SitRS — A Situation Recognition Service based
on Modeling and Executing Situation Templates

Pascal Hirmer!, Matthias Wieland®, Holger Schwarz', Bernhard Mitschang®,
Uwe Breitenbiicher?, and Frank Leymann?

1 Universitat Stuttgart, Institute of Parallel and Distributed Systems,
70569 Stuttgart, Germany
pascal.hirmer@ipvs.uni-stuttgart.de
http://wuw.ipvs.uni-stuttgart.de/

2 Universitét Stuttgart, Institute of Architecture of Application Systems,
70569 Stuttgart, Germany
http://www.iaas.uni-stuttgart.de/

Abstract. Today, the Internet of Things has evolved due to an advanced
connectivity of physical objects. Furthermore, Cloud Computing gains
more and more interest for the provisioning of services. In this paper, we
want to further improve the integration of these two areas by providing a
cloud-based situation recognition service — SitRS. This service can be used
to integrate real world objects — the things — into the internet by deriving
their situational state based on sensors. This enables context-aware appli-
cations to detect events in a smart environment. SitRS is a basic service
enabling a generic and easy implementation of Smart* applications such
as SmartFactorys, SmartCities, SmartHomes. This paper introduces an
approach containing a method and a system architecture for the realiza-
tion of such a service. The core steps of the method are: (i) registration
of the sensors, (ii) modeling of the situation, and (iii) execution of the
situation recognition. Furthermore, a prototypical implementation of
SitRS is presented and evaluated via runtime measurements.

Keywords: Situation Recognition, IoT, Context, Integration, Cloud
Computing, OSLC

1 Introduction

A major challenge for the Internet of Things (IoT) is sensor data integration
and sensor data processing [10]. The sensor access should be pervasive and the
integration of the sensors has to be automated. Furthermore, the sensor data
have to be interpreted in order to derive situations that can be understood
and processed more easily than the huge amount of low-level data, which is
difficult to handle. To enable situation-awareness for the IoT, different levels
of processing are needed. These levels are described in Fig. 1. Here, the first
level — the data level — contains the sensor devices. On this level only the raw
sensor data is available, which is very complex and difficult to process. Because

http://www.ipvs.uni-stuttgart.de/
http://www.iaas.uni-stuttgart.de/

2 Situation Recognition Service

1. Register situation
recognition for server

Application Level: Situation-aware Internet Application 2. Adapt to recognized

/\ situations
(h Situation-Model,
Knowledge Level: Situation e.g. state of server
L) “ready” or “critical”
f . A\ \

Context-Model,

Information Level: Observable Context e.g. Object. RamState

/ AN

Data Level: Sensor Data

AN Y,
; observation ' notification
N

Smart Environment Level: Observable Objects (Things)

Basic data types,
e.g. MB of free RAM

(& J

Fig. 1. Transition Levels from Data via Information to Knowledge

of that, the sensors are pushing their data to the next level — the information
level. At this point, the sensor data, such as temperature or load percentage, is
enhanced with information about their relations to objects, such as smart phones
or computers in a smart environment. On the information level, this data i.e., the
observable context, is linked to real world objects of the smart environment and
becomes information about the environment. Based on this context information
sensor data is aggregated and interpreted in order to derive well-understandable
situations that lead to knowledge about the smart environment. This knowledge,
i.e. high-level context, can be processed on a higher-level of abstraction, which
simplifies building situation-aware applications.

A method and a system architecture to provide this sensor data processing
for situation recognition as a service in an automatic, cloud-based manner are the
main contributions of this paper. Our system architecture supports automated
service deployment, a web-based front-end and loose coupling. This has many
advantages like concurrent remote access, high availability and scalability in order
to support multiple instances of our service as well as the integration of many
distributed sensors. In addition, we provide a means to define the situations
that could occur, that is, a model containing all necessary information for their
recognition. This model, called situation template in this paper, contains the
sensors being monitored as well as the conditions that have to match for a certain
situation. Once the model is created, it can be used to execute a data flow
that integrates the sensor information and executes comparison operations to

Situation Recognition Service 3

recognize occurring situations. The result of the processing is the recognition of
situations that allow applications to adapt to the smart environments observed
by the sensors. The advantage of such a service is, that the applications do not
have to care about the sensor access, the sensor data processing and not even
about the situation recognition. Instead, the applications only query the needed
knowledge or register for push notifications on occurring situations. The service
cares for finding appropriate sensor devices, storing the context data for queries,
providing a registration service for push notifications and finally automatically
setting up the situation recognition for the needed situations. This enables smart
applications to integrate real world objects into the internet by deriving their
situational state based on sensors.

The remainder of this paper is structured as follows: First, Section 2 intro-
duces related work. After that, Section 3 presents an architecture and method
for situation recognition that copes with the mentioned issues and enables situa-
tion recognition based on sensor data. Afterwards, in Section 4 we present our
prototypical implementation of SitRS. Section 5 evaluates the approach using
runtime measurements and finally Section 6 gives a summary of the paper and
an outlook on future work.

Motivating Scenario: This section introduces a motivating scenario that is
used throughout the paper to explain our approach. The goal of this scenario is
the monitoring of sensors of several machines simultaneously and the reaction
on occurring situations. For example, these machines could be web servers or
cloud-based virtual machines in a data center. Using a dashboard, the currently
occurring situation of all machines and, as a consequence, the state of a web
server or a data center can be seen immediately. It’s even possible to receive
notifications in case of emerging problems. For that, we define three types of situ-
ations: (i) “Failed” indicates that the system is not available due to an occurred
error, (i) “Critical” indicates an occurring problem that could lead to a system
failure (cf. example in Fig. 4) and (iii) “Running” indicates that no problem is
occurring or emerging. The sensor data that is used to recognize these situations
is provided by heterogeneous APIs, depending on the respective machine. A
main challenge in this scenario is (i) coping with different representations of
the sensor data, (ii) integrating the sensor data, (iii) computing the situation,
and (iv) integrating highly heterogeneous APIs. Our solution is able to realize
this scenario by representing sensor data as uniform REST resources and by
integrating and analyzing them using a data flow-based integration. We will
explain the following concepts based on this motivating scenario, which has also
been implemented in our prototype.

2 Related Work

Acquiring, modeling and managing context information is a tedious and expensive
task [6,8]. As a consequence, it is beneficial to share this information between
different kinds of context-aware applications. We use the definition of context

4 Situation Recognition Service

given by A.K. Dey and G.D. Abowd as “any information that can be used to
characterize the situation of an entity, where an entity can be a person, place,
or object” [5]. Thus, as Dey and Abowd already defined, context information
can be used to identify and derive situations. Context models were introduced in
previous work [6] to represent or mirror certain aspects of the real world as closely
as possible thereby serving as a shared, common basis for different context-aware
applications and systems. In this paper, however, we concentrate on how context
and context models can be used to recognize situations. So the basic idea is to
enhance an existing context model infrastructure with a situation recognition
service based on so called situation templates. A situation template is an abstract,
machine-readable description of a certain basic situation, which describes context
information considered for being relevant for the situation and a description of
how to derive the existence of a situation from these values. Situation templates
were introduced before and this paper builds on the definition presented in [7].
Due to the historical development of rule-based expert systems, most context
reasoning systems [11] use ontology-based and predefined rule-based approaches.
Compared to our approach, most of the existing context-aware systems are
supposed to cover only a limited geographical area or support only a specific use
case scenario [2]. In our approach, any geographical area can be supported using
a global context model and in addition any kind of situation recognition can
be modeled as situation template based on the available context model. Unlike
situation recognition approaches that are based on pattern recognition using
e.g., machine learning [1] or on ontological reasoning [4] our approach executes
the situation recognition as a data flow. Furthermore, complex event processing
(CEP) [3] engines can be used for data flow execution in our approach. Hence,
the only errors and uncertainties in the process result from the sensors and their
sensor data readings. The data flow processing is accurate.

For the execution of the situation recognition, we use the Pipes and Filters
pattern [9] — which is implemented in our prototype using Node-RED? — and
build on a transformation approach presented previously in [12]. There, the
concept of mapping the Pipes and Filters pattern to an executable representa-
tion was presented. In this paper, this concept is enhanced by a more detailed
approach introducing a method for situation recognition as well as a prototypical
implementation.

3 SitRS — Architecture and Method

The SitRS architecture, displayed in Fig. 2, consists of the situation model, the
situation recognition service, and the sensors. The components of the situation
recognition service can be deployed as cloud services, on a local machine or in a
hybrid manner. The service is subdivided into two core components, the situation
recognition system and the resource management platform and furthermore
contains two repositories, one for storing the situation templates and the other
for storing sensor information. In addition, it contains the following software
components: the situation registration service and the sensor adapters.

3 http://nodered.org/

Situation Recognition Service 5

Situation
S1 oee Sn Objects

Situation
Recognition

Situation Situation Recognition System
Registration

Service

Situation
Template
Repository

HEH]
Resource Management u

Situation Platform

Recognition
Service

Sensor
Registry

Physical Objects
with Sensors

Fig. 2. SitRS — Architecture

The sensors at the bottom level can be registered in the Sensor Registry,
which invokes the resource management platform that extracts the sensor data
via the adapters and provisions them as uniform REST resources. Based on the
registered sensors, a description defining the conditions for an occurring situation
is modeled using so called situation templates. These situation templates are
stored in the Situation Template Repository. The Situation Registration Service is
used for the registration on occurring situations based on the situation templates.
The situation templates are mapped onto an executable representation — we
call executable situation template in the context of this paper — and executed
in the Situation Recognition System, i.e., an execution engine. The output of
this engine determines if modeled situations occurred. Note that the mapping
from a situation template to an executable representation is necessary to support
different execution engines, i.e., to prevent being dependent on a specific engine.

The introduced architecture is used as shown in Fig. 3. There are two kinds
of actors participating in this method, the situation recognition user and the
situation recognition admin. The admin has to register the sensors to be used.
The situation recognition user models the situation to be recognized as situa-
tion template and processes the notifications of the situation recognition. This
separation enables the usage by non-expert users regarding sensor integration
and technical details. The method contains all steps needed for defining the

6 Situation Recognition Service

Executable 2%
Situation Template

Model Situation Situation
Template Recognition

Register Sensors

Fig. 3. Method for Situation Recognition

continuous recognition of a situation. Due to a design decision, only a situation
for a single object, e.g. a web server, can be monitored by our approach. As a
consequence, this method has to be re-applied for different objects. Because of
that, it makes sense to create a single (cloud-based) instance of the service for
each object to be monitored. Recognizing situations regarding multiple objects is
part of our future work. The overall method consists of the following steps:

Step 1 — Sensor Registration: In the first step of the situation recognition
method, the available sensors are registered in the sensor registry component (cf.
Fig. 2). This registry is connected to the resource management platform, which
provides the sensor’s data as uniform REST resources. To register a sensor of
a specific object, e.g., the heat sensor of a machine, the object’s id, the type of
the sensor as well as its access path have to be specified. Thereupon, an entry is
created in the sensor registry containing the given information and an unique id
of the registered sensor. Once a sensor is registered, an event is generated that
notifies the resource management platform. Thereupon, this platform creates an
adapter to connect to the sensor and provides its data through a REST resource.
Note that each sensor is represented by exactly one REST resource. The URI
of this resource can be requested from the sensor registry using the sensor’s
id and is used for the transformation of a situation template to an executable
representation, which is described in Step 3.2.

Step 2 — Situation Template Modeling: Before we are able to recognize
situations, we need a means to define them. To enable this, we build situation
templates (ST), using Situation-Aggregation-Trees (SAT) that were defined by
Zweigle et al. [13]. These SATSs are directed graphs resulting in a tree structure,
in which the branches are aggregated bottom-up (as shown in Fig. 4). As a
consequence, all paths are joined in a single root node that represents the
situation. The leaf nodes of the situation template — called context nodes —
represent the sensors. These context nodes are connected to condition nodes for

Situation Recognition Service 7

<SituationTemplate id="sitrec" name="System
Observation">
<Situation id="A" name="System Critical">

7777777777777777777777777 | <situationNode name="system critical"
"""""""""""""""""" | id="A3"/>

<operationNode id="A2" name="Combine">
<type>or</type>
<parent parentID="A3"/>
</operationNode>

<conditionNode id="A1" name="% CPU load">
<opType>greaterThan</opType>
<condValue>
<value>90</value>

i </condValue>
,,,,,,,,,,,,, : <parent parentID="A2"/>
</conditionNode>

<contextNode id="A0" name= "CPU Sensor"
type="cpulLoadSensor">

Loe:d iy) { <parent parentID="A1"/>
% </contextNode>
Watchdog RAM CPU </Situation>
Sensor Sensor Sensor </SituationTemplate>

Fig. 4. Example of a Situation Template modeled in XML

filtering the incoming sensor data based on a condition. The output of these
condition nodes can be aggregated by operation nodes using logical operations
until the root node is reached. In previous work, no machine-readable format has
been properly defined for the exchange and definition of these SATSs, which is
important to enable automated processing. To overcome this issue, we propose a
schema based on XML. Of course, other formats such as JSON could be used as
well. Note that modeling XML manually is a time-consuming and also error-prone
task due to the lack of an automated schema validation. To cope with this issue,
we recommend using existing XML modeling tools, both graphically or textually.
Due to the fact that a large variety of XML modeling tools already exist, we do
not provide an additional modeling tool for situation templates.

Figure 4 shows an example of a situation template that serves the recognition
of the situation “Critical” of a web server as described in the motivating scenario
in Section 1. To model such a situation, firstly, the available sensors of the
machine have to be modeled using context nodes that are containing the type
of the sensor. These context nodes are then connected to condition nodes that
compare the sensor’s data with predefined values. In the shown example, (i) the
CPU load percentage should be greater than 90, (ii) the available RAM should be
lower than 1000 MB, and (iii) the response code of the machine should not equal
200 in order to produce the output true. These condition nodes are aggregated
using operation nodes that represent logical operators, in this specific example
the OR operation node. The root of the SAT is the situation itself, i.e., the
situation occurs if the root node evaluates to true.

In the following, we describe the individual parts of a situation template
in detail, which is defined using an XML schema definition that can be found

8 Situation Recognition Service

online*. Each situation template has a unique identifier, a name and may contain
an arbitrary number of situations. This enables the simultaneous monitoring of
many different occurring situations within a single situation template. A situation
describes, which conditions have to apply for its occurrence, i.e., it is defined
by a directed tree. This tree contains a single root node, the situation node,
which occurs once inside a situation. The situation node describes the situation
to be monitored. A situation is uniquely defined by an identifier and its name.
Furthermore, a situation contains an arbitrary number of context nodes, condition
nodes and operation nodes. These nodes are connected using the parent element,
which contains a reference to the parent node.

Context nodes are used to describe the sensors that provide the data and are
defined with an identifier, a name and its type. Detailed information about the
sensor can be requested from the registry using the type attribute of the context
node as well as the identifier of the monitored object. Note that each sensor that
is being modeled has to be registered in the sensor registry first (cf. Step 1). The
parent nodes of context nodes are always condition nodes, as shown in Fig. 4.

Condition nodes are used to compare sensor data with values that are pre-
defined in the situation template. Possible types of condition nodes are greater
than, less than, equals, not equals and between. The value used for comparison
can be determined in the XML element condValue. Furthermore, each condition
node can have an arbitrary number of operation nodes as parents.

Operation nodes are used to aggregate the output of the condition nodes
and are restricted to the logical operations AND, OR, XOR and NOT. That
is, a situation usually occurs if more than one condition applies. However, if a
situation is dependent on only one condition, no operation nodes have to be
modeled. The parent of an operation node is either a single situation node or an
arbitrary number of operation nodes.

To ensure reusability and concurrent access, the modeled situation templates
are stored in the situation template repository.

Step 3 — Situation Recognition: The third step of our method is subdivided
into several sub-steps that are shown in Fig. 5 and are described in the following.

Step 3.1 — Situation Registration: The situation registry serves the reg-
istration on a specific situation to be recognized. The input of the situation
registry is the id of the situation template as well as the id of the object (oID)
to be monitored. On successful registration, the situation registration service
returns an observation flow instance id (fID) that can be used for deregistration
or management purposes. Once a situation is registered, an event is generated
that invokes the transformation of the situation template. This transformation
receives the situation template from the situation template repository using the
given id and transforms it into the executable situation template. After that, this
executable situation template can be deployed and executed in the respective

4 http://pastebin.com/TyBNPUEs

Situation Recognition Service 9

Executable %‘

)
Situation Template |
! 32
'
i
1
:

=
(:\f e Transform ST
! to flow
Situation Register h 33
Recognition Situation Deployment

Recognition

3.5
Deregistration 34

of Situation Execution
Recognition

Fig. 5. Detailed View of the Situation Recognition Step

runtime environment. The execution runs until a situation template or all objects
relating to a situation template are deregistered in the situation registry.

Step 3.2 — Situation Template Transformation: The transformation of
situation templates serves the creation of an executable, event- and flow-based
representation that is able to recognize occurring situations based on the modeled
situation template. The input of the mapping is the identifier of the object to be
monitored (e.g., a web server) that was entered in the situation registry. In our
prototypical implementation, e.g., the format of the executable representation is
defined in JSON so it can be executed in the Node-RED environment. However,
depending on the execution environment, many different formats are possible.
We provide a 1-to-1 transformation from the XML-based situation template to
an executable representation. That is, each element of the situation template
is represented by exactly one element in the executable representation. In the
first step of the transformation, we map the context nodes onto calls of REST
resources that provide the latest sensor data. To do so, we receive the access
information, i.e. the URL of the resource, from the sensor registry (cf. Step
1), using the object id from the mapping’s input and the type of the sensor
defined in the situation template. The second step of the mapping processes the
condition nodes, i.e., the nodes implementing comparison operations such as
greater than, less than or equals that compare sensor data with predefined values.
These condition nodes are mapped to predefined function nodes, implementing
the comparison operations, e.g., using JavaScript in Node-RED. In a similar
fashion, the third step maps the condition nodes AND, OR, XOR or NOT to

10 Situation Recognition Service

corresponding function nodes that implement these logical operators. In the final
step, the nodes are connected using the means of the respective execution model.
The result is an executable situation template that recognizes occurring situations
through its execution. The time interval, in which the data flow will be executed,
that is, in which a situation should be monitored, has to be predefined by the
user of the solution and is used as input for the transformation. This is necessary,
because the execution time interval strongly depends on the use case. For each
situation, modeled in the situation template, a single flow graph is created and
can be deployed and executed separately.

Step 3.3 — Situation Template Deployment: After its transformation, the
executable situation template is deployed into the execution environment, e.g.,
Node-RED, CEP-Esper® or Odysseus®. As a consequence, the deployment serves
as the interface to the execution engines being used. It should be flexible enough
to support different engines and should also be able to handle occurring errors
during the deployment. Operations supported by the deployment are deploy,
start situation recognition and stop situation recognition. In our prototype, for
example, the deployment sends a HTTP REST call to the Node-RED engine to
deploy a mapped situation template. After that, the situation recognition flow is
initiated by executing the start command. The situation recognition is active as
long as the modeled situation should be monitored, i.e., until it is deregistered in
the situation registry.

Step 3.4 — Situation Template Execution: After the deployment, the exe-
cutable situation template is executed using the respective execution environment,
e.g., an event-processing engine such as Node-RED. In the predetermined time
interval, the sensor data is requested from the REST resources that return the
latest sensor data. Thereupon, the further nodes of the situation template are
processed. These are always condition nodes that were mapped onto predefined
function nodes that compare the sensor data with predefined values and return
a Boolean value determining whether the condition applies. After each of these
condition nodes is processed, their output is concatenated using the mapped
operation nodes that implement logical operations. The concatenation of the
paths is processed until a single output emerges. This output is a Boolean value,
determining whether a situation occurred or not. This flow is repeated in the
given time interval until the situation is deregistered.

Step 3.5 — Situation Deregistration: The final step of the situation recogni-
tion is the deregistration of a situation template for a certain object. After the
need for the recognition of a situation expires, it is deregistered in the situation
registry. In case no more registrations exist for a situation, two steps are pro-
cessed. First, the execution engine stops the situation recognition flow. Second,
the executable situation template is undeployed from its execution environment.

5 http://esper.codehaus.org/ ° http://odysseus.informatik.uni-oldenburg.de/

Situation Recognition Service 11

Node-RED

Situation
Registration
Service

oID+ST

Sltuatlon
Template
Repository

OSLC-based Resource
Management Platform

OSLC REST Resources

OSLC Service Layer

OSLC Service Provider |
Data Cache

Create
Resource
Recognition push push
Service
OSLC Adapter 1 OSLC Adapter n

Sensor
Registry

Situation

Fig. 6. Architecture of the SitRS Prototype

The deregistration of a situation secures that no unnecessary resources are spent
for an (even temporary) unneeded situation recognition.

4 Prototypical Implementation

In this chapter, we describe our prototypical implementation of the introduced
concepts. The overall architecture of the prototype is shown in Fig. 6. Furthermore,
the prototype is available on GitHub (https://github.com/hirmerpl/SitOPT).

Firstly, we implemented a mapping of situation templates defined in XML to
an executable representation in JSON. This mapping has been implemented as
a Java library using the Java Architecture for XML Binding (JAXB), which is
used to parse the situation template. Furthermore, we used the Apache Wink”
JSON library to create a JSON model for the executable representation.

After the mapping is processed, we deploy the executable situation template
to Node-RED using the provided HTTP REST interface. There exist many
technologies that could have been used for processing the situation template
such as RestFlow®. However, for our prototype, it is a requirement that the used
engine is web-based, RESTful and offers a graphical user interface to enable
an easier development as well as advantages in debugging. Because of that, we
used Node-RED here, which provides a nice user interface showing a graphical
representation of the executed flows, supports automatic deployment and offers
a native REST support. The flow is started automatically and processes the
situation recognition in predefined time intervals.

The resource management platform provides sensor data of heterogeneous
sources to be processed by the executable situation template deployed in Node-
RED. The resource management platform is currently being implemented using

7 https://wink.apache.org/ ® https://github.com/restflow-org/

12 Situation Recognition Service

Eclipse Lyo? — the Java-based implementation of the Open Services for Lifecycle
Collaboration (OSLC)!Y specification —, however, it is not yet available in our
prototype. Same with the sensor registry that could e.g, be realized using a web
service with an underlying database to store the sensor’s information.

The implementation of the resource management platform is based on OSLC
because OSLC provides a mature specification that describes how to provide
data as uniform REST services. In this paper, we use a push approach from
the sensors to the resource management platform and a pull approach from the
situation recognition system to the resource management platform. This mixed
push/pull-approach is necessary because the situation recognition processes the
sensor data independent of the sensors’ reaction, i.e., sensor values have to be
available at all times not only if pushed by the sensors. The resource management
platform consists of (i) OSLC adapters to connect to the sensor data sources, (ii)
a data cache to store intermediate data, (iii) an OSLC service provider managing
OSLC services, (iv) OSLC services that create, modify or delete REST resources,
and (v) the REST resources themselves that provide data of the connected sensors
to enable uniform accessibility. The architecture of these components is displayed
in Fig. 6. Note that the OSLC specification is usually used for the integration
of lifecycle tools for software development. For our prototype, we designed an
OSLC-inspired architecture that transfers the concepts of OSLC to enable the
integration of sensor data sources. As a consequence, our design could slightly
differ from the OSLC specification. In the following, the components of the
resource management platform are described in detail:

OSLC Adapter: An OSLC adapter is used to connect to a sensor’s API
in order to extract its data. This can be realized using either a push or pull
approach. In the pull approach, the adapter requests the data from the sensor,
in the push approach, the data is sent directly to the OSLC adapter as soon as
the sensor reacts. Note that the pull approach requires a sensor API that caches
its data and provides it on request, independent of the sensor’s reaction. In the
motivating scenario, an adapter for each machine to be monitored has to be
created by accessing the machine’s sensor APIs and by extracting data, e.g., the
CPU load, the currently available RAM or the CPU temperature. This data is
stored into a data cache, e.g. a key-value store, to be available on request. Note
that details about the binding of the sensors are part of our future work.

OSLC Service Provider: The OSLC service provider represents the entry
point of the platform and manages the OSLC services that provide the REST
resources. In our approach, we use a single service provider, managing all services.

OSLC Services: OSLC services are responsible for the on-demand creation,
modification and removal of REST resources. Each service represents an object
to be monitored. This object may contain an arbitrary number of sensors. For
each sensor of an object, an OSLC REST resource providing the sensor data is
created by these services.

REST Resources: The REST resources represent the interface to the user of
our OSLC platform, that is, the situation recognition. The data extracted by the

9 http://eclipse.org/lyo/ '° http://open-services.net/

Situation Recognition Service 13

Table 1. Runtime Measurements of the Prototype

Measurement||ST Transformation|ST Deployment|ST Execution
1 219 ms 141 ms 6 ms
2 219 ms 126 ms 6 ms
3 234 ms 125 ms 5 ms
4 203 ms 141 ms 5 ms
5 204 ms 140 ms 6 ms
%} 215,8 ms 134,6 ms 5,6 ms

OSLC adapters is accessed through the data cache and is made available through
a RESTful interface, providing the uniform methods GET, PUT, POST and
DELETE that can be invoked using the Hypertext Transfer Protocol (HTTP).
The actual implementation of the resources is defined in the corresponding OSLC
service. In our prototype, only the GET and DELETE methods are relevant to
either receive the sensor data or delete the resource if a sensor is deregistered.

Currently, the SitRS prototype has the following limitations: Firstly, it is
not yet possible to compare sensor values with each other. It is only possible
to compare sensor data with fixed values. Secondly, no concept of time exists
because it is focus of this paper to recognize only current situations.

5 Evaluation

This section contains the evaluation of our approach by presenting runtime
measurements and a load test based on the prototypical implementation.

To conduct the runtime measurements, we used an Ubuntu image hosted on
Openstack!! with 8 GB RAM and 8 Intel(R) Xeon(R) CPU E5-2630 0 @ 2.30GHz
CPUs for our measurements. We measured the runtime of the situation template
transformation, the deployment and the execution, separately. The situation
template we used for these measurements monitors a remote machine, modeled
as shown in the example in Fig. 4. All in all, this situation template contains 8
nodes to be mapped, deployed and executed. Table 1 shows the measurement
results. These measurements are based on the transformation, deployment and
execution of a single situation template. Our measurements are used as proof of
concept that the introduced steps are processed in a reasonable time.

We further executed a load test to check how many situation templates
can be transformed, deployed and executed in parallel inside a single runtime
environment, using the same situation template as above. The results are shown
in Table 2. As displayed, the runtime highly increases with increasing situations
to be monitored in parallel. Our measurements show that executing two flows
in parallel increases the runtime to 38 ms, when executing ten flows in parallel
even to 404 ms. This means, Node-RED produces an overhead when processing
multiple parallelized flows. This happens due to Node-RED’s inability to process
the flows in parallel using multiple threads. Furthermore, the internal execution

" http://www.openstack.org/

14 Situation Recognition Service

Table 2. Load Test of the Prototype

ST||Transformation @|Deployment &|Parallel Runtime @|Sequential Runtime @
1 215,8 ms 134,6 ms 5,6 ms 5,6 ms
424.4 ms 209,2 ms 37,6 ms 13 ms
5 1093 ms 350 ms 176,4 ms 27 ms
10 2475 ms 659,2 ms 404,4 ms 57 ms

scheduling leads to waiting periods between the execution of nodes. However,
when executing the flows sequentially, the runtime is growing approximately
linearly as expected, e.g. 10 sequentially executed flows lead to a runtime of 57 ms
instead of 404 ms when executed in parallel (cf. column “Sequential Runtime”).
In conclusion, when using the Node-RED runtime environment, it would be
necessary to implement a self-made runtime scheduler to avoid a poor runtime.
As a consequence, we use the Node-RED runtime environment only for our
proof-of-concept implementation. In the future, we will implement and compare
further execution engines such as CEP-Esper that are suitable for highly parallel
scenarios.

6 Summary and Outlook

In this paper, we presented an approach for a situation recognition service called
SitRS. This service can be used to integrate real world objects (things) into the
internet by deriving their situational state based on sensors. For that, we intro-
duced a method for the recognition of situations based on modeling and executing
situation templates. These templates represent a model to define situations by
the sensor data to be used as well as the conditions for the situations. The SitRS
service transforms this description into an executable situation template that
can be automatically deployed and executed in a (cloud-based) execution engine.
The architecture of our approach is separated into two components, the situation
recognition component and the resource management platform. The situation
recognition component is used to execute a data flow that reads sensor data,
compares them with predefined values and uses this information to determine if
a certain situation occurred. The sensor data is provided by REST. The sensor
registry can be used to register new sensor data sources or deregister them if
they aren’t needed anymore.

As future work, we plan to integrate SitRS into a workflow system in order
to realize situation-aware workflows. Furthermore, we plan to use the presented
method in a different use case to enable situation recognition in advanced man-
ufacturing (Industry 4.0) environments, i.e., we will introduce and implement
an IoT scenario based on “real” objects such as production machines. On the
technical side, we want to provide additional situation template mapping algo-
rithms for other execution engines such as CEP-systems like Esper and data
streaming systems like Odysseus. The current SitRS prototype provides the
basis for further development and is available as open source implementation

Situation Recognition Service 15

(https://github.com/hirmerpl /SitOPT). In addition, we plan to enable automatic
sensor binding and registration based on ontologies.

Acknowledgment: This work is funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) - Grant 610872, project SitOPT.

References

1.

10.

11.

12.

13.

Attard, J., Scerri, S., Rivera, I., Handschuh, S.: Ontology-based Situation Recogni-
tion for Context-aware Systems. In: Proceedings of the 9th International Conference
on Semantic Systems (2013)

. Brumitt, B., Meyers, B., Krumm, J., Kern, A., Shafer, S.: EasyLiving: Technologies

for Intelligent Environments. In: Handheld and Ubiquitous Computing. Springer
Berlin Heidelberg (2000)

. Buchmann, A., Koldehofe, B.: Complex event processing. it-Information Technology

Methoden und innovative Anwendungen der Informatik und Informationstechnik
(2009)

. Dargie, W., Eldora, Mendez, J., Mobius, C., Rybina, K., Thost, V., Turhan, A.Y.:

Situation Recognition for Service Management Systems Using OWL 2 Reasoners.
In: Pervasive Computing and Communications Workshops (PERCOM Workshops),
2013 IEEE International Conference on (2013)

. Dey, A.K.: Understanding and Using Context. Personal and Ubiquitous Computing

(2001)

. GrofSimann, M., Bauer, M., Honle, N., Kappeler, U.P., Nicklas, D., Schwarz, T.:

Efficiently Managing Context Information for Large-Scale Scenarios. In: Proc. of
the Third IEEE Intl. Conf. on Pervasive Computing and Communications (2005)

. Hussermann, K., Hubig, C., Levi, P., Leymann, F., Siemoneit, O., Wieland, M.,

Zweigle, O.: Understanding and Designing Situation-Aware Mobile and Ubiquitous
Computing Systems. In: Proceedings of the International Conference on Computer,
Electrical, and Systems Science, and Engineering 2010 (ICCESSE 2010) (2010)

. Lange, R., Cipriani, N., Geiger, L., GroBmann, M., Weinschrott, H., Brodt, A.,

Wieland, M., Rizou, S., Rothermel, K.: Making the World Wide Space Happen: New
Challenges for the Nexus Context Platform. In: Proceedings of the 7th Annual IEEE
International Conference on Pervasive Computing and Communications (PerCom
’09). Galveston, TX, USA. March 2009 (2009)

. Meunier, R.: The pipes and filters architecture. In: Pattern languages of program

design (1995)

Vermesan, O., Friess, P.: Internet of Things: Converging Technologies for Smart
Environments and Integrated Ecosystems. River Publishers (2013)

Wang, X., Zhang, D.Q., Gu, T., Pung, H.: Ontology based context modeling and
reasoning using OWL. In: Pervasive Computing and Communications Workshops,
2004. Proceedings of the Second IEEE Annual Conference on (2004)

Wieland, M., Schwarz, H., Breitenbiicher, U., Leymann, F.: Towards Situation-
Aware Adaptive Workflows. In: Proceedings of the IEEE International Conference
on Pervasive Computing and Communications (PerCom) (2015)

Zweigle, O., Haussermann, K., Kappeler, U.P., Levi, P.: Supervised Learning
Algorithm for Automatic Adaption of Situation Templates Using Uncertain Data. In:
Proceedings of the 2nd International Conference on Interaction Sciences: Information
Technology, Culture and Human (2009)

