 0.3503 ± 0.014 12.6940 ± 24.412
FAS 0.4125 0.3845 ± 0.008 0.3602 ± 0.000 10.6640 ± 10.642
DFS 0.4120 0.3851 ± 0.009 0.3504 ± 0.014 11.4340 ± 10.061

Msnbc
RND 0.0945 0.0858 ± 0.005 0.0575 ± 0.010 20.5370 ± 17.282
FAS 0.0953 0.0877 ± 0.002 0.0729 ± 0.000 9.5610 ± 5.515
DFS 0.0958 0.0861 ± 0.005 0.0573 ± 0.010 21.6580 ± 27.461

Kdd
RND 0.1746 0.1720 ± 0.001 0.1431 ± 0.007 488.9210 ± 53.251
FAS 0.1742 0.1722 ± 0.001 0.1613 ± 0.002 464.7260 ± 96.993
DFS 0.1739 0.1720 ± 0.001 0.1427 ± 0.008 489.4970 ± 52.632

Plants
RND 0.6254 0.6059 ± 0.007 0.5792 ± 0.009 18.3200 ± 8.857
FAS 0.6386 0.6063 ± 0.007 0.5632 ± 0.007 21.2740 ± 19.664
DFS 0.6345 0.6061 ± 0.007 0.5798 ± 0.009 19.1220 ± 18.007

Baudio
RND 0.1660 0.1602 ± 0.002 0.1534 ± 0.003 18.6060 ± 6.625
FAS 0.1671 0.1618 ± 0.002 0.1535 ± 0.003 18.8820 ± 6.152
DFS 0.1659 0.1601 ± 0.002 0.1533 ± 0.003 18.6270 ± 6.910

Bnetflix
RND 0.1164 0.1077 ± 0.002 0.1016 ± 0.002 22.0230 ± 32.259
FAS 0.1179 0.1080 ± 0.002 0.1010 ± 0.001 21.8210 ± 29.022
DFS 0.1176 0.1076 ± 0.002 0.1014 ± 0.002 20.7890 ± 22.476

Jester
RND 0.1545 0.1484 ± 0.002 0.1422 ± 0.002 22.4180 ± 15.032
FAS 0.1545 0.1504 ± 0.001 0.1418 ± 0.001 26.9350 ± 10.420
DFS 0.1552 0.1483 ± 0.002 0.1422 ± 0.002 22.9240 ± 14.255

Accidents
RND 0.4233 0.3531 ± 0.019 0.3015 ± 0.023 18.0250 ± 7.290
FAS 0.4294 0.3801 ± 0.017 0.3347 ± 0.019 18.4930 ± 5.913
DFS 0.4090 0.3534 ± 0.019 0.3029 ± 0.023 17.2980 ± 6.901

Tretail
RND 0.0438 0.0232 ± 0.006 0.0194 ± 0.005 6.9490 ± 3.222
FAS 0.0474 0.0235 ± 0.004 0.0202 ± 0.003 6.2610 ± 2.822
DFS 0.0443 0.0232 ± 0.007 0.0194 ± 0.006 6.9440 ± 3.452

Pumsb_star
RND 0.7437 0.6942 ± 0.018 0.6434 ± 0.022 22.1570 ± 10.813
FAS 0.7442 0.6921 ± 0.021 0.6047 ± 0.032 24.7550 ± 12.707
DFS 0.7570 0.6945 ± 0.017 0.6446 ± 0.022 22.4480 ± 14.377

Dna
RND 0.2908 0.2218 ± 0.016 0.1998 ± 0.009 27.0660 ± 48.309
FAS 0.2955 0.2352 ± 0.021 0.2027 ± 0.021 54.7050 ± 85.196
DFS 0.2881 0.2212 ± 0.015 0.1999 ± 0.009 24.9160 ± 40.314

Kosarek
RND 0.2008 0.1484 ± 0.011 0.1307 ± 0.009 28.0490 ± 30.240
FAS 0.1925 0.1595 ± 0.008 0.1474 ± 0.008 22.1030 ± 28.265
DFS 0.1874 0.1484 ± 0.011 0.1306 ± 0.009 27.6220 ± 25.337

Msweb
RND 0.1067 0.0517 ± 0.012 0.0441 ± 0.011 8.9800 ± 4.263
FAS 0.1204 0.0640 ± 0.016 0.0560 ± 0.017 9.4780 ± 4.940
DFS 0.0894 0.0514 ± 0.012 0.0440 ± 0.010 8.7760 ± 3.911

Book
RND 0.1252 0.1181 ± 0.003 0.1150 ± 0.003 16.7710 ± 6.592
FAS 0.1287 0.1195 ± 0.004 0.1142 ± 0.005 19.1240 ± 8.144
DFS 0.1256 0.1181 ± 0.003 0.1151 ± 0.003 16.7240 ± 6.367

Tmovie
RND 0.3005 0.2848 ± 0.004 0.2804 ± 0.004 15.2110 ± 6.886
FAS 0.3079 0.2987 ± 0.003 0.2953 ± 0.004 16.1440 ± 5.606
DFS 0.2948 0.2849 ± 0.004 0.2806 ± 0.004 14.8790 ± 5.382

Cwebkb
RND 0.1174 0.1102 ± 0.002 0.1086 ± 0.002 11.1670 ± 4.633
FAS 0.1276 0.1187 ± 0.003 0.1173 ± 0.003 11.6920 ± 7.123
DFS 0.1197 0.1101 ± 0.002 0.1086 ± 0.002 11.0490 ± 6.347

Cr52
RND 0.1509 0.1381 ± 0.005 0.1358 ± 0.005 13.3120 ± 5.186
FAS 0.1584 0.1513 ± 0.002 0.1498 ± 0.002 13.8880 ± 6.398
DFS 0.1545 0.1379 ± 0.005 0.1356 ± 0.005 13.4390 ± 5.424

C20ng
RND 0.0745 0.0691 ± 0.002 0.0681 ± 0.001 18.3333 ± 25.167
FAS 0.0741 0.0708 ± 0.001 0.0697 ± 0.001 14.9890 ± 6.353
DFS 0.0757 0.0692 ± 0.001 0.0682 ± 0.001 15.6810 ± 15.985

Bbc
RND 0.0764 0.0712 ± 0.004 0.0610 ± 0.002 364.9752 ± 190.215
FAS 0.0777 0.0738 ± 0.003 0.0653 ± 0.002 389.4690 ± 182.781
DFS 0.0766 0.0711 ± 0.004 0.0609 ± 0.002 366.7570 ± 190.450

Ad
RND 0.7142 0.6870 ± 0.010 0.6842 ± 0.009 7.4800 ± 11.620
FAS 0.6562 0.6055 ± 0.018 0.5830 ± 0.017 12.1930 ± 6.465
DFS 0.7107 0.6866 ± 0.010 0.6838 ± 0.009 7.6610 ± 11.443

6.4 Results Using Independence Selection

The experiments using independence selection are shown in Table V. Again, we see that FAS over-
all outperforms the other methods. The Friedman test obtained p-values of 0.0224, 0.0045, 0.0006
and 0.8607, which shows that average number of iterations is the only criteria without statistically
significant difference.

The post-hoc Nemenyi test graphics are shown in Figure 4. As in the results with sequential
selection, we see that the FAS advantage is significant compared to other heuristics, and that RND is
compares equally with DFS.
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Table IV: Best score obtained, Average best score obtained, Average initial score generated, Average number of iterations
(Avg. It.) using Greedy selection (best values in bold)

Dataset Approach Best Score Avg. Best Score Avg. Initial Score Avg. It.

Nltcs
RND 0.4018 0.3724 ± 0.010 0.3396 ± 0.015 9.0260 ± 12.332
FAS 0.4007 0.3710 ± 0.011 0.3161 ± 0.000 9.9080 ± 3.964
DFS 0.4007 0.3721 ± 0.010 0.3385 ± 0.015 8.4960 ± 3.881

Msnbc
RND 0.0637 0.0557 ± 0.004 0.0410 ± 0.008 11.0410 ± 7.009
FAS 0.0641 0.0565 ± 0.004 0.0417 ± 0.000 11.7240 ± 5.415
DFS 0.0633 0.0559 ± 0.004 0.0406 ± 0.007 11.6530 ± 16.311

Kdd
RND 0.1685 0.1658 ± 0.001 0.1365 ± 0.007 496.7130 ± 37.134
FAS 0.1685 0.1658 ± 0.001 0.1428 ± 0.003 494.9910 ± 45.889
DFS 0.1684 0.1658 ± 0.001 0.1362 ± 0.007 497.5640 ± 31.910

Plants
RND 0.6107 0.5905 ± 0.007 0.5657 ± 0.009 16.1000 ± 6.093
FAS 0.6135 0.5898 ± 0.008 0.5519 ± 0.005 17.9310 ± 5.770
DFS 0.6096 0.5904 ± 0.007 0.5652 ± 0.010 15.9600 ± 5.687

Baudio
RND 0.1678 0.1609 ± 0.002 0.1539 ± 0.003 19.7680 ± 7.911
FAS 0.1665 0.1608 ± 0.002 0.1507 ± 0.001 22.6070 ± 7.653
DFS 0.1680 0.1608 ± 0.002 0.1538 ± 0.003 19.0880 ± 7.770

Bnetflix
RND 0.1123 0.1060 ± 0.002 0.1004 ± 0.002 17.2260 ± 6.110
FAS 0.1116 0.1054 ± 0.002 0.0969 ± 0.001 19.1720 ± 6.481
DFS 0.1121 0.1060 ± 0.002 0.1004 ± 0.002 17.2900 ± 6.231

Jester
RND 0.1545 0.1488 ± 0.002 0.1428 ± 0.002 22.6200 ± 11.114
FAS 0.1533 0.1482 ± 0.002 0.1376 ± 0.000 24.0840 ± 11.852
DFS 0.1544 0.1489 ± 0.002 0.1429 ± 0.002 23.6730 ± 14.374

Accidents
RND 0.4441 0.3616 ± 0.021 0.3083 ± 0.022 17.1620 ± 6.662
FAS 0.4497 0.3938 ± 0.019 0.3564 ± 0.021 15.9890 ± 6.872
DFS 0.4344 0.3610 ± 0.022 0.3070 ± 0.022 17.4430 ± 6.938

Tretail
RND 0.0509 0.0239 ± 0.007 0.0199 ± 0.006 6.9840 ± 3.372
FAS 0.0514 0.0275 ± 0.007 0.0245 ± 0.005 5.7950 ± 2.982
DFS 0.0496 0.0236 ± 0.007 0.0196 ± 0.006 7.0120 ± 3.228

Pumsb_star
RND 0.7103 0.6573 ± 0.020 0.6062 ± 0.025 17.3870 ± 7.296
FAS 0.7074 0.6510 ± 0.023 0.5821 ± 0.027 17.5620 ± 6.883
DFS 0.7115 0.6578 ± 0.019 0.6080 ± 0.024 17.0840 ± 7.125

Dna
RND 0.2917 0.2195 ± 0.016 0.1979 ± 0.009 26.5570 ± 48.460
FAS 0.2909 0.2129 ± 0.024 0.1769 ± 0.024 39.6480 ± 70.295
DFS 0.2898 0.2189 ± 0.016 0.1982 ± 0.009 27.0920 ± 57.135

Kosarek
RND 0.1977 0.1488 ± 0.012 0.1300 ± 0.009 32.7100 ± 33.459
FAS 0.1933 0.1533 ± 0.010 0.1343 ± 0.008 31.4660 ± 30.109
DFS 0.2030 0.1491 ± 0.012 0.1301 ± 0.009 34.4910 ± 41.046

Msweb
RND 0.0920 0.0504 ± 0.011 0.0434 ± 0.010 8.5560 ± 3.890
FAS 0.0843 0.0445 ± 0.010 0.0356 ± 0.008 9.0730 ± 4.823
DFS 0.0860 0.0503 ± 0.011 0.0436 ± 0.011 8.2830 ± 3.701

Book
RND 0.1299 0.1229 ± 0.003 0.1195 ± 0.003 17.6490 ± 6.657
FAS 0.1387 0.1309 ± 0.003 0.1284 ± 0.004 16.2770 ± 7.752
DFS 0.1312 0.1231 ± 0.003 0.1197 ± 0.003 17.4060 ± 6.128

Tmovie
RND 0.3308 0.3123 ± 0.004 0.3072 ± 0.005 15.8570 ± 9.715
FAS 0.3343 0.3275 ± 0.002 0.3254 ± 0.002 13.7210 ± 8.022
DFS 0.3285 0.3124 ± 0.004 0.3070 ± 0.005 16.7230 ± 11.119

Cwebkb
RND 0.1364 0.1248 ± 0.003 0.1229 ± 0.003 12.9630 ± 7.088
FAS 0.1471 0.1379 ± 0.002 0.1365 ± 0.001 17.5410 ± 23.581
DFS 0.1322 0.1246 ± 0.003 0.1226 ± 0.003 12.9970 ± 5.986

Cr52
RND 0.1780 0.1632 ± 0.005 0.1600 ± 0.005 15.4350 ± 6.634
FAS 0.1847 0.1783 ± 0.002 0.1765 ± 0.002 14.0780 ± 5.352
DFS 0.1792 0.1632 ± 0.005 0.1601 ± 0.005 15.4390 ± 7.422

C20ng
RND 0.0957 0.0876 ± 0.002 0.0862 ± 0.002 17.5910 ± 18.741
FAS 0.0973 0.0961 ± 0.000 0.0957 ± 0.000 13.0530 ± 3.817
DFS 0.0957 0.0876 ± 0.002 0.0862 ± 0.002 17.5910 ± 18.741

Bbc
RND 0.0840 0.0787 ± 0.005 0.0681 ± 0.002 365.7339 ± 190.091
FAS 0.0852 0.0812 ± 0.003 0.0747 ± 0.001 365.5450 ± 197.503
DFS 0.0840 0.0781 ± 0.005 0.0680 ± 0.002 342.3483 ± 199.543

Ad
RND 0.7355 0.7102 ± 0.009 0.7078 ± 0.009 4.7060 ± 3.823
FAS 0.6781 0.6221 ± 0.019 0.6005 ± 0.017 10.9940 ± 7.159
DFS 0.7322 0.7106 ± 0.009 0.7083 ± 0.009 4.7480 ± 4.253

6.5 Evaluation of Initialization Heuristics

Finally, we look at the aggregated influence of the initialization heuristics (averaging over all parent
set selection procedures). The Friedman test obtains p-values of 0.0007, 0.00004, 0.0007 and 0.44933
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Fig. 4: Visualization of the Nemenyi post-hoc analysis using independence selection.
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Table V: Best score obtained, Average best score obtained, Average initial score generated, Average number of iterations
(Avg. It.) using Independence selection (best values in bold)

Dataset Approach Best Score Avg. Best Score Avg. Initial Score Avg. It.

Nltcs
RND 0.4073 0.3852 ± 0.009 0.3503 ± 0.014 12.0940 ± 18.022
FAS 0.4125 0.3845 ± 0.008 0.3602 ± 0.000 10.6640 ± 10.642
DFS 0.4120 0.3851 ± 0.009 0.3504 ± 0.014 11.4340 ± 10.061

Msnbc
RND 0.0950 0.0797 ± 0.007 0.0509 ± 0.010 16.8610 ± 22.530
FAS 0.0956 0.0825 ± 0.005 0.0557 ± 0.001 15.1570 ± 22.275
DFS 0.0934 0.0798 ± 0.007 0.0513 ± 0.010 16.6540 ± 21.971

Kdd
RND 0.1741 0.1656 ± 0.007 0.1158 ± 0.008 441.8780 ± 141.884
FAS 0.1750 0.1653 ± 0.007 0.1336 ± 0.005 411.4250 ± 175.666
DFS 0.1727 0.1654 ± 0.007 0.1161 ± 0.008 431.8180 ± 152.080

Plants
RND 0.5958 0.5634 ± 0.011 0.5349 ± 0.013 10.8540 ± 4.234
FAS 0.5953 0.5608 ± 0.012 0.5090 ± 0.010 12.6340 ± 4.608
DFS 0.5962 0.5632 ± 0.011 0.5349 ± 0.012 10.8190 ± 4.365

Baudio
RND 0.1447 0.1324 ± 0.004 0.1240 ± 0.004 10.2630 ± 4.756
FAS 0.1528 0.1418 ± 0.002 0.1388 ± 0.002 7.1500 ± 7.124
DFS 0.1470 0.1320 ± 0.005 0.1239 ± 0.005 10.0910 ± 4.546

Bnetflix
RND 0.1073 0.0918 ± 0.004 0.0854 ± 0.003 10.1970 ± 6.347
FAS 0.1043 0.0928 ± 0.002 0.0881 ± 0.001 7.9620 ± 3.576
DFS 0.1029 0.0917 ± 0.004 0.0853 ± 0.003 9.7740 ± 4.795

Jester
RND 0.1527 0.1282 ± 0.009 0.1148 ± 0.005 50.5090 ± 112.764
FAS 0.1550 0.1398 ± 0.006 0.1301 ± 0.000 109.1880 ± 152.073
DFS 0.1541 0.1288 ± 0.009 0.1145 ± 0.005 55.4230 ± 119.877

Accidents
RND 0.3565 0.2768 ± 0.030 0.2416 ± 0.023 10.9270 ± 9.189
FAS 0.3656 0.3258 ± 0.010 0.2943 ± 0.005 16.0710 ± 9.204
DFS 0.3471 0.2770 ± 0.029 0.2416 ± 0.023 11.0310 ± 9.871

Tretail
RND 0.0485 0.0232 ± 0.007 0.0195 ± 0.005 6.6140 ± 3.265
FAS 0.0530 0.0329 ± 0.010 0.0289 ± 0.009 7.1600 ± 3.213
DFS 0.0460 0.0230 ± 0.007 0.0192 ± 0.005 6.5240 ± 3.174

Pumsb_star
RND 0.6637 0.5888 ± 0.022 0.5491 ± 0.026 10.9380 ± 6.825
FAS 0.6562 0.5945 ± 0.022 0.5469 ± 0.025 11.5510 ± 5.697
DFS 0.6698 0.5880 ± 0.021 0.5489 ± 0.025 10.8220 ± 6.502

Dna
RND 0.2736 0.2046 ± 0.012 0.1902 ± 0.009 12.1380 ± 18.851
FAS 0.3233 0.2879 ± 0.008 0.2596 ± 0.009 50.7770 ± 88.382
DFS 0.2775 0.2044 ± 0.012 0.1902 ± 0.009 12.6830 ± 27.589

Kosarek
RND 0.2022 0.1457 ± 0.027 0.1166 ± 0.009 118.4560 ± 157.163
FAS 0.2017 0.1610 ± 0.016 0.1385 ± 0.006 118.1580 ± 153.684
DFS 0.2035 0.1468 ± 0.027 0.1166 ± 0.009 122.8750 ± 156.455

Msweb
RND 0.0851 0.0455 ± 0.010 0.0400 ± 0.010 6.3460 ± 3.115
FAS 0.1166 0.0519 ± 0.016 0.0452 ± 0.016 7.6380 ± 3.646
DFS 0.0869 0.0457 ± 0.010 0.0403 ± 0.009 6.4600 ± 3.162

Book
RND 0.1241 0.1129 ± 0.003 0.1099 ± 0.003 11.7360 ± 4.658
FAS 0.1324 0.1256 ± 0.004 0.1241 ± 0.004 10.0690 ± 5.148
DFS 0.1222 0.1130 ± 0.003 0.1100 ± 0.003 12.0530 ± 4.779

Tmovie
RND 0.3236 0.2789 ± 0.015 0.2619 ± 0.007 60.7770 ± 90.231
FAS 0.3318 0.3102 ± 0.005 0.3071 ± 0.005 19.4600 ± 41.326
DFS 0.3262 0.2798 ± 0.016 0.2617 ± 0.007 69.0670 ± 101.116

Cwebkb
RND 0.1322 0.1113 ± 0.003 0.1095 ± 0.003 9.1510 ± 8.210
FAS 0.1354 0.1278 ± 0.002 0.1269 ± 0.002 8.2730 ± 3.202
DFS 0.1201 0.1113 ± 0.003 0.1095 ± 0.003 9.0640 ± 3.367

Cr52
RND 0.1705 0.1414 ± 0.007 0.1382 ± 0.006 14.0720 ± 22.640
FAS 0.1760 0.1705 ± 0.001 0.1696 ± 0.001 7.6830 ± 3.006
DFS 0.1798 0.1420 ± 0.007 0.1387 ± 0.007 14.3220 ± 23.750

C20ng
RND 0.0826 0.0695 ± 0.003 0.0682 ± 0.003 10.9640 ± 10.297
FAS 0.0867 0.0840 ± 0.001 0.0836 ± 0.001 8.3390 ± 3.016
DFS 0.0810 0.0694 ± 0.003 0.0682 ± 0.003 10.6720 ± 13.253

Bbc
RND 0.0820 0.0778 ± 0.003 0.0623 ± 0.002 476.1260 ± 95.441
FAS 0.0857 0.0816 ± 0.001 0.0740 ± 0.001 493.0780 ± 52.860
DFS 0.0821 0.0780 ± 0.003 0.0624 ± 0.002 482.3720 ± 83.473

Ad
RND 0.7220 0.6954 ± 0.010 0.6922 ± 0.010 7.7850 ± 10.265
FAS 0.6659 0.6171 ± 0.018 0.5942 ± 0.017 13.2410 ± 6.021
DFS 0.7189 0.6958 ± 0.010 0.6925 ± 0.010 8.3710 ± 10.238

for best score, average best score, average initial score and average number of iterations, respectively.
Since the first three values are lower than α, the differences are considered statistically significant,
and we perform the Nemenyi post-hoc test for them. The results are displayed in Figure 5.
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Fig. 5: Visualization of the Nemenyi post-hoc analysis considering all parent set selection approaches.
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While in the previous analyses segmented by the parent set selection technique we observed that
RND and DFS were almost the same under any criteria, this analysis shows that DFS tends to be a
better alternative to RND, but without having a statistically significant difference. Also, results shows
that FAS outperforms DFS and RND without doubt considering any parent set selection method.
These results suggest that DFS biases the search towards high scoring regions, but has problems
diversifying its initial solutions. FAS on the other hand achieves a good trade-off between generating
high score initial orderings and diversifying between consecutive runs.

In summary, these results indicate the advantage of using informed approaches to generating initial
orderings in high dimensionality domains.

7. CONCLUSIONS AND FUTURE WORK

Learning Bayesian networks from data is a notably difficult problem, and practitioners often resort to
approximate solutions. A state-of-the-art approach for large domains is order-based structure learning,
which performs a local search in the space of variable orderings. As with many local search approaches,
the quality of the solutions produced by order-based learning strongly depends on the initialization
strategy. In this work, we proposed two new informed heuristics for generating initial solutions for
order-based structure learning. Both heuristics are based on the best parent set graph, which is the
directed graph obtained as the solution of the relaxed problem when cycles are permitted. The first
heuristic performs a depth-first search traversal of the parent set graph that orders nodes based on
their in-degree. The second heuristic uses the score function to assess the relevance of edges in the
parent graphs, and finds a minimum weight ordering by solving a minimum-cost feedback arc set
problem. Experiments with 20 real-world datasets containing from 16 to 1556 variables demonstrate
that our initialization heuristics improve the accuracy of order-based greedy search. To our knowledge,
these are the largest domains considered in the literature.

The initialization heuristics can also be used in other methods that search the space of orderings such
as tabu search [Glover 1989], simulated annealing [Granville et al. 1994] or data perturbation [Elidan
et al. 2002]. We leave this as future work.
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