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Abstract. Bioinformaticians have relied on computational simulations to run their biological experiments. This is
due to the advantages offered by existing approaches, including tools to manage and run experiments, verify results
and capture/analyze provenance data. Provenance is metadata that helps scientists to analyze in silico experiments,
better understand their results, and reproduce them. However, provenance data is usually not enough. To improve the
knowledge about the experiment, scientists often need to use domain-specific data available on external sources along
with provenance data that is captured during the experiment execution. Although most of the existing tools provide
mechanisms to capture and analyze provenance data, they do not offer means to enrich provenance with external domain
data, or, when they do it, they do not have mechanisms to query provenance and domain data together in an effective
way. In this article, we present an approach to analyze provenance and domain data together using Prolog. Our goal
is to improve provenance analysis. As a proof of concept, we present a case study of phylogenetic analysis (a biological
experiment). Our approach, however, is designed to be generic and can be applied to other domains.

Categories and Subject Descriptors: H.2 [Database Management|: Miscellaneous

Keywords: provenance analysis, scientific experiments, workflows

1. INTRODUCTION

In the past decades, several categories of bioinformatic experiments (e.g., phylogeny, phylogenomics,
comparative genomics, metagenomics, transcriptomics, proteomics, etc.) became more dependent of
computational simulations [Futuyma 2013]. Such simulations are usually executed countless times,
with different parameters values and input data, until the biological research hypothesis can be proved
or refuted. Many of these computer-based biological experiments are composed of a set of applications
chained in a coherent flow, thus being suitable to be represented as scientific workflows [Mattoso
et al. 2010]. The paradigm of scientific workflows is an abstraction that models a set of activities
(application executions) and the data dependencies among them. Each workflow is part of a scientific
experiment and follows the steps of the scientific experiment life cycle defined by Mattoso et al. [2010].
A fundamental and critical phase of the scientific experiment’s life cycle is the analysis, when scientists
look for answers to their research hypothesis in the experiment’s results [Mattoso et al. 2010].

Scientific workflows are usually modeled and executed by engines called Scientific Workflow Man-
agement Systems (i.e. SWIMS). These systems are responsible for executing a chain of programs,
encapsulated as workflow activities, and capturing important provenance data [Freire et al. 2008].
Provenance, which can be defined as an audit trail of the experiment, captures information about
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the steps (i.e. activities) used to produce a data product (e.g. data files). Using provenance data,
scientists are able to analyze the quality and authorship of data and reproduce the achieved results.

The traditional definition of provenance data for scientific experiments only considers prospective
provenance (i.e. the structure of the workflow) and retrospective provenance (e.g. the hour and day
an activity executed, which files were produced, etc.). However, this type of information is often not
enough for scientists to draw their conclusions, as it only registers the ownership of the data and data
usage, without considering domain specific information and terminology. Let us illustrate the problem
with an example derived from the evolutionary phylogenetic domain. The inference of phylogenies has
many important applications in biological, technological and medical research, such as conservation in
biology, biomarkers [Abu-Asab et al. 2011], and drug discovery [Searls 2003]. A phylogenetic analysis
alms at generating phylogenetic trees as well as other several statistical calculations that are used to
infer the evolutionary ancestry/relationships of a set of genes, species, or other taxa [Doolittle 1999].
It is considered as a computational and data intensive experiment since a huge amount of heteroge-
neous/unstructured data is processed by a flow of several complex bioinformatics applications such
as MAFFT [Katoh and Standley 2013], ModelGenerator [Keane et al. 2006] and RAxML [Stamatakis
2014|. Common queries in this kind of experiment are: "Which workflow execution have produced the
most consistent phylogenetic trees, i.e. with bootstrap value higher than 807"; "Which trees contain
the taxon Bos taurus and which parameters were used to generate those trees?". While the first query
can be answered by looking inside the input files (so approaches that are able to capture this kind of
provenance would be able to answer it [Gongalves et al. 2012; Oliveira et al. 2015]), the second query
can only be answered by using external data that is not part of the workflow and thus is not stored
in the provenance database. In fact, it requires taking sequence IDs from the FASTA files used as
input of the workflow, and retrieving associated species data from an external database such as EBI
or NCBI. Thus, it cannot be answered using only the provenance captured by the SW{MS.

Answering this type of question requires bringing external domain data into the experiment repos-
itory so that the scientist can pose queries that cross knowledge from various data sources. Note that
these data sources are not used in the experiment execution phase, but only in the analysis phase,
and thus they are not part of the provenance that is captured at runtime. Unfortunately, related work
does not solve this problem. Some approaches augment scientists’ analysis capabilities by extracting
domain data from input files of scientific workflows and query them through SQL [Gongalves et al.
2012]. Despite calling this domain data, it is data that is already involved in the experiment execution
— not data from external datasets that could complement the analysis. On the other hand, workflow
systems like Taverna [Oinn et al. 2004] do allow for scientists to capture provenance and import do-
main data from external sources (i.e.: EBI, KEGG, etc.) by wrapping an annotation pipeline in the
workflow. This, however, has three main disadvantages: (i) it is intrusive since it requires the scientist
to annotate the workflow; (ii) it requires the scientist to know in advance what kind of external data
she/he will need in the analysis phase of the experiment. In other words, if the experiment is run
without the annotation, and only in the analysis phase the scientist realizes she/he needs external
data, there is no way to include it after the experiment execution. And (iii), it provides no means of
querying provenance and domain data together. Finally, related work that use ontologies to enrich
provenance data suffer from the same problem: they require the annotations to be performed prior to
the workflow execution [Buttler et al. 2002; Fileto et al. 2003; Sahoo et al. 2009; Sahoo et al. 2011;
Alper et al. 2013].

In this article, we tackle this problem by proposing an approach that allows for scientists to import
external domain data into the provenance database and to analyze provenance and domain data
together. This poses several challenges: (i) What should be the granularity of the imported data?
Should we import the entire external database or just part of it? It we decide to import part of it, how
do we define which part should be imported?; (ii) How should we deal with the different forms of data
representation? Provenance databases may be represented as relational databases or graph databases,
and external data may be represented as OWL ontologies, relational databases, among other formats.
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Representing these data in a single format and storing them together makes the querying process
straightforward. In fact, some of these challenges have been previously recognized in the literature
[Buttler et al. 2002]. To address these challenges, we develop a mechanism to import domain data
from external sources and convert it to Prolog facts. Provenance data is also converted to facts and
both information is stored together, thus creating a knowledge base. By translating provenance and
domain data into Prolog facts, users may query them in an integrated way, and thus obtain detailed
information about the experiment and improve their knowledge about it. To define the granularity,
the scientist can specify a filter. Only data that satisfies the filter is imported into the knowledge
base. We evaluated the proposed approach using a phylogenetic experiment (SciPhy [Ocafia et al.
2011] workflow as described in Section 4) as a case study. Using the proposed approach, we were able
to answer queries that could not be answered using only provenance data.

The remainder of this article is organized as follows. Section 2 provides background on provenance
data while Section 3 discusses related work. Section 4 describes the proposed approach. A case study
in Section 5 assesses the advantages of our approach. Finally, Section 6 concludes and discusses future
work.

2. BACKGROUND

The term "data provenance" can be defined as the source or lineage of the data, and its original usage
was to interpret and reproduce the results of scientific experiments [Freire et al. 2008]. However, in
recent years, the usage of provenance data has extrapolated for other goals such as scheduling [Oliveira
et al. 2012] and fault tolerance [Costa et al. 2012]. In the context of scientific experiments modeled as
scientific workflows, provenance can be classified as prospective and retrospective [Zhao et al. 2006].
Prospective provenance represents the specification of computational tasks. It corresponds to the
steps to be followed to achieve a (final or intermediate) result. Retrospective provenance consists in
a structured and detailed history of the execution of computational tasks (metadata associated with
the execution of tasks and environment characteristics) [Freire et al. 2008]. It can also be specialized
into explicit and implicit [Marinho et al. 2011]. Retrospective provenance is called explicit when
the activity executions and the data consumed or produced by them were previously declared in the
workflow specification. On the other hand, retrospective implicit provenance represents information
generated by activity executions with their data accesses, modifications, and exchanges that were not
explicitly declared in the workflow specification. It corresponds, for example, to the hidden provenance
data captured over accessed or changed objects within implicit dataflows [Marinho et al. 2011].

There are plenty of ways to store and query provenance data. Taverna uses RDF to store provenance
and annotations [Alper et al. 2013|. VisTrails [Callahan et al. 2006] stores provenance in an XML file
and the log is saved into a set of MySQL tables, e-Science Central [Woodman et al. 2011] uses graph
databases (i.e. Neo4J [Webber 2012]), while Swift/T, Pegasus, SciCumulus [Oliveira et al. 2010] and
Chiron [Ogasawara et al. 2013] store provenance in relational databases. Each one of these approaches
presents advantages and disadvantages. For example, relational databases rely on SQL to perform
queries. Transitive closure queries cannot be implemented in these systems unless we use recursive
queries, which are difficult to implement. In graph databases, transitive closure queries are easy to be
performed, but queries that need to traverse more than a few graphs may not be supported. There
are approaches that try to diminish this problem by summarizing the provenance graphs. Large-scale
scientific experiments that are based on parameter sweeps commonly produce several small/medium-
scale provenance graphs instead of a huge single provenance graph. El-Jaick et al. [2014] try to reduce
the processing time of provenance queries in these scenarios by using a summary graph to answer
them without the need for rebuilding the (many) original graphs. Authors showed that although they
query the summarized graph, there is no data loss on query results. Although this solution works for
many large provenance graphs, it does not allow for complex queries (different from transitive closure
ones).
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Trying to minimize the problem of diverse representation, the research community has worked on
standard provenance models such as OPM [Moreau et al. 2008] and PROV [Moreau et al. 2013|. The
OPM model was capable of representing only retrospective provenance. Dey et al. [2012] present
a provenance model based on graphs that extends the OPM model [Moreau et al. 2008]. Instead of
considering only retrospective provenance, according to the OPM model, it defines a unified provenance
model that also considers prospective provenance and temporal dimension of entity relationships.
Provenance queries over this model are performed using Datalog. PROV is an evolution of OPM
and its data model is capable of representing transformations, ownership, etc. over data, along
with prospective provenance. However, the provenance repositories generated by SWfMs are not
always compliant with these models [Callahan et al. 2006; Oliveira et al. 2010; Woodman et al. 2011;
Webber 2012; Alper et al. 2013; Ogasawara et al. 2013]. Thus, in practice, approaches that work
over provenance data cannot rely on the fact that the provenance database is compliant with a given
provenance model. We hope that this scenario changes in a near future.

3. RELATED WORK

To do provenance data analysis, scientists can use one of the many existing SWfMs such as Taverna
[Oinn et al. 2004], Kepler [Altintas et al. 2004, Pegasus [Deelman et al. 2016], Swift/T [Wozniak
et al. 2013], etc. These workflow systems provide mechanisms to allow scientists to pose analytical
queries over provenance data, and particularly in the case of Taverna, it provides mechanisms to set
Web services and bring some information from external sources. However, this needs to be made as
part of the workflow. Additionally, in all cases, their provenance database is only available at the end
of the workflow execution (which makes workflow steering mechanisms [Mattoso et al. 2015] harder
to implement). This may be time consuming, since the workflow execution may take several days or
even weeks. As an alternative, Swift/T generates a series of log files that can be analyzed to extract
some useful information, but does not provide a way to query those files [Wozniak et al. 2013].

Some existing approaches [Ellgvist et al. 2009; Seltzer 2011; Zhao et al. 2008; Oliveira et al. 2016]
work on the integration and querying of provenance from different sources. However, they do not
integrate it with domain data. Other approaches [Gongalves et al. 2012] do manage provenance data
along with domain-specific data. However, important domain-specific data is only imported during
the execution of the workflow from produced data files. Importing data from external sources during
the experiment analysis is not possible.

There are also some efforts to add semantics to provenance by using ontologies [Buttler et al.
2002; Fileto et al. 2003; Sahoo et al. 2009; Sahoo et al. 2011; Alper et al. 2013]. However, they
use ontologies to describe the workflow activities and/or input data, aiming at helping the scientist
to better understand the experiment, its execution, and results. In this sense, these approaches are
complementary to ours. However, it is far from trivial to have validated ontologies for many domains
of science. Even when the ontology is validated (like many in the bioinformatics domain), some
inconsistencies can be found as presented by Carvalho et al. [2011]. Also, external databases can
present a huge size and most of their content may not be modeled in an ontology, thus reducing the
analytic potential for scientists.

Some approaches also use ontologies in integration tasks that are performed by automated workflows
[Fileto et al. 2003; Sahoo et al. 2009]. These initiatives differ from ours in the sense that we allow the
scientist to use any kind of external data (not only ontologies). More importantly, we allow this to
be made during and/or after the workflow execution has ended, unlike these related approaches that
require annotations to be performed before the workflow execution.

In this article, we are inspired by some of the ideas of Gongalves et al. [2012] and noWorkflow
[Murta et al. 2014]. From noWorkflow, we borrowed the idea of representing the provenance database
as a set of Prolog facts and rules. Note, however, that the structure of the facts and rules are
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foo(X, Y) :- bar(X).
foo(X, Y) :- bar(Y).
foo(X, Y) :- foo2(X), foo2(Y).

Fig. 1. Example of rule that cannot be expressed in Datalog

completely different in both cases. In fact, in our approach, the structure of the facts depends on the
structure of the provenance database the SWfMS uses — our Prolog converting tool uses this structure
to automatically generate the rules and facts. noWorkflow, on the other hand, uses a fixed structure
for the facts that is tight to their internal provenance representation. From Gongalves et al. [2012], we
borrow the ideas of enriching the provenance database with domain data. However, as we explained
earlier in this section, their definition of domain data is limited to data within files consumed and
produced during the workflow execution — they do not support external data. In the next section, we
explain our approach in details.

4. ENRICHING PROVENANCE WITH DOMAIN-SPECIFIC DATA

In this article we allow scientists to enrich the provenance database with external domain data. To do
so, we address two main challenges. The first one regards the data format. Since our goal is to allow
scientists to query provenance and external domain data in an integrated fashion, the data must be
represented in a way that makes this possible. Several data integration approaches use a canonical
model [Halevy et al. 2006] and map data to this model so that the resulting mapped data can be
queried. This adds an extra step that would require the help of a Computer Science (CS) specialist.
Recall that different SWfMS store provenance using different representations, and external data can
have a wide range of structure and semantics.

To address this challenge, in this article we translate both the provenance database and the external
domain data to a knowledge base represented in Prolog. The choice of Prolog comes naturally in this
scenario, since, besides being able to represent a wide variety of data [Murta et al. 2014; Oliveira et al.
2016], it also allows for more expressive power than SQL since it adds inference capabilities. Datalog
would also provide these same advantages. In fact, syntactically, Datalog is a subset of Prolog, and
its clauses can be parsed and executed by a Prolog interpreter [Ceri et al. 1989]. Although Datalog
is more efficient on relational database queries (it processes the whole relation by using a set-oriented
approach rather than the one-tuple-at-time approach of Prolog), Datalog limits the way rules can be
written. As an example, it does not allow a rule to use a variable that does not appear in its body
[Chong 2016]. Thus, examples such as the one on Fig. 1 would not be allowed in Datalog.

The second challenge resides in defining the granularity of the imported data. External datasets
can be large, and importing them completely would waste space and query processing time. To deal
with this challenge, in our approach the granularity of the imported data is defined by the scientist
through a filter — only results that satisfy the filter are imported. The filter can be implemented in
several different ways. It could be a SQL query, an XQuery, a SPARQL query, etc., depending on
the type of the data source. In our implementation, we abstract the data source format by using web
service calls that implement those queries. We then only deal with the XML answer to this query
that is afterwards translated into Prolog and inserted into our knowledge base.

In the remaining of this section, we show the architecture of our proposed approach (Section 4.1),
discuss our provenance knowledge base (Section 4.2), and illustrate how it could be used in a real
bioinformatics experiment (Section 4.3).

4.1 Architecture
Fig. 2 shows the architecture of our proposed approach. The SW{fMS Provenance Repository
represents the database that stores provenance data generated by any SWfMS. In the context of

this article, without loss of generality, we assume the SWfMS uses a relational database to store
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Fig. 2. Architecture showing how to convert, import and export provenance and domain data. Provenance extracted
from SWEMS provenance databases as well as external sources are converted into Prolog facts and stores in a central
Prolog Repository.

provenance. This database may contain prospective and retrospective provenance data as well as
implicit provenance captured on file system level [Oliveira et al. 2014].

The main challenge of our architecture resides in providing an integration scheme that is generic
enough to work with different SWfMS. To do so, our architecture provides the Watcher Daemon, which
is able to connect to a given provenance DBMS and to provide data to the Provenance Converter that
generates Prolog Facts. The daemon works as a cartridge that connects to a given DBMS. For this
article, we implemented a cartridge for the PostgreSQL, since the SWfMS we use in our use case
(SciCumulus) use this DBMS.

For each new workflow execution, new tuples related to prospective and retrospective provenance
of this execution are inserted in the several tables of the database, and the daemon is invoked. The
only parameter value that is important for the daemon is the key attribute that identifies a workflow
execution in the database (e.g. ewkfid in e Workflow table in the case of the SciCumulus’ provenance
database). Once the daemon identifies new provenance data in the database, it calls the Provenance
Converter to convert all tuples of interest (from several different tables) into Prolog facts.

The Provenance Converter receives tuples from the Watcher Daemon and converts them into
Prolog facts. Then, the facts are stored in the Prolog repository. For each relational table tuple, a
Prolog fact of the form TableName(Att1Value, AttaValue, ..., Att,Value) is created. The Provenance
Converter also defines a predicate (i.e. atom) for each of the tables of the relational schema (i.e. the
name of the predicate is the same as the table name). To illustrate, Table I shows the Atom structure
and examples of some facts extracted from the relational database which schema is presented in Fig. 3.

External Sources are repositories that provide domain-specific data (e.g., from bioinformatics)
and can correspond to several domain-specific datasets available on the Web such as EBI, NCBI, and
GenBank. They can be used to enrich provenance data information about organism lineage, sequence
length, molecule type, etc. However, external sources are usually huge databases that would take a
long time to download, and require lots of storage space. Thus, importing entire external datasets is
not an option. This way, we import just a subset of external datasets by using a filter based on object
ids (objid) of interest. As an example, we may import functions from GenBank related to a specific
gene or organisms’ taxonomic division. This is done by the Domain Data Capturer.

The Domain Data Capturer component receives an objid of interest (e.g., biological sequence
identification) and performs Web Service calls to external data sources to retrieve domain data about
that object. The Web Service returns the desired domain data represented in XML that is converted
into Prolog facts by the Domain Data Capturer component using the approach of Lima et al.
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Table I.
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Atom Structure and associated facts extracted from SciCumulus provenance database.

Atom structure

Facts

cworkflow(wkfid, tag).

cworkflow(13, 'SciPhy’).
cworkflow(14, 'SciEvol’).

eworkflow(ewkfid, tag, tagexec).

eworkflow(36, 'SciPhy’, 'SciPhy 1").
eworkflow(37, 'SciPhy’, 'SciPhy 2").
eworkflow(38, 'SciEvol’, 'SciEvol 1).
eworkflow(39, 'SciEvol’, 'SciEvol 2').

cactivity(actid, wkfid, tag,
status).

cactivity(525, 13, 'actl’).
cactivity(526, 13, 'act2’).
cactivity(527, 14, 'actl’).
cactivity(528, 14, 'act2’).

eactivity(actid, ewkfid, cactid,
tag, status, starttime,
endtime).

eactivity(132, 36, 525, 'actl’, 'running’, 2016-02-22 20:29:31, 2016-02-22 21:18:27
eactivity(133, 37, 526, 'act2’, 'running’, 2016-02-22 21:18:27, 2016-02-22 22:23:13
eactivity(134, 38, 527, 'actl’, 'finished’, 2016-02-23 22:23:13, 2016-02-23 22:59:09
eactivity(135, 39, 528, 'act2’, 'finished’, 2016-02-23 22:59:09, 2016-02-24 00:37:16

— —  —

eactivation(taskid, actid, status,

eactivation(89, 132, 'running’, 4).

eactivation(90, 132, 'running’, 3).

eactivation(91, 132, 'running’, 1).

eactivation(92, 132, 'running’, 2).

93, 133, 'finished’, 30).

94, 133, 'finished’, 21).

eactivation(95, 133, 'finished’, 2).

eactivation(96, 133, 'finished’, 8).

imod(1, 36, 132, 89, '/root/SciPhy/fastal’, 'fastal’, 'A00145’).
imod(2, 36, 132, 90, '/root/SciPhy/fasta2’, 'fasta2’, 'A00144").
imod(3, 36, 132, 91, '/root/SciPhy/fasta3’, 'fasta3’, 'A00143’).
imod(4, 36, 133, 96, '/root/SciPhy/fasta3’, 'fasta3’, 'A00142").
omod(1, 1, 36, 132, 89, '/root/SciPhy/fasta2’, 'fasta2’).
omod(2, 2, 36, 132, 90, '/root/SciPhy/fasta3’, 'fasta3’).
omod(3, 3, 36, 132, 91, '/root/SciPhy/fastad’, 'fastad’).
cfield('name’, 1, 'String’).

cfield('description’, 2, 'String’).

cfield('size’, 3, 'Integer’).

cfield('index’, 4, 'Integer’).

crelation(1, 525,'input’, 'idataselection’).

crelation(2, 526,'input’, 'imafft’).

crelation(3, 527,'input’, 'ireadseq’).

crelation(4, 528,'input’, 'iraxml’).

tree(1,86).
tree(2,72).
tree(3,83).
treeSeq(1,"’A00145'
treeSeq(2,’A00144’
treeSeq(3,"’A00143'
treeSeq(4,"’A00142

duration).

eactivation
eactivation

AN

imod(ik, ewkfid, eactid, taskid,
path, file, seqid).

omod(ok, ik, ewkfid, eactid,
taskid, path, file).

cfield(fname, relid, ftype).

crelation(relid, actid, rtype,
rname).

tree(trid, bootstrap).

treeSeq(trid, seqid).

~— — — —

[2012]. Then, it stores the Prolog facts in the Prolog Repository. Thus, the Prolog Repository
integrates provenance data with domain data that can be easily queried. Since all data is in the
repository, a specialist user could implement and use Prolog rules to submit their queries. The only
requirement is that the external source must be accessible through Web services (or other kind of
query that provides XML as response). We call these services to retrieve a subset of interest of these
datasets. Web services of this type are available for several important biological datasets, and also for
datasets of other domains [Stein 2003; Amirian and Alesheikh 2008]. Note that domain data can be
imported both during and after the workflow execution, and thus our approach allows queries to be
performed at both of these moments.
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Fig. 3. Part of the SciCumulus provenance database schema.

We implemented our architecture and coupled it with the SciCumulus SWfMS. However, our archi-
tecture is designed to be generic and able to be applied to most of the SWfMS. Note that our Prolog
converter is able to read the database structure and convert it into Prolog. However, it is worth
noticing that for most existing SWfMS, the proposed approach will only work after the workflow
execution, since Provenance data is provided at the end of the execution (e.g. Swift/T, VisTrails). If
the SWEMS is able to provide Provenance data during the workflow execution (e.g. SciCumulus and
Pegasus), then our approach is able to generate Prolog rules at runtime. In any case, this does not
compromise the usefulness of our approach.

4.2 Provenance Knowledge Base

Our provenance knowledge base is comprised of facts and rules extracted from the provenance database
and external domain data. It is represented in Prolog and can be queried at any moment. Our Prolog
representation uses the same structure provided by the SWfMS provenance database. This means
that it may not be compliant with a provenance model. It all depends on how the SWfMS chose to
represent its data. Table I illustrates an excerpt of facts and rules extracted from the SciCumulus
provenance database, while Table II illustrates data extracted from external databases.

Although we believe compliance with a provenance model is very important, in this work we opted
for abstracting this requirement, since, in practice, this would make our approach to work only with a
limited number of SWIMS. If needed, one can map the provenance database into one of the available
provenance models, and then export the resulting mapping into Prolog. We give some first steps in
this direction in a preliminary work [Oliveira et al. 2016].

We have implemented our architecture using Java. The daemon and the domain data capturer are
generic. For this implementation, the daemon works with the PostgreSQL DBMS, and the Domain
Data Capturer works with the EBI Web Services. The Prolog query interface was implemented using
SWI.
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Activity level
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Fig. 4. An abstract representation of the SciPhy workflow with four activities: Sequence Alignment, Conversion of
Format, Search of Evolutionary Model and Construction of the Phylogenetic Tree.

4.3 Usage Example

We have chosen the SciPhy workflow [Ocana et al. 2011] to illustrate how our approach could be used
in practice. SciPhy is a scientific workflow that aims at generating phylogenetic trees from DNA,
RNA, or amino acid sequences. Phylogenetic trees determine the inferred evolutionary relationships
among various biological species. An abstract representation of SciPhy is presented in Fig. 4. SciPhy
is composed of four activities. They are responsible for executing the phylogenetic analysis (or gene
phylogeny) and are named as: (a) Multiple Sequence Alignment (MSA), (b) MSA conversion, (c)
Search for the Best Evolutionary Model, and (d) Construction of the Phylogenetic Tree. Each activity
is associated with a specific program. Multiple sequence alignment activity may be implemented by
MAFFT [Katoh and Toh 2010], Kalign |[Lassmann et al. 2009], ClustalW [Larkin et al. 2007| or
ProbCons [Do et al. 2005]. Each MSA program receives a multi-fasta file as input (MFS in Fig. 4),
then produces a MSA as output (MSA in Fig. 4). Multi-fasta is a text-based format for representing
either nucleotide sequences or peptide sequences, in which nucleotides or amino acids are represented
using single-letter codes. Besides producing the MSA file, some programs such as ClustalW produce
auxiliary files such as a probabilistic matrix that can be used for reconstructing the sequences (PM
in Fig. 4). PM is produced by ClustalW, but it is not informed by the program, i.e. scientists only
discover that this auxiliary file exists if they search on the file directory (which justifies capturing
implicit provenance data). Following, the MSA conversion is implemented by ReadSeq [Gilbert 2002].
ReadSeq receives the MSA in different formats (one for each MSA program) and then converts it
to PHYLIP format [Felsenstein 2006] (PH in Fig. 4). The election of the evolutionary model is
implemented by ModelGenerator [Keane et al. 2006]. There are several different evolutionary models
available, and ModelGenerator chooses the best one (EM in Fig. 4) to use in the construction of the
phylogenetic tree by RAxML [Stamatakis 2006] (Phylogenetic Tree in Fig. 4). In SciPhy, we consider
pre-chosen evolutionary models (BLOSUM62, CPREV, JTT, WAG, or RtREV) and we obtain several
trees for each one of the MSA programs used.

As presented in Fig. 4, the files MFS, MSA, PM, PH, Model, EM, and Phylogenetic Tree are created,
accessed or modified by one or more activities during the workflow execution. Dotted arrows among
activities and files denote data flows not explicitly declared in the workflow specification (implicit
retrospective provenance) while solid arrows denote data flows declared in the workflow specification
(explicit retrospective provenance).

We used the SciCumulus SWIMS [Oliveira et al. 2010] to run SciPhy in our case study, and so the
provenance repository we use is the one generated by SciCumulus. SciCumulus stores the provenance
data and (domain-specific) data extracted from produced files in a PostgreSQL relational database.
A key point here is that the domain data that SciCumulus is able to store is extracted from the files
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Table II. Atom structure and associated facts extracted from part of the EBI biological database

Atom Structure Facts

accession(entryid, accid, tag). accession(149, 150, 'A00145').
taxonomicdivision(entryid, txid, tag). taxonomicdivision(149, 158, 'MAM’).
sequencelength(entryid, idlength, length). sequencelength(149, 162, '678").
scientificname(taxonid, scinameid, name). scientificname(204, 205, 'Bos taurus’).

scientificname(212, 213, 'Eukaryota’).
scientificname(215, 216, 'Metazoa').
scientificname(218, 219, 'Chordata’).
scientificname(221, 222, 'Craniata’).

that are used as input and output to the workflow. No external domain data is supported. Fig. 3
shows part of the schema of the SciCumulus provenance database. The complete schema is available
at http://www.ic.uff.br/ vanessa/papers/relational-database-schema-SCC.png.

In this schema we can identify a series of tables that represent the workflow structure. Table
cworkflow stores metadata about the workflow, and cactivity stores metadata about activities of a
workflow. It also has tables that represent the workflow execution. Table eworkflow stores metadata
about the execution of a workflow, eactivity stores metadata about the execution of an activity and
eactivation stores metadata about the execution of tasks of an activity, each one consuming a portion
of the data. Finally, the schema is able to store domain-specific data that is extracted from input
and output data files. In this case, the tables will have names and structure that are specific for each
workflow — this is automatically handled by SciCumulus. As an example, table imod stores the name
of the input file used by an activation and the sequence identification (seqid) that is within this file,
and table omod holds the name of the output files generated by an activation.

Before running the workflow, the scientist starts the daemon and tells it to monitor the experiment
execution by passing the SciPhy tagezec. Then, she/he runs the workflow normally using SciCumulus.
During the execution, the daemon watches the database, collecting tuples and sending them to the
Provenance Converter. These tuples are then stored in the Prolog Repository as Prolog Facts. Every
time a tuple is sent to the Provenance Converter, it first checks if there is an atom corresponding to
the structure of that tuple. If not, it creates it. Table I shows a fragment of the Prolog facts that were
generated by Provenance Converter for this case study. The entire set of facts can be downloaded at
http://www.ic.uff.br/ “vanessa/papers/Prolog.rar.

After the first facts are in the Prolog Repository, the scientist can start analyzing the experiment
by posing Prolog queries. Since there are several experiments that take a long time to complete (days
or even weeks), waiting for it to finish may represent wasting precious computational resources, since
errors would be detected too late. Our approach allows for online analysis, and thus completely avoids
this problem.

At any time (during or after the experiment execution), the scientist may decide to load external
domain data into the provenance repository. In the case of the SciPhy workflow, the scientist may
retrieve metadata related to the DNA, RNA or amino acid sequences to support provenance analysis.
The SciCumulus provenance database has a table named imod (shown in Fig. 3) that holds the seqid
attribute. This attribute is extracted from input data files of the SciPhy workflow. However, the
seqid itself does not bring much information for scientists. Thus, for each tuple of the imod table
related to the chosen workflow execution (tagezec) of SciPhy, the Domain Data Capturer calls the EBI
RESTFul Web Service passing the segid (objid in our architecture) as a parameter. External public
biological databases hold important information such as organism lineage, sequence length, molecule
type, taxonomic division, etc. Such information is converted into Prolog facts by the Domain Data
Capturer and stored in the Prolog Repository. Table II shows a list of some atoms and facts extracted
from the XML file generated by EBI Web services. Once external data is imported into the provenance
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Table III. Prolog Rules that can be used by scientists to query the provenance database. These rules show the potential of
our proposed approach in querying prospective, retrospective and domain data, during and after the workflow execution.

Rule | PC | Query Rule
in PC
1 3 1,5 influency(Influencer, Influenced) :-
imod(lk, , , , ,Influencer, ), omod(_,lk, , , , Influenced).
influencyChain(Influencer, Influenced) :- influency(Influencer, Influenced).
influencyChain(Influencer, Influenced) :-
influency(Influencer, Any),influencyChain(Any, Influenced).
2 1,2 | 1,2,3(1);| consistentTrees(WkfEx, Treeld) :- tree(Treeld,Bootstrap), Bootstrap > 80,
1,2,3(2) treeSeq(Treeld, Seqld), eworkflow(WkfEx, , ),
imod(_ WkfEx, , , , ,Seqld).
3 1,2 | 1,2,3(1);| taxDivDur(Organism,TaxDiv,Duration) :- feature(E,F), taxonomicdivision(E, ,TaxDiv),
1,2,3(2) taxon(F, T1), scientificname(T1, ,Organism), accession(E, ,Seqld),
imod(_, , ,Taskid, , ,Seqld), eactivation(Taskid, , ,Duration).
4 1,2 | 1,2,3(1);| wkfActExec(TaxDiv, TagExec, Tag,Status) :- taxonomicdivision(E, ,TaxDiv),
1,2,3(2) accession(E, , Seqld), imod(_, ,Eactid, , , ,Seqld), eactivity(Eactid, Wkfid, ,Tag,Status),
eworkflow(Wkfid, ,TagExec).
5 - - lineageOrg(Organism, SciName) :- taxon(_,T1), scientificname(T1, , Organism),
lineage(T1,L), taxon(L,T2), scientificname(T2, ,SciName).
6 - - seqLength(Seqld,Size) :- accession(E, ,Seqld), sequencelength(E, Size).
7 3 1,5 treeTaxa(Taxon, Treeld, Param) :- feature(En,Fetld), taxon(Fetld, Taxonld),
scientificname(Taxonld, ,Taxon), accession(En, ,SeqID),
imod(_ \WkfEx,ActEx, , , ,Seqld), tree(Treeld, ),
treeSeq(Treeld, Seqld), cactivity(Actid, , ),
eactivity(ActEx, WkfEx, Actid, , ), cfield(Param, Relid, ), crelation(Relid, Actid, 'input’, ).

database as Prolog facts, scientists can start submitting Prolog queries that combine provenance and
external data.

5. CASE STUDY: RELATING PROVENANCE AND EXTERNAL DOMAIN DATA

Our case study shows how the scientist can take advantage of the integration of provenance and
external domain data to execute queries that otherwise would not be able to be performed. The
workflow we use is SciPhy (described in Section 4.3). Queries presented in this section were inspired
by the queries of the First, Second and Third Provenance Challenges'. Table III shows seven Prolog
rules that can be used to infer knowledge about the phylogenetic analysis experiment. The table
also shows the Provenance Challenge in which the query was inspired (column PC), and which query
from which Provenance Challenge inspired that specific query (column Query in PC). A Computer
Science specialist user can add other Prolog rules as needed. These rules aim at allowing scientists to
relate different types and granularity levels of provenance data and combine them with domain data
obtained from EBI and other external sources. This way, they offer an abstraction of the structure of
the Prolog facts, thus allowing scientists to use them to query provenance without worrying about the
data schema and the complex relationships in the context of each rule. To use them, all the scientist
need to do is to inform at least one parameter value. If no parameter value is informed, then all
possible combinations are returned by the query.

To answer the query "Which files influenced the generation of the fasta output file?", the scientist
can use Rule 1 shown in Table III. This rule was inspired by noWorkflow [Murta et al. 2014]. It
recursively retrieves all input files that influenced the generation of a particular output file (i.e.,
transitive closure). To do so, it explores retrospective provenance. If some file references are not
explicitly declared in the workflow activity (as parameters, for example), this query is also able to

IProvenance Challenge is the official event of the provenance community to compare and understand existing provenance-
aware approaches (http://twiki.ipaw.info/bin/view/Challenge/WebHome).
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?- influencyChain(File, 'fasta4’). ?7- consistent Trees(WkfEx, Treeld).

File = fasta3; WkKfEx = 36, Treeld = 1;

File = fastal; WkKfEx = 36, Treeld = 3.

File = fasta2.

Fig. 5. Result of the query InfluencyChain for the fasta4 Fig. 6. Result of the query consistentTrees
file

?- taxDivDur('Bos taurus’, TaxDiv, Duration).

TaxDiv = '"MAM’, Duration = 4.

Fig. 7. Result of the query taxDivDur.

retrieve the results. This situation is common in SciPhy since MSA programs (such as ClustalW)
produce the alignment but also produce other files that are important for bioinformaticians such as
the probabilistic matrix (PM in Fig. 4) that is important for sequence reconstruction and for validating
statistical data in phylogenetic trees. Thus, in the case of SciPhy, the query also explores implicit
provenance. To pose this query, the scientist fills in its second parameter as fasta4. The query
influencyChain(File, ’fastaj’), returns the names of all files that contributed to the generation of the
fastaj file (Fig. 5). This type of query is extremely important to scientists to discover which files
influenced the results of a specific experiment. With this information, they can check if each activity
processed the correct files. They may also find applications/services errors even when the scientist
is unaware of the source code (that is, even when the activity is a black-box). Thus, scientists are
able to verify if mistakes made over intermediate results influenced the final result and reproduce the
workflow with greater knowledge about its behavior.

Rule 2 implements a query proposed in the Introduction. It is designed to retrieve the most con-
sistent trees (bootstrap > 80) for each workflow execution (WkfEz). It explores explicit retrospective
provenance. The result is presented in Fig. 6.

These two previous queries did not use external data. We now present some queries that can only be
answered when external data is integrated into the provenance database. Suppose the scientist wants
to know how long the execution of activities that use sequences related to the Bos taurus organism
lasted, along with its taxonomy division. To do this, she/he can use Rule 3. This rule allows for
querying the taxonomic division and the time consumed by each task that processes data related to an
organism. It is an example of integration between information gathered from external data sources (the
taxonomic division) and explicit retrospective provenance data (the duration of activities). It returns
specific domain data that may help non-expert or beginners for better understanding provenance
data related to a particular organism. To answer this query, the scientist can perform the query
taxDivDur(’Bos taurus’, TaxzDiv, Duration) and know about the taxonomic divisions (e.g., MAM -
Mammalia or PRI - Primate), which comes from the EBI databases, as well as the time spent in the
task executions (in seconds). Fig. 7 shows the query result.

To get the status of a workflow experiment that is experimenting with sequence IDs related to a
given taxonomic division, the scientist can use Rule 4. This query uses external domain data and also
explicit prospective and retrospective provenance. Since it retrieves the workflow ID (which is referred
to as tag in SciCumulus), the scientist can further explore it by using other queries later. The results
of a query for the taxonomic division MAM, which refers to Mammalia, are shown in Fig. 8. The facts
tazon, lineage, taronomicdivision, and scientificname used in the rule body (Table III) come from the
EBI database. Example facts are listed in Table II.

In order to retrieve the organism’s lineage, scientists can benefit from Rule 5. For that, they must
inform the organism name as the input parameter. Passing the organism name Bos taurus as a param-
eter, for instance, the query returns its respective lineage: Eukaryota, Metazoa, Chordata, Craniata,
Vertebrata, Euteleostomi, Mammalia, Eutheria, Laurasiatheria, Cetartiodactyla, Ruminantia, Pecora,
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?- wkfActExec("MAM’, TagExec, Tag,Status).

TagExec = 'SciPhy 3’, Tag = actl, Status = running;
TagExec = 'SciPhy 4', Tag = act2, Status = running.

Fig. 8. Result of the query wkfActExec.

?- lineageOrg('Bos taurus’,SciName).

SciName = 'Eukaryota’; SciName = '"Metazoa’; SciName = 'Chordata’; SciName = 'Craniata’; SciName = 'Vertebrata’;

SciName = ’'Euteleostomi’; SciName = 'Mammalia’; SciName = 'Eutheria’; SciName = 'Laurasiatheria’; SciName =
'Cetartiodactyla’; SciName = 'Ruminantia’; SciName = 'Pecora’; SciName = 'Bovidae’; SciName = 'Bovinae’; SciName
= 'Bos’.

Fig. 9. Result of the query lineageOrg.

?- seqlLength(’A00145’', Size). ?- treeTaxa('Bos taurus’, Treeld, Param).
Size = '678". Treeld = 1, Param = name;
Treeld = 1, Param = description.

Fig. 10. Result of the query seqlLength. Fig. 11. Result of the query treeTaxa.

Bovidae, Bovinae, and Bos. This information may help scientists to identify which organisms are
classified into the same lineage (or in the same phylogenetic tree) and enables performing queries -
the same or other - over the requested organisms. Fig. 9 shows the lineage results to the ’Bos taurus’
organism. The facts accession and sequencelength used here come from the EBI database and can
be seen in Table II. This is an example of query that explores only external data. No crossing with
provenance data is made.

To obtain the length of a gene sequence the scientist can use Rule 6 by passing the sequence identifier
(Segld) as a parameter as shown in Fig. 10. For example, running a query using this rule with the
Seqld A00145, we obtain the value 678 for this specific gene sequence. Similarly to Rule 5, this rule
queries only external domain data.

Finally, Rule 7 implements the second query proposed in the Introduction: Which trees contain the
taxon Bos taurus and which parameters were used to generate those trees? It is designed to retrieve
the trees that have a specific taxon and the parameters used to derive them. For this, it crosses
explicit retrospective provenance and external domain data. The result produced from that query is
presented in Fig. 11.

This case study aimed at evaluating the suitability of the proposed approach. In fact, new analyses
are still needed, such as scalability ones with large volumes of imported data. These new experiments
are already planned as future work.

6. FINAL REMARKS

Analyzing provenance data is still an open, yet fundamental problem that deserves special attention
from the scientific community. The challenge is even more complex when scientists need to correlate
provenance and domain-specific data. To deal with this problem, we present an approach that allows
for scientists to analyze different types of provenance data together with external domain data. Al-
though there are several efforts to enrich provenance with domain data [Fileto et al. 2003; Gongalves
et al. 2012; Oliveira et al. 2015], our approach contributes by allowing external data to be queried
together with provenance database, even when the need for external data was not anticipated during
the workflow design and execution. Our case study showed the feasibility of the approach in analyz-
ing provenance through Prolog queries. This approach is generic and can be applied on provenance
repositories generated by different provenance capturing systems.
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In the case study presented in this article, we developed a Web service client to call the EBI
Web service. The Domain Data Capturer calls the Web Service and converts the obtained XML
into Prolog facts using the approach developed by Lima et al. [2012]. This Web service client can be
extended to query other external sources such as NCBI and UniProtKB/Swiss-Prot. We also developed
Prolog rules to integrate facts extracted from the SciCumulus provenance database and the EBI Web
service. Scientists can benefit from our proposed approach for relevant bioinformatics processes such
as sequence annotation and experiment validation. This way, they can associate a specific Seqld
to a specific activity execution in their experiments. They can also link this information to several
other external databases. This allows them to deepen their knowledge about a specific domain such
as phylogenetic analysis, performing recursive and non-recursive queries without worrying about the
specific aspects of the Prolog language. In practice, depending on the domain, new rules would be
needed by the scientists. Computer Science experts can support different requirements by creating
other Prolog rules and adding them to the Prolog Repository. This can be made either during or after
the workflow execution.

Our current implementation relies on the domain data extractor provided from SciCumulus. This
extractor is able to look into the input and output files of the experiment and extract relevant domain
information that is then stored in its provenance database. This is the case of the imod and omod
tables we used in our case study. However, few SWIMS are capable of doing this — most of them
only store the files and do not look into their content. Thus, when plugging our approach into other
SWIMS, one would need to develop domain extractors [Gongalves et al. 2012]. This is needed so
that we can connect provenance generated by the workflow with external domain data by calling Web
services with relevant parameters (objid in our architecture).

As future work, we plan to add experiments from other domains, such as astronomy (Montage
Workflow). We also plan to make querying easier by providing an interface where the user would be
able to select attributes, and the system would automatically generate the corresponding Prolog query.
This would eliminate the need of a Computer Scientist to write the rules in our current approach. An
initial idea is discussed by Martins et al. [2013].

We also plan to extend our approach by allowing scientists to connect more than one provenance
database into the system. This way, collaborative research teams that work on similar experiments
can share their findings and benefit from results of similar workflow executions. A first step in this
direction has been given by providing an approach to query heterogeneous provenance databases
[Oliveira et al. 2016].

REFERENCES

ABuU-AsaB, M. S., CHaoucHI, M., ALisci, S., GaLLl, S., Laassri, M., CHEEMA, A. K., ATtouF, F., VANMETER,
J., aAND AMRI, H. Biomarkers in the Age of Omics: Time for a Systems Biology Approach. OMICS: A Journal of
Integrative Biology 15 (3): 105-112, 2011.

ALPER, P., BELHAJJAME, K., GoBLE, C. A., AND KarRAGOz, P. Enhancing and abstracting scientific workflow
provenance for data publishing. In International Workshop on Managing and Querying Provenance Data at Scale
(BigProv). ACM, New York, NY, USA, pp. 313-318, 2013.

AvrinTas, 1., BERKLEY, C., JAEGER, E., JonEs, M., LupascHER, B., AND Mock, S. Kepler: an extensible system
for design and execution of scientific workflows. In Scientific and Statistical Database Management Conference
(SSBDM). Santorini Island, Greece, pp. 423-424, 2004.

AMIRIAN, P. AND ALESHEIKH, A. A. Publishing Geospatial Data through Geospatial Web Service and XML Database
System. American Journal of Applied Sciences 5 (10): 1358-1368, Jan., 2008.

BurTLER, D., CoLEMAN, M., CrircurLow, T., FiLETo, R., HAN, W., Pu, C., Rocco, D., aAND XioNnG, L. Querying
Multiple Bioinformatics Information Sources: can Semantic Web research help? SIGMOD Record 31 (4): 59-64, 2002.

CaLLAHAN, S. P., FREIRE, J., SANTOS, E., SCHEIDEGGER, C. E., Sizva, C. T., aAND Vo, H. T. Vistrails: Visualization
meets data management. In International Conference on Management of Data (SIGMOD). ACM, New York, NY,
USA, pp. 745-747, 2006.

CarvaLuo, M. G. P. b., Campos, L. M., BRacantoLo, V., Campos, M. L. M., anp Campros, M. L. A. Extracting
New Relations to Improve Ontology Reuse. Journal of Information and Data Management (JIDM) 2 (3): 541, 2011.

Journal of Information and Data Management, Vol. 8, No. 1, April 2017.



Querying Provenance along with External Domain Data Using Prolog : 17

CErl, S., GorTLOB, G., AND TANCA, L. What you Always Wanted to Know about Datalog (and never dared to ask).
IEEE Transactions on Knowledge and Data Engineering (TKDE) 1 (1): 146-166, 1989.

CHong, S. Logic programming. Computing Science Technical Report lec19, Harvard School of Engineering and Applied
Sciences, Cambridge, MA, 2016.

Cosrta, F., DE OLIVEIRA, D., Ocara, K., Ocasawara, E., Dias, J., AND MaTTOso, M. Handling failures in parallel
scientific workflows using clouds. In High Performance Computing, Networking, Storage and Analysis (SCC), 2012
SC Companion:. Salt Lake City, UT, USA, pp. 129-139, 2012.

DeeLmaN, E., Vani, K., Rynge, M., Juvge, G., Mavani, R., aND DA Siva, R. Pegasus in the cloud: Science
automation through workflow technologies. IEEE Internet Computing 20 (1): 70-76, Jan, 2016.

DEey, S., KOHLER, S., BowERs, S., AND LUDAsScHER, B. Datalog as a lingua franca for provenance querying and
reasoning. In USENIX Conference on Theory and Practice of Provenance (TaPP). USENIX Association, Berkeley,
CA, USA, pp. 13-13, 2012.

Do, C. B., MauaBHasavyam, M. S. P., BrRup~no, M., AND BaTrzogLou, S. ProbCons: Probabilistic consistency-based
multiple sequence alignment. Genome Research 15 (2): 330-340, 2005.

DoouirTLE, W. F. Phylogenetic classification and the universal tree. Science 284 (5423): 2124-2128, Oct., 1999.

Er-Jaick, D., Lima, A. A. B., anD MarToso, M. SGProv: summarization mechanism for multiple provenance
graphs. Journal of Information and Data Management (JIDM) 5 (1): 16-27, 2014.

ErLqvist, T., Koopr, D., FrREIRE, J., AND Sitva, C. Using mediation to achieve provenance interoperability. In 2009
World Conference on Services - I. Los Angeles, CA, pp. 291-298, 2009.

FELSENSTEIN, J. Phylogeny inference package. Available at http://fumblog.um.ac.ir/gallery/309/PHYLIP.pdf, 2006.

FiLero, R., Mebpeiros, C. B., Liu, L., Pu, C., aND Assap, E. D. Using domain ontologies to help track data
provenance. In Brazilian Symposium on Databases (SBBD). Vol. 18. Manaus, Brazil, pp. 84-98, 2003.

FreIrg, J., Koopr, D., SanTOs, E., AND Sitva, C. Provenance for Computational Tasks: a survey. Computing in
Science & Engineering 10 (3): 11-21, May, 2008.

Futuyma, D. J. Evolution. Sinauer Associates, Inc, 2013.

GILBERT, D. Sequence File Format Conversion with Command-Line Readseq. In Current Protocols in Bioinformatics.
John Wiley & Sons, Inc., Hoboken, NJ, USA, pp. A. 1E. 1 — A. 1E. 4, 2002.

GonNgaLves, G. C., bE OLIVEIRA, D., OcaNa, K., Ogasawara, E.; AND MarTOso, M. Using Domain-Specific Data
to Enhance Scientific Workflow Steering Queries. In International Provenance and Annotation Workshop (IPAW).
Springer, Santa Barbara, CA, pp. 152-167, 2012.

HarLevy, A., RajaArRamAaN, A., AND ORDILLE, J. Data Integration: the teenage years. In International Conference on
Very Large Data Bases (VLDB). ACM, Seoul, Korea, pp. 9-16, 2006.

Karon, K. aAND StanDLEY, D. M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in
Performance and Usability. Molecular Biology and Evolution vol. 30, pp. 772780, 2013.

Karon, K. aND Ton, H. Parallelization of the MAFFT Multiple Sequence Alignment Program. Bioinformatics 26 (15):
1899-1900, 2010.

Keang, T. M., Creevey, C. J., PENTONY, M. M., NaugHTON, T. J., AND MCLNERNEY, J. O. Assessment of
Methods for Amino Acid Matrix Selection and their use on Empirical Data shows that ad hoc Assumptions for
Choice of Matrix are not Justified. BMC Evolutionary Biology 6 (29): 1471-2148, 2006.

LArkIN, M. A., BLacksHIELDS, G., BRown, N. P., CHENNA, R., McGETTIGAN, P. A., McWiLLiAM, H., VALENTIN,
F., WaLracg, I. M., WM, A., Lorez, R., THOMPSON, J. D., GiBson, T. J., aAND Hiccins, D. G. Clustal W
and Clustal X version 2.0. Bioinformatics 23 (21): 2947-2948, 2007.

Lassmann, T., Frings, O., AND SONNHAMMER, E. L. L. Kalign2: high-performance multiple alignment of protein
and nucleotide sequences allowing external features. Nucleic Acids Research 37 (3): 858-865, 2009.

Liva, D., DELcapo, C., Murra, L., AND BrAaGANHOLO, V. Towards Querying Implicit Knowledge in XML Docu-
ments. Journal of Information and Data Management (JIDM) 3 (1): 51-60, Oct., 2012.

MARINHO, A., WERNER, C., MarToso, M. L. Q., BRacaNHoLo, V., AND Murta, L. G. P. Challenges in Managing
Implicit and Abstract Provenance Data: experiences with ProvManager. In Workshop on the Theory and Practice
of Provenance (TaPP). Usenix, Herakli Crete, Greece, pp. 1-6, 2011.

MarTINS, G., LARCHER JUNIOR, C., OLIVEIRA, A., MURTA, L., AND BrAacaNHOLO, V. XChange: Compreensao de
Mudangas em Documentos XML. In Sessdo de Demos do Simpdsio Brasileiro de Bancos de Dados (SBBD). Recife,
Brasil, 2013.

MatToso, M., Dias, J., va, K. A. O., Ocasawara, E., Costa, F., Horta, F., Sitva, V., AND DE OLIVEIRA, D.
Dynamic steering of {HPC} scientific workflows: A survey. Future Generation Computer Systems vol. 46, pp. 100 —
113, 2015.

MarToso, M., WERNER, C., Travassos, G. H., BRacannoLo, V., Ogsawara, E., bpE OLIVEIRA, D., pa Cruz, S.
M. S., MartiNHO, W., AND MURTA, L. Towards Supporting the Life Cycle of Large Scale Scientific Experiments.
International Journal of Business Process Integration and Management 5 (1): 79-92, Oct., 2010.

Journal of Information and Data Management, Vol. 8, No. 1, April 2017.



18 : Wellington Oliveira et al.

Morkeau, L., FreIRg, J., FurreLLE, J., McGraTH, R. E.; MYERS, J., AND PauLson, P. The Open Provenance
Model: An Overview. In International Provenance and Annotation Workshop (IPAW). pp. 323-326, 2008.

Moreau, L., Missier, P., BELHAjiaME, K., B’Far, R., CHENEY, J., COoPPENS, S., CRESSWELL, S., GIL, Y., GROTH,
P., KuynNE, G., LeEBo, T., McCUSKER, J., MIiLES, S., MYERS, J., SAHOO, S., AND TiLMES, C. PROV-DM: The
PROV data model. http://www.w3.org/TR/2013/REC-prov-dm-20130430/, 2013.

Murta, L., BRacanHoLo, V., CHiricaTI, F., Koor, D., AND FREIRE, J. noworkflow: Capturing and analyzing
provenance of scripts. In International Provenance and Annotation Workshop (IPAW). Springer, Cologne, Germany,
pp. 71-83, 2014.

Ocafa, K., bpE OLIVEIRA, D., Ocasawara, E., DAviLa, A., LiMma, A., AND MaTTOSO, M. SciPhy: a cloud-based
workflow for phylogenetic analysis of drug targets in protozoan genomes. In Advances in Bioinformatics and Com-
putational Biology, O. N. de Souza, G. P. Telles, and M. Palakal (Eds.). Lecture Notes in Computer Science, vol.
6832. Springer, Brasilia, Brazil, pp. 6670, 2011.

Ogasawara, E.; Dias, J., Siva, V., CHiricaTi, F., DE OLIVEIRA, D., Porro, F., VALDURIEZ, P., AND MAT-
T0s0, M. Chiron: a parallel engine for algebraic scientific workflows. Concurrency and Computation: Practice and
Ezperience 25 (16): 2327-2341, 2013.

OInnN, T., Appis, M., FErRris, J., MArvIN, D., SENGER, M., GREENwoOD, M., CARVER, T., GLOVER, K., Pocock,
M. R., WiraT, A., anND L1, P. Taverna: a tool for the composition and enactment of bioinformatics workflows.
Bioinformatics 20 (17): 3045-3054, 2004.

OLVEIRA, D., Ocafa, K. A. C. S., Baido, F., AND MarTOs0o, M. A provenance-based adaptive scheduling heuristic
for parallel scientific workflows in clouds. Journal of Grid Computing 10 (3): 521-552, 2012.

OLIVEIRA, D., Sitva, V., AND MarTOsO, M. How much domain data should be in provenance databases? In Workshop
on the Theory and Practice of Provenance (TaPP). USENIX Association, Edinburgh, Scotland, 2015.

OLIVEIRA, D. C. M. p., OcgasawarA, E., Baiio, F., AND MaTTOs0, M. Scicumulus: A lightweight cloud middleware
to explore many task computing paradigm in scientific workflows. In IEEE International Conference on Cloud
Computing (CLOUD). Miami, USA, pp. 378-385, 2010.

OL1VEIRA, W., MissiER, P., OcaNa, K., bE OLIVEIRA, D., AND BrRaGANHOLO, V. Analyzing Provenance across
Heterogeneous Provenance Graphs. In International Provenance and Annotation Workshop (IPAW). Washington
D.C., USA, pp. 57-70, 2016.

OLivEIRA, W., NEVES, V., OcaNa, K., MUurTA, L., OLIVEIRA, D. D., AND BrAacaNHOLO, V. Captura e Consulta a
Dados de Proveniéncia Retrospectiva Implicita Intra-Atividade. In Simpdsio Brasileiro de Banco de Dados (SBBD).
Curitiba, PR, Brazil, pp. 35-44, 2014.

SAHOO, S. S., NGuYEN, V., BODENREIDER, O., PARIKH, P., MINNING, T., AND SHETH, A. P. A Unified Framework
for Managing Provenance Information in Translational Research. BMC Bioinformatics 12 (1): 461, 2011.

SAHOO, S. S., WEATHERLY, B., MuTHARAJU, R., ANANTHARAM, P., SHETH, A. P., AND TARLETON, R. L. Ontology-
driven Provenance Management in eScience: An application in parasite research. In International Conference on
Ontologies, DataBases, and Applications of Semantics (ODBASE). Portugal, 2009.

SeEArLs, D. B. Pharmacophylogenomics: genes, evolution and drug targets. Nature Reviews Drug Discovery 2 (8):
613-623, Aug., 2003.

SELTZER, M. Provenance integration requires reconciliation. In International Workshop on Theory and Practice of
Provenance. Heraklion, Crete, Greece, pp. 291-298, 2011.

Stamatakis, A. RAXxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed
models. Bioinformatics 22 (21): 2688-2690, 2006.

StamaTtakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinfor-
matics 30 (9): 1312-1313, May, 2014.

STEIN, L. D. Integrating biological databases. Nature Reviews Genetics 4 (5): 337-345, May, 2003.

WEBBER, J. A Programmatic Introduction to Neo4J. In Annual Conference on Systems, Programming, and Applica-
tions: Software for Humanity (SPLASH). Tucson, Arizona, USA, pp. 217-218, 2012.

Woobwman, S., HipeEn, H., WarsoN, P., AND Missier, P. Achieving Reproducibility by Combining Provenance with
Service and Workflow Versioning. In Workshop on Workflows in Support of Large-scale Science (WORKS). Seattle,
Washington, USA, pp. 127-136, 2011.

WoznNiak, J., ARMSTRONG, T., WiLDE, M., Karz, D., Lusk, E., AND FosTER, I. Swift/t: Large-scale application
composition via distributed-memory dataflow processing. In International Symposium on Cluster, Cloud and Grid
Computing (CCGrid). Delft, Netherlands, pp. 95-102, 2013.

Zuao, J., Sun, F., Tornial, C., BaksHI, A., AND PRASANNA, V. A provenance-integration framework for distributed
workflows in grid environments. In Workshop on Grid and Utility Computing. Cochin, India, pp. 17-20, 2008.

ZHAO, Y., WILDE, M., aAND FosTER, I. Applying the virtual data provenance model. In International Provenance
and Annotation Workshop (IPAW). Chicago, Illinois, USA, pp. 148-161, 2006.

Journal of Information and Data Management, Vol. 8, No. 1, April 2017.



